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ABSTRACT

Fuzzy set theory is the most powerful tool to describe the process of uncertainty which exist in 
real world and fuzzy regression is an important research topic which can be used for predic-
tion by establishing the functional relationship between fuzzy variables. Quantile regression is 
also a significant statistical method for estimating and drawing inferences about conditional 
quantile functions. This study introduced the idea of quantile regression with respect to fuzzy. 
The ordinary fuzzy regression is based on least square method but here we have introduced 
the idea of weighted least absolute deviation method in fuzzy regression. We have considered 
two different cases for the illustration of our proposed technique, firstly when the input and 
output are taken as fuzzy and secondly, the input and output are taken as fuzzy but the param-
eters are crisp. The algorithm for each case is based on linear programming problem (LPP). 
The LPP is constructed for individual case and solved it by the method of Simplex procedure. 
The proposed work is then compared with the conventional fuzzy regression by using AIC 
criterion. Empirical study shows that the proposed technique works best in every situation 
where the fuzzy regression fails and also provide the results in depth.
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INTRODUCTION

Regression is one of the most important statistical 
measure for applied research and is applied to evaluate the 
relationship between response variable and explanatory 
variables. It also make some assumptions about the shape 

or distribution of residuals like heteroscedasticity, auto-cor-
relation and multi-collinearity. If these assumptions are 
present in the model then the results of the estimates become 
misleading. An ordinary least squares (OLS) technique is 
used for estimating the standard regression parameters. 
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The output of the typical linear regression methodology is 
the mean average between a set of explanatory variables, 
while response variable is called conditional mean whose 
function is stated as 𝐸(𝑌/𝑋). As one might be interested in 
conditional distribution of 𝑌 by observing the relationship 
at different points but the linear regression technique only 
offers a limited view of the relationship. Therefore another 
technique called quantile regression is used in this situa-
tion which has capability to describe the relationship in the 
conditional distribution of 𝑌 at different points. Quantile 
regression falls in a non parametric approach as non para-
metric is not based on any assumptions, similarly quantile 
regression also makes no assumption about the distribution 
of the residual or error term. Quantile regression permits us 
to study the effect of different predictors on various quan-
tiles of the response variable, so that it provides a compre-
hensive picture of the relationship between response and 
explanatory variable. It is more vigorous to outliers than the 
casual least squares regression. 

 Measurement results and observational data are often 
not precise numbers but may be less or more precise, it is 
also called fuzzy. The idea of assembling sets as generalized 
sets was firstly published in [1] Menger, and later Zadeh [2] 
introduced the term ‘fuzzy set’ [3]. All types of data which 
cannot be shown as precise numbers or cannot be catego-
rized precisely are said to be non-precise or fuzzy. The data 
in the form of linguistic or verbal descriptions like low tem-
perature, high speed and high blood pressure etc are the 
examples of fuzzy. Fuzzy set theory is the most powerful 
tool to describe the process of uncertainty and imprecise 
information which exist in real world, and fuzzy regression 
is an important research topic which can be used to ful-
fill predicting by establishing the functional relationship 
between fuzzy variables. There are a many studies have 
been done to merge statistical techniques and fuzzy set 
theory. Li and Zeng [4] modified fuzzy regression based 
on least absolute deviation which is also known as median 
regression. They introduced a new distance measure 
between fuzzy number and merge with median regression 
or LAD and then parameters are considered to be a trap-
ezoidal fuzzy number, Otadi [5] discussed the case fuzzy 
input and fuzzy coefficients in fuzzy polynomial regression, 
Choi [6] applied LAD (least Absolute Deviation) estima-
tion technique to generate fuzzy regression analysis, Tian 
and Zhu [7] used EM-Algorithm to derive a new procedure 
for estimating linear quantile regression, Das and Ghosal 
[8] used Bayesian method to solve simultaneous quantile 
regression. In this approach, quantile function is obtained 
by inserting the prior distribution on monotone increas-
ing function, Kim et al. [9] considered a single case fuzzy 
input-output with LAD (Least Absolute Deviation) regres-
sion, D'Urso [10] applied least square procedure for esti-
mating the parameters of different fuzzy linear regression, 
where the model is based on fuzzy output with fuzzy input 
and Tanaka and Guo [11] recommended a technique to 
evaluate the efficiency of the model with fuzzy input and 

output. Similarly, Rasheed and Mustafa [12] done compara-
tive study between simple linear regression, quantile regres-
sion and spline regression and Khalid and Mustafa [13] 
developed a quantile regression model using B-spline and 
penalties where she used method least absolute deviation 
(LAD) and include penalty term in the objective function. 

 It has been observed that most of the the research-
ers relates the fuzzy set theory with the linear regression, 
logistic regression or narrates to the statistical models and 
named them fuzzy linear regression. While the work done 
on quantile regression, mostly includes the the quantile 
regression with splines and most of them with Bayesian 
approach. Therefore, this study has attempted to merge the 
crisp quantile regression with fuzzy set theory which moti-
vates the combination of both theories in order to obtain 
more reliable models which could be successfully applied 
in many practical studies of quantile regression models in 
real world application when data is not precise or exact for 
example the proposed model can be used in bio medical 
research study to understand the relationships among dif-
ferent fuzzy variables outside of the conditional mean of the 
response, in the field of epidemiology for the risk predic-
tion and to examine the effects of growth trajectories and 
similarly they can be used in weather forecasting, wind 
speed forecasting and estimation of food expenditures.

The rest of the paper is organized as follows, some basic 
concepts of fuzzy set theory and its related components 
and some techniques which are used for present work are 
discussed in Section 2. In Section 3, methodology of pro-
posed work is discussed. In Section 4, we have discussed the 
numerical computations and some concluding remarks are 
given in Section 5. 

PRELIMINARIES 

 In this section, some basic definitions related to present 
work are discussed. 

Quantile Regression and Weighted Absolute Function 
Quantile regression is a semi parametric approach 

because it avoids the assumptions regarding the parametric 
distribution of the error term. Quantile regression contrib-
utes much additional information for the response variable. 
In OLS, the estimates of linear regression is the conditional 
mean function, while the estimates of quantile regression is 
based on conditional quantile function 𝑄(𝑌/𝑋). The spe-
cial case of quantile regression is known as Least Absolute 
Deviation Regression and simply abbreviated as LAD. 
LAD studies the connection between the explanatory and 
response variable using the conditional of median function 
𝑄0.5(𝑌/𝑋) where the median equals to the 50𝑡ℎ percentile 
of the observed or experimental distribution. The quantille 
(𝜃 → [0,1]), splits the data into proportions 𝜃 for under 
estimation and (1 − 𝜃 ) for over estimation. If 𝜃 = 0.5 then 
it becomes Median regression.
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The estimation of parameter 𝛽′𝑠 in these three models 
are different. If 𝜖𝑖 is the model prediction error, then OLS 
minimizes as, 

 The conditional mean function is represented as, 

 Median regression is estimated by least absolute devia-
tion (LAD) approach, which minimizes 

 In quantile regression model (QRM), the model and its 
conditional mean function is given as, 

 where the 𝜏𝑡ℎ quantile of 𝜖𝑡 is zero, and (𝜃 ∈ [0,1])
quantile. Quantile regression minimizes the sum of the 
unsymmetrical penalties 𝜃 |𝜖𝑡| for under prediction and 
(1 − 𝜃 )|𝜖𝑡| for over prediction. The estimator of quantile 
regression for any 𝜃 belongs to [0,1] minimizes the objec-
tive function; 

 

 An asymmetric absolute loss function for 𝜃 ∈ [0,1] is, 

where 𝐼{𝜖⩾0} and 𝐼{𝜖<0} are the check or indicator func-
tions, defined by Yu et al. [14]. The equation 

 is a non-differential function and the loss function is 
a piece-wise linear. Therefore,it is a linear programming 
problem and its computation is quite difficult so it requires 
linear programming method for example simplex method 
to minimize it, which is an appropriate method to acquire 
a solution in a finite number of iterations ( see for example 
[15]). An alternative simpler notation of 𝜌𝜃 (𝜖) is 

where 𝜖+ represents 𝐼{𝜖⩾0}|𝜖𝑡| and 𝜖− represents 
𝐼{𝜖<0}|𝜖𝑡| . The objective function is represented as, 

 subject to the constraint, 

Fuzzy Logic and Sets
Fuzzy logic is a generalization of classical logic. It is a 

mathematical technique to handle with the uncertainty, 
where it model those problems which are utilizing the 
imprecise data. As fuzzy logic deals with linguistic terms by 
assigning the suitable membership degree. So it can say that 
fuzzy frequently reports with uncertainty, imprecision and 
vagueness. In this section we recall some notations and pre-
liminary concepts about fuzzy sets and numbers (see [3]). 
The mathematical definition of fuzzy sets can be defined as; 

Definition 1 A fuzzy set is a collection of ordered pairs, 
Y be universe of discourse and y is specific element of Y, so 
the fuzzy set A can be written as, 

where 𝜇𝐴̃(𝑦) showing a degree of membership of ele-
ment y with 𝜇𝐴̃(𝑦) → [0,1] and each ordered pair (𝑦,
𝜇𝐴̃(𝑦)) is known as singleton. 

Linguistic Terms 
Linguistic variables are essential for fuzzy sets. Basically, 

these are the words that are converted into numeric values 
by using fuzzy set theory. It is very helpful for dealing with 
vague and inadequate information as a first step to over-
come ambiguity. 

Membership Function
Membership is a degree of truthfulness of an input. The 

degree always lies between 0 to 1. It is denoted by 𝜇�̃�(𝑦), 
where �̃� is a fuzzy set and 𝑦 ∈ 𝑌. This functions permits to 
draw fuzzy sets graphically, where x-axis has a values of uni-
versal set and y-axis has values of membership on an interval 
[0,1].There are different types of membership functions and 
some of them that at are most commonly used are triangular, 
trapezoidal and gaussian membership function. 

Definition 2 Suppose x be a subset of X, a membership 
function of a fuzzy set 𝐴̃ is symbolized as 𝜇𝐴̃(x), where 0 ≤ 
𝜇𝐴̃(x) ≤ 1. The value of 𝜇𝐴̃(x) is called the degree of mem-
bership x ∈  X which is defined on a fuzzy set 𝐴̃ If 𝜇𝐴̃(x) is 
zero, it will shows that it is not a member of fuzzy set 𝐴̃ and 
if 𝜇𝐴̃(x) =  1 then is shows that it a fully member of given 
fuzzy set. 

Fuzzy Number 
Definition 3 A fuzzy number B is called a fuzzy subset 

of R, then the membership function μB(x) must obey the 
following standards, 
1. 𝛼 − 𝑐𝑢𝑡: 𝜇𝐵(𝑥) → [0,1]
2. The set of 𝛼 − 𝑐𝑢𝑡 must have such elements of x whose 

membership magnitude is 𝜇𝐵(𝑥) ≥ 𝛼 .
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3. There exist x, i.e. 𝜇𝐵(𝑥) = 1.
4. 𝜇𝐵(𝑥) is a piece-wise continuous membership function. 

Definition 4 If x belongs to the set X, and all the ele-
ments of X has non-zero membership magnitude in B, i.e, 

𝐵 = {𝑥 ∈  𝑋 |𝜇𝐵(𝑥) > 0}

 𝜇𝐵(𝑥) is membership function defined on a closed 
interval [0,1]. 

 Theorem 1 Let A =  (al, am, ar) and B =  (bl, bm, br) are 
two triangular fuzzy numbers in a universe of discourse X, 
then
1. 𝐴 ⊕ 𝐵 =  (𝑎𝑙, 𝑎𝑚, 𝑎𝑟) + (𝑏𝑙, 𝑏𝑚, 𝑏𝑟) =  (𝑎𝑙 ⊕  𝑏𝑙, 𝑎𝑚 ⊕  

𝑏𝑚, 𝑎𝑟 ⊕  𝑏𝑟)
2. −(𝑎𝑙, 𝑎𝑚, 𝑎𝑟) =  (𝑎𝑟, −𝑎𝑚, 𝑎𝑙) 

 

Fuzzy Regression 
The term fuzzy regression analysis was introduced by 

Tanaka and Guo [11]. Possibilistic and least-squares are 
two main approaches of fuzzy regression models. The idea 
of best fit in both approaches includes the problem which 
is associated with the funtion optimization. Particularly, 
in possibilistic method, this functional takes the form of a 
measure of the spreads of the estimated output, either as a 
weighted linear sum involving the estimated coefficients in 
linear regression, or as quadratic form in the case of expo-
nential possibilistic regression. Secondly in the standard 
least-squares approach, the functional to be minimized the 
distance between the observed and estimated outputs. This 
reduces to a class of quadratic optimization problems and 
constrained quadratic optimization D′Urso [10]. 

Linear Programming Problem 
The problem of optimizing the linear function subject 

to its linear restriction or constraints, where the motive is to 
find the vector ∈  𝑅. The constraints may be in the form of 
equalities or inequalities such as (= , ≤, ≥ ) respectively. Let 
𝑧 be the expression which is being minimized or maxi-
mized is called an objective function, and let the variable 𝑥𝑖, 
(𝑖 = 1,2, . . . , 𝑛) involved in the problem are called decision 
variables. Each line of constraints ended with the constant 
𝑑𝑖. If the set of variables 𝑥𝑖 fulfills all the restrictions then it 
is called feasible state and the set of these points in this state 
is known as feasible region. 

The standard linear programming problem can be 
expressed as, 

 Subject to, 

where 𝑥𝑖 ≥  0 𝑎𝑛𝑑 𝑖 = 1,2, . . . , 𝑛. The above linear 
programming problem can be solved by using the sim-
plex method which is one of the most useful and efficient 

algorithms ever invented, and it is still the standard method 
employed on computers to solve optimization problems.

The given LPP is easy to solve when the variables involve 
in the problem and their respective constraints are lesser in 
number but when the number of variables and constraints 
become larger, it is not possible to solve it manually, so one 
can overcome this complexity by using appropriate statisti-
cal software. 

Fuzzy Quantile Regression
In this study we have introduced quantile regression in 

fuzzy logic which gives more detailed and precise results 
whenever the information is inexact or imprecise. 

Fuzzy Linear Regression 
We have considered the model which is represented as, 

  (1)

where �̃�𝑖, 𝐴̃ and 𝑋𝑘 are triangular fuzzy numbers. The 
above model in matrix form is given as, 

In simpler form the above model can be expressed as, 

  (2)

By applying the method of least square separately we 
can get the left, middle and right of the parameter estimates 
which are given below; 

  (3)

   (4)

   (5)

Proposed Models 
We have considered two different cases for the illustra-

tion of our proposed technique, firstly when the input and 
output are taken as fuzzy and secondly, when the input and 
output are taken as fuzzy but the parameters are crisp. 

Case-I: Fuzzy output, fuzzy input and fuzzy parameter 
(FFF) 

 For this case we considered the following model, 

  (6)

where 𝜃 =Specified Quantile and �̃�𝑖 𝜃 , �̃�𝜃 and �̃�𝑘 are tri-
angular fuzzy numbers.These numbers are represented as, 
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By using definition (4), equation (6) can be written as, 

  (7)

where 𝐿−1(𝛼 ) = Inverse Shape function, 𝑒 = spread of 
fuzzy number and for instance 𝛼 = 0 is used ( see for exam-
ple [11]). So equation (6) can be written as, 

  (8)

By using theorem (1) we have, 

  (9)

To minimize the difference between observe and esti-
mated fuzzy numbers we can decompose the above equa-
tion into three equations(see for example [16]) and are 
given as, 

  (10)

   (11)

   (12)

To find the parameter of the left triangular fuzzy num-
ber we have to minimize the equation (10), for this purpose 
linear programming problem is given as follows, 

  (13)

 where, 

 

where l represents indicator function. 
So the equation (10) becomes, 

  (14)

And the objective function is, 

  (15)

Subject to the constraints, 

  (16)

For more simplicity, the problem of optimization for the 
above equations can be converted into matrix form, such as 

  (17)

Subject to the constraints, 

  (18)

where,

where
 = Vectors of ones,

0= Vectors of zeros,
𝐼= Identity matrix,
𝑋𝑖𝑗=Triangular fuzzy set of independent variable,
𝑎𝑖𝑗= left, middle and right fuzzy number parameter, 
Similarly for equation (11), linear programming prob-

lem to obtain the parameter of the triangular fuzzy number 
is given as, 

  (19)

Subject to the constraints, 

  (20)

where, 

 And for equation (12), linear programming problem is 
represented as, 

  (21)

 Subject to the constraints, 

  (22)
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 where, 

Case-II: fuzzy output, fuzzy input and crisp parameter 
(FFC) 

The model of quantile regression for fuzzy output, fuzzy 
Input and crisp parameter (FFC)is represented as, 

  (23)

where 𝜃 =Specified Quantile, 𝑌̃𝑖𝜃 , and 𝑋̃𝑘 are triangular 
fuzzy numbers and 𝑎𝑖𝜃  is a crisp parameter, such as 

 From the definition (4), membership functions of 𝑌̃𝑖𝜃 
and 𝑋̃𝑖𝑗 are represented as, 

  

(24)

  

(25)

To find the crisp parameters 𝑎0𝜃 , 𝑎1𝜃 , . . . , 𝑎𝑘𝜃  we 
converted the fuzzy values 𝑌̃𝑖 =  (𝑌𝑙, 𝑌𝑚, 𝑌𝑟), and 𝑋̃𝑖𝑗
=  (𝑋𝑖𝑗𝑙 , 𝑋𝑖𝑗𝑚 , 𝑋𝑖𝑗𝑟) into crisp values by using the method 
of defuzzification.

Let 𝑋𝑖𝐷 and 𝑌𝑖𝐷 be the defuzzified values of the fuzzy 
observation �̃�𝑖𝑗 and �̃�𝑖 respectively. There are numerous 
methods have been suggested in literature for defuzzifica-
tion, here we are using the centroid method to defuzzify the 
values of 𝑋̃𝑖𝑗 and 𝑌̃𝑖 . The formula for defuzzification are 
represented as, 

  (26)

   
(27)

So the FFC model in equation (23) becomes, 

  (28)

   (29)

The problem of minimization in quantile regression 
algorithm is given as, 

  
(30)

To reach the linear programming problem (LPP), we 
have solved the equation (30) and simplified by consider-
ing the model up to two parameters𝑎0𝜃 and 𝑎1𝜃 , so the 
obtained form is given as 

  (31)

where 𝜀𝑖 =  𝑌𝑖𝐷 − 𝑎0𝜃 − ∑ 𝑎1𝜃 𝑋𝑖𝑗𝐷 As the above 
equation is non differential and it is a problem of linear 
programming, so we can write the above equation into a 
simpler form, such as 

  (32)

where 𝜀+ represents the indicator function 𝐼{𝜀≥ 0}|𝜀𝑖| and 
𝜀− represents the indicator function 𝐼{𝜀<0}|𝜀𝑖| . The objec-
tive function for LPP is represented as 

  (33)

Subject to the constraint, 

  (34)

 where 𝜀+ ≥  0 and 𝜀− ≥  0. 

ESTIMATION OF ERROR AND EVALUATION OF 
MODELS

The errors of both models given in equation (6) and (23) 
are computed by taking the difference between observed 
and expected values of fuzzy numbers 𝑌̃𝑖 and 𝑌̃𝑖 and are 
represented as, 

  (35)

The evaluation of the proposed models are done by taking 
the advantage of Akaike information criterion (AIC). AIC is 
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a tool which is used to check and evaluate the quality of the 
model. Minimum the value of AIC shows the correctness of 
the model. The formula to compute the AIC is given as, 

  (36)

where 𝑝= number of parameters to be estimated 

where 𝑙𝑛(�̂�) is the maximum of likelihood function of 
the model. 

Numerical Computation
To illustrate the theoretical results and obtain efficiency of 

our proposed regression models we have considered the data 
set of a simulation study which is originally used by Chung 
[17]. The proposed linear programming problem (LPP) is 
consist of complex algorithm and it cannot be solved manu-
ally, therefore R-software is used to compute the model. The 
R-package of the proposed study is created under the latest 
version of R Software. The name of the proposed R-package 
is “FuzzReg”, where the title of package is Fuzzy Regression, 
the version of the package is 0.1.1. The package “FuzzReg” 
give the estimates of Fuzzy Linear regression (FLR) and fuzzy 
quantile regression (FQR). The command for Fuzzy linear 
regression is created on the least square method while the 
command for fuzzy quantile regression is made as per the 
proposed technique. The details of programming with codes 
are available in appendix section.

Case-I
In this case we considered the model of quantile regres-

sion when the input and output are taken as fuzzy and is 
given in equation (6). The coefficients of the this model 
are estimated using the linear programming problem by 
the equation (10), (11) and (12) at 0.25, 0.5, 0.75 quantile 
such as 𝜃 = 0.25 ,0.5 ,0.75 ). The data set is taken from the 
research paper of Chung [17] to explain and compare the-
oretical results of proposed models. The data contains one 
response triangular fuzzy number 𝑌̃𝑖 and two explanatory 
triangular fuzzy numbers 𝑋̃𝑖1 and 𝑋̃𝑖2.

ESTIMATION OF MODELS AT DIFFERENT 
QUANTILES

For one response and two explanatory fuzzy numbers 
the model at 𝜃 = 0.25 (at 25 𝑡ℎ quantile) using equation 
(6) is given as, 

  (37)

where 

 

By inserting the numerical values of coefficients, the 
estimated model at 25 𝑡ℎ quantile is represented as, 

  
(38)

By following the same steps we also estimated the model 
at 50𝑡ℎ quantile and is given as 

  
(39)

Similarly estimated model at 75 𝑡ℎ is represented as, 

  
(40)

Estimated Model Of Fuzzy Linear Regression

Case-I
The model of fuzzy linear regression in the case of fuzzy 

input, fuzzy Output and fuzzy parameter is given as, 

The estimated fuzzy regression model is given as,

  
(41)

Case-II
We considered the quantile regression model in this 

case when we have fuzzy input, fuzzy out put and crisp 
parameters.The estimation of the model given in equation 
(23) is done by using linear programming problem in equa-
tion (33) and (34). The data contains triangular 
fuzzy number i.e. �̃�𝑖𝜃 =  (𝑌𝑙𝜃 , 𝑌𝑚𝜃 , 𝑌𝑟𝜃 ) and 𝑋̃𝑖𝑗 =  
(𝑋𝑖𝑗𝑙 , 𝑋𝑖𝑗𝑚 , 𝑋𝑖𝑗𝑟). In order to find the crisp parameters (𝑎0, 
𝑎1, 𝑎2) we have converted the fuzzy observations into crisp 
values. Centeroid method given by equations (26) and (27) 
is used to defuzzify the fuzzy observations. 

ESTIMATION OF MODELS AT DIFFERENT 
QUANTILES

The model for one response and two explanatory fuzzy 
numbers at 25 𝑡ℎ quantile is given as,   

  (42)
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The intercept and the slopes of 𝑋𝑖𝑗 are computed using 
the equation (33). The estimated model at 25 𝑡ℎ quantile is 
represented as, 

  (43)

Similarly the estimated mode at 50𝑡ℎ quantile is repre-
sented as, 

  (44)

and estimated model at 75 𝑡ℎ quantile is, 

  (45)

Estimated Model of Fuzzy Linear Regression

Case-II
The model of fuzzy linear regression in case of fuzzy 

input, fuzzy output and crisp parameter, in terms of two 
input and one output fuzzy number is shown as, 

and after estimating the parameters, estimated fuzzy 
linear regression model is given as, 

  (46)

COMPARISON OF FUZZY QUANTILE AND FUZZY 
LINEAR REGRESSION

 The evaluation and comparison between existing and 
proposed models are made by error estimation. Error esti-
mation is done by deviating the observed values by esti-
mated values as given in the equation (35). As fuzzy linear 
regression estimates a single line over the data while fuzzy 
quantile regression estimate multiple lines at specified 
quantile 𝜃 . For the sack of comparison, we have compared 
error of fuzzy quantile regression at 75 𝑡ℎ quantile with fuzzy 
linear regression. 

The error of fuzzy linear regression for the model 
given in Case-I is obtained as 3135.449 while the error of 
fuzzy quantile regression for the same model is obtained 
as 145.9895. In case-II, the errors are attained as 297.1842 
and 51.84444 for fuzzy linear regression and fuzzy quantile 
regression respectively. It can be clearly seen that in both 
cases, proposed fuzzy quantile regression gives less error as 
compared to fuzzy linear regression and it can be concluded 
that fuzzy quantile regression performs better then the con-
ventional fuzzy linear regression. 

We also extended our comparison by using Akaike 
information criterion (AIC) given in section (Estimation of 
Error and Evaluation of Models). The more detail of errors 

and AIC for both cases are represented in table 1 and table 
2. The value of AIC for proposed fuzzy quantile regression 
model is less than AIC value for fuzzy linear regression in 
both cases, which implies the better performance of our 
proposed models.

CONCLUSION

This research study mainly concerns with combination 
of quantile regression and fuzzy set theory to obtain fuzzy 
quantile regression. Fuzzy regression analysis is considered 
as extensively used technique in the atmosphere of fuzzy. 
It is an emerging zone for research now a days. Quantile 
regression is also an important methodology for response 
variables. The situation in which the assumption of linear 
regression becomes fail, the quantile regression assists to 
produce required results. We have proposed two models of 
quantile regression with various combinations of input-out-
put variables by using triangular fuzzy number.The proposed 
models are then converted into a linear programming prob-
lem (LPP) and are solved by simplex method, taking trian-
gular fuzzy data set. Empirical work shows evidence in the 
favor of proposed work. The error and AIC of each proposed 
model are less than the error and AIC of fuzzy regression 
which demonstrates that the proposed models are best fitted 
models and provides excellent assistance to elegantly solve 
structural equation models in fuzzy environment. Empirical 
researchers can take advantage of proposed fuzzy quantile 
regression models ability to examine the impact of predictor 
variables on response distribution in uncertainty modeling. 
Other research work can be introduced in the framework 
of present approach to fuzzy quantile regression where any 
combination of the inputs, outputs and parameters could be 
fuzzy or type-2 fuzzy.

Table 1. Error and AIC of Fuzzy Linear Regression and 
Fuzzy Quantile Regression for Case-I 

Models Quantiles Error AIC
Fuzzy Quantile Regression 0.25 157.3862 114.4911

0.5 145.9895 120.1598
0.75 192.7083 127.6773

Fuzzy Linear Regression 3135.449 128.0495

Table 2. Error and AIC of Fuzzy Linear Regression and 
Fuzzy Quantile Regression for Case-II 

Models Quantiles Error AIC
Fuzzy Quantile Regression 0.25 60.2454 94.50432

0.5 51.84444 94.00034
0.75 61.1996 95.30643

Fuzzy Linear Regression 297.1842 95.36269
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APPENDIX

FUZZY LINEAR REGRESSION 

Description 
It gives the fuzzy estimates of fuzzy regression by using 

the method of least squares. 

Usage
flr(Y, X, type) 

Arguments 
“type” is model to be used (1) 
x is an input fuzzy number 
y is an output fuzzy number 
1 “Fuzzy output, Fuzzy input and Fuzzy Parameters” 

Examples
If given Triangular Fuzzy Number
x_left<- c (1.5,3.0,4.5,6.5,8.0,9.5,10.5,12.0)
x_centre< -c (2.0,3.5,5.5,7.0,8.5,10.5,11.0,12.0)
x_right< -c (2.5,4.0,6.5,7.5,9.0,11.5,11.5,13.0)
y_left< -c (3.5,5.0,6.5,6.0,8.0,7.0,10.0,9.0)
y_centre< -c (4.0,5.5,7.5,6.5,8.5,8.0,10.5,9.5)
y_right< -c (4.5,6.0,8.5,7.0,9.0,9.0,11.0,10.0)
X< -cbind(x_left, x_centre, x_right) Y< -cbind(y_left, 

y_centre, y_right) flr(Y, X, type = 1)

FUZZY QUANTILE REGRESSION 

Description 
It gives the estimates of fuzzy quantile regression using 

the method of Weighted Least Absolute Deviation (WLAD). 
It converts the input variables into Linear Programming 
Problem (LPP) and uses the Simplex Algorithm to solve the 
LPP.

Usage
fqr(X, y_left, y_centre, y_right, t, type) 

Arguments 
t is a specified quantile ranges from 0 to 1 i.e t=[0,1] 

“type” specifies the model (Here 1 in our case)
x is an input fuzzy number
y_left is left output fuzzy number y_centre is center of 

output fuzzy number y right is a right output fuzzy number
1 “Fuzzy output, Fuzzy input and Fuzzy Parameters” 

Examples
If given Triangular Fuzzy Number library (“lpsolve”)
x_left< -c (1.5,3.0,4.5,6.5,8.0,9.5,10.5,12.0)
x_centre< -c (2.0,3.5,5.5,7.0,8.5,10.5,11.0,12.5)
x_right< -c (2.5,4.0,6.5,7.5,9.0,11.5,11.5,13.0)
y_left<-c (3.5,5.0,6.5,6.0,8.0,7.0,10.0,9.0)
y_centre< -c (4.0,5.5,7.5,6.5,8.5,8.0,10.5,9.5) 
y_right< -c (4.5,6.0,8.5,7.0,9.0,9.0,11.0,10.0)
X< -cbind(x_left, x_centre, x_right) t<-0.5
fqr(X, y_left, y_centre, y_right, t, type = 1)


