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ABSTRACT

In this study, we investigate the condition that a given polynomial curve with respect to the 
Frenet like curve (Flc) frame is a Tzitzeica curve. We also show that any planar polynomial 
curve cannot be a Tzitzeica curve. Finally, the condition to be the Tzitzeica curve for each of 
the spherical indicatrix curves defined according to the Flc frame is expressed, separately.
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INTRODUCTION

The Tzitzeica curve is characterized by a unique con-
dition that pertains to the proportion between the curve’s 
torsion. This ratio remains a nonzero constant.The defin-
ing characteristic of the Tzitzeica curve is that the men-
tioned ratio, involving torsion and distance, is a constant 
value. It has been proven that no planar polynomial curve 
can be a Tzitzeica curve. This result provides insights into 
the limitations and specific conditions for the existence of 
Tzitzeica curves.

New results have been obtained for spherical indicatrix 
curves defined with respect to the Flc frame, demonstrat-
ing their qualification as Tzitzeica curves. This extends 
the understanding of Tzitzeica curves to specific instances 
in spherical geometry. Researchers have explored various 
aspects of Tzitzeica curves, including obtaining parametric, 
open, and closed equations for Tzitzeica hypersurfaces. The 
study involves mathematical formulations that describe 
the shape and behavior of these curves. Tzitzeica curves 

have been studied in different mathematical spaces, such 
as Minkowski space and Euclidean space. The character-
ization of Tzitzeica curves varies based on the geometric 
properties of the specific space in which they are exam-
ined. The geometric information about Tzitzeica curves has 
been investigated with respect to various frames of refer-
ence. Different frames provide different perspectives on the 
curve’s behavior and properties.

In summary, the geometric information about Tzitzeica 
curves encompasses their defining characteristics, the 
invariance of certain ratios, non-existence for certain 
types of curves, and exploration of their behavior in dif-
ferent mathematical spaces and frames of reference, [1-10]. 
This study aims to examine Tzitzeica curves in Euclidean 
space using the Flc frame. The condition for a curve to 
be a Tzitzeica curve has been reinterpreted and defined 
for given polynomial curves. It has been established that 
no planar polynomial curve qualifies as a Tzitzeica curve. 
Additionally, new results have been obtained for spherical 
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indicatrix curves defined with respect to the Flc frame, 
meeting the criteria to be Tzitzeica curves.

PRELIMINARIES

Suppose α = α(u) is a regular space curve. Three mutu-
ally orthogonal vector fields, referred to as the Frenet frame, 
are defined as [11]

  
(1)

The Frenet apparatus are given by

   (2)

  
(3)

In relation to these, Consider α = α(u) as a polynomial 
space curve. The definition of the Flc frame for [12], 

  
(4)

Here (n) indicates the nth order derivative of the curve. 
D1 is called as binormal-like vector and D2 is normal-like 
vector. The curvatures of the Flc-frame are given by

  
(5)

The Frenet-like apparatus are given by:

  

(6)

Definition 2.1. Let the α polynomial curve {T, D2, D1} 
be given with the Flc frame. The path followed by the vector 
T centered at unit sphere is called T − is defined as

  (7)

Definition 2.2. Let the α polynomial curve {T, D2, D1} 
be given with the Flc frame. The path followed by the vector 
D2 centered at unit sphere is called D2 −  is defined as

  (8)

Definition 2.3. Let the α polynomial curve {T, D2, D1} 
be given with the Flc frame. The path followed by the vector 
D1 centered at unit sphere is called D1 −  is defined as

  (9)

TZITZEICA CURVES USING FLC FRAME

In this section of the research, we present the charac-
terization of the Tzitzeica curve employing the Flc frame 
within 3-dimensional Euclidean space. Essential and com-
prehensive conditions are articulated for the spherical indi-
catrix curves to qualify as Tzitzeica curves.

Theorem 3.1. Let  be a polynomial 
curve and  be apparatus of the Flc frame, 
then there exists the following equation:

Proof . The differentials of the polynomial curve α can 
be readily obtained as follows:

 

With the help of these equations, we get

Therefore, it is evident that the following equation 
exists:

The demonstration is concluded.
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Corollary 3.1.1. If α is a Tzitzeica curve, then

is a nonzero constant.
Corollary 3.1.2. If α is a planar polynomial curve, it is 

established that α cannot be the Tzitzeica curve. Now, let’s 
determine the essential conditions for spherical indicatrix 
curves to meet the criteria for being Tzitzeica curves:

Theorem 3.2. Let   be a polynomial 
curve with the Flc frame. Then tangent spherical indicatrix 
curve αT of the curve α is a Tzitzeica curve if and only if

where  
Proof. Let αT be a tangent spherical indicatrix curve of 

the curve α, then differentiations of αT are

 

Using these equations, we have

Thus, we can readily derive the condition for curve αT 
to be a Tzitzeica curve 

Theorem 3.3. Let  be a polynomial 
curve with the Flc frame. Then the normal like 

spherical indicatrix curve αD2 of the curve α is a Tzitzeica 
curve if and only if

 

where 
Proof. Let αD2 be a normal spherical indicatrix curve of 

the curve α, then differentiations of the curve αD2 are found 
as 

 

Utilizing these equations, we can readily compute the 
subsequent expressions
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Therefore, the condition for curve αD2 to be a Tzitzeica 
curve is articulated as:

 

Theorem 3.4. Let  be a polynomial 
curve with the Flc frame. Then the binormal like 

spherical indicatrix curve αD1 of the curve α is a Tzitzeica 
curve if and only if

where  
Proof. Let αD1be a binormal spherical indicatrix curve 

of the curve α, then differentiations of the curve αD1 are 
found as 

 

So, we obtain the following equations

From here, the condition to be the Tzitzeica curve of the 
curve αD1 is given by

CONCLUSION

In this study, the condition for a polynomial curve given 
according to the Flc framework to be a Tzitzeica curve 
expressed. It was then shown that no planar polynomial 
curve can be a Tzitzeica curve. As a result, each of the spher-
ical indicatrix curves defined according to the Flc frame-
work is the Tzitzeica curve condition was investigated.
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