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ABSTRACT

Inelastic displacement demand is an important part of the performance-based design and it 
should be estimated realistically to determine a reliable seismic performance of a structure. 
In this context, the coefficient method is an easy and practical method for this estimation. 
The coefficient method is a method that is used to estimate inelastic displacement demand by 
the multiplication of the elastic displacement demand and inelastic displacement ratio. Thus, 
it is clear that a reliable estimation of inelastic displacement demand depends on a reliable 
inelastic displacement ratio. After a reliable estimation of the inelastic displacement ratio, it 
is essential to propose an equation for the usage of engineering practice. Although nonlinear 
regression analysis is preferred in the literature as a classical method to estimate an equation, 
the Artificial Neural Network method is a new and modern way that can be used in the esti-
mation of inelastic displacement ratio. In this study, Artificial Neural Network models have 
been proposed by using data of inelastic displacement ratios of Single Degree of Freedom 
systems with stiffness and strength degrading peak-oriented hysteretic model and collapse 
potential by performing nonlinear time history analyses. Firstly, a large number of trials have 
been conducted to obtain an optimum Artificial Neural Network model. The results of Ar-
tificial Neural Network models have been compared to the results of equation estimated by 
using nonlinear regression analysis and given in the previous studies. According to the results, 
Artificial Neural Network models give closer values to the inelastic displacement ratios of 
time history analysis than nonlinear regression analysis. Especially, the Bayesian Regulariza-
tion Backpropagation model of the Artificial Neural Network method with two hidden layers 
achieved the best performance among the other Artificial Neural Network models. It can be 
said that Artificial Neural Network methods can be used to estimate inelastic displacement 
ratio since it yields better accuracy than previous techniques for different parameters.

Cite this article as: Börekçi M, Aydoğan B. Prediction of inelastic displacement ratios for 
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INTRODUCTION 

Structures behave nonlinearly and may suffer heavy 
damage under the effect of a severe earthquake. It is well-
known from past studies that damages to structures under 
the effect of a severe earthquake occur because of the large 
displacement instead of strength. Thus, it is important to 
determine the seismic displacement demand of a structure 
accurately. 

Although nonlinear time history analysis is the most 
reliable method, it is still not practical and requires a sig-
nificant amount of run-time to determine the inelastic dis-
placement demand. Thus, more straightforward methods 
are still needed to estimate the desired inelastic displace-
ment demand. (IDD)

Among the several methods, using “inelastic displace-
ment ratio” (IDR) is one of the effective one in the esti-
mation of IDD. IDR is the ratio of inelastic and elastic 
displacement demand and using this method is a very sim-
ple and practical way to estimate the IDD. In this method, 
IDD is estimated by multiplying the elastic displacement 
demand of the corresponding system with IDR. Many 
researchers studied IDR and proposed equations for differ-
ent structural systems and hysteretic behaviors.

Veletsos and Newmark [1] were the first researchers 
to study the relationship between inelastic and elastic dis-
placement demand. They observed that the deformation of 
elastic and inelastic Single Degree of Freedom (SDOF) sys-
tems are very close for long periods using three earthquake 
ground motions, based on the elastic-perfectly plastic 
behavior. This observation is the “equal displacement rule”. 
According to their study, inelastic deformation demand is 
higher than the elastic deformation demand for short-pe-
riod SDOF systems.

Shimazaki and Sozen [2] investigated the elastic and 
inelastic displacement demand of SDOF systems using the 
El-Centro ground motion record and confirmed the “equal 
displacement rule” for periods longer than the character-
istic period. IDD is higher than the elastic displacement 
demand for periods shorter than the characteristic period 
and the difference between the inelastic and elastic dis-
placement demands depends on the considered hysteretic 
models. Qi and Moehle [3] confirmed the conclusions of 
the study of Shimazaki and Sozen [2].

Miranda [4-6] studied IDR and gave important results 
on IDR in the short period region and investigated the lim-
iting periods of the spectral regions where the equal dis-
placement rule is applicable. 

Miranda [7], Ruiz-Garcia and Miranda [8], Vidic 
et al. [9], Aydinoglu and Kaçmaz [10], Chopra and 
Chintanapakdee [11], and Eser et al. [12] investigated IDR 
and proposed equation based on non-degrading bilinear 
hysteretic behavior. Durucan and Durucan [13] investi-
gated IDR and proposed an equation based on non-degrad-
ing bilinear hysteretic behavior. Zhai et al. [14] investigated 
IDR for structures with constant damage performance 

using no pulse-like ground motions for non-degrading 
elastoplastic systems. Wen et al. [15] conducted the same 
study as Zhai et al. [14] unlikely using near-fault pulse-like 
ground motions.

Studies showed that structures deteriorate under the 
effect of cycling loadings [16]. Also, it is well-known that 
the hysteretic behavior of RC buildings is not similar to the 
bilinear hysteretic behavior, on the contrary, it is similar 
to peak-oriented hysteretic behavior and has strength and 
stiffness degradation [17, 18]. It is important to estimate a 
reliable IDR equation to determine an approximate seis-
mic performance and for this purpose, a realistic hyster-
etic behavior should be considered in the estimation of 
IDR. Chintanapakdee and Jaiyong [19] demonstrated that 
the displacement time history of Single Degree of Freedom 
(SDOF) systems closely approximates the roof displace-
ment of corresponding Multi Degree of Freedom (MDOF) 
reinforced concrete (RC) moment-resisting frames when 
utilizing a degrading peak-oriented hysteretic model, as 
opposed to a non-degrading bilinear hysteretic model.

Nassar and Krawinkler [20], Rahnama and Krawinkler 
[21], and Seneviratna and Krawinkler [22] investigated 
IDD and proposed equations of IDR for different hyster-
etic behavior considering strength degradation, stiffness 
deterioration, and pinching effect. However, strength deg-
radation, stiffness deterioration, and pinching effect were 
considered separately in the estimation of IDR. It is well-
known that these effects may occur simultaneously or affect 
each other. 

Gupta and Kunnath [23] investigated the effect of 
hysteretic model parameters on IDD based on the three-pa-
rameter strength degradation hysteretic model. 

Song and Pincheira [24] conducted a study on IDD based 
on stiffness and strength degrading systems. According to 
their study, the IDD of degrading systems can be higher 
than those of non-degrading ones. Pekoz and Pincheira 
[25] studied IDR considering the same hysteretic model 
given in the study of Song and Pincheira [24]. According to 
their study, the IDD of degrading systems is larger than the 
IDD of non-degrading systems for periods shorter than the 
characteristic period of ground motion.

Chenouda and Ayoub [26] investigated IDD based on 
bilinear and Clough hysteretic models with stiffness and 
strength degradation considering collapse potential. The 
hysteretic models they considered in their study are ener-
gy-based models and more realistic for RC structures. Also, 
they modified the equations of IDR proposed by Nassar 
and Krawinkler [20] and Chopra and Chintanapakdee 
[11]. Although the hysteretic model, which Chenouda and 
Ayoub [26] considered in their study, is more realistic, they 
considered limited degradation cases in the estimation of 
equations. 

Lumantharna et al. [27] investigated the effect of the 
degradation on IDD of ground motions with different char-
acteristic periods and they concluded that the degradation 
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effect on IDD becomes significant with the longer charac-
teristic period.

Borekci et al. [28] investigated the effect of the hyster-
etic model and degradation on IDD and proposed an equa-
tion of IDR for SDOF systems with constant lateral strength 
considering an energy-based stiffness and strength degrad-
ing peak-oriented hysteretic model with collapse potential. 
Also, they considered possible degradation cases in the esti-
mation of IDR. According to the result of this study, the 
non-degrading bilinear hysteretic model gives a lower IDR 
than the degrading peak-oriented hysteretic model.

As it is stated above, a reliable estimation of IDR is very 
important in the determination of the seismic performance 
of a structure. Considered hysteretic behavior is an import-
ant key in the estimation of IDR and an energy-based 
stiffness and strength degrading peak-oriented hysteretic 
model with collapse potential gives more realistic IDR for 
RC buildings. After the estimation of IDR with the con-
duction of time history analysis, an appropriate equation 
should be given. Former studies used nonlinear regression 
analysis to propose the equation of IDR. However, an arti-
ficial neural network (ANN) is a new and modern method 
that can be used in the estimation of IDR for more accurate 
results. Xie et al. [29] conducted a detailed study that is a 
review of the application of machine learning (ML) includ-
ing ANN in earthquake engineering. The study examines 
four main topic areas of ML implementations including 
seismic hazard analysis, system identification and damage 
control, seismic fragility assessment, and structural control 
for earthquake mitigation. Xi et al. [29] indicate that the 
implementation of ML in earthquake engineering is still in 
its early stage when compared with other disciplines. Dwairi 
and Tarawneh [30] conducted a study to predict IDR by 
using ANN. Dwairi and Tarawneh [30] have predicted the 
IDR of SDOF systems built on soft soils for constant ductil-
ity by considering 4 hysteretic models as Flag-shaped, Small 
Takeda, Large Takeda, and Elastic-perfectly plastic systems. 
While Flag-shaped and Elastic-perfectly plastic models are 
non-degraded, the other two consider only ductility-based 
stiffness degradation. The selected input parameters for 
ANN are only ductility and the ratio of the fundamental 
periods of structure and ground motion. According to 
their study, predictions of IDR using ANN show high accu-
racy and low mean square error (MSE), when compared 
to those estimated by using nonlinear regression analysis, 
and this result confirms the result of the current study. 
Wei et al. [31] conducted comprehensive research on the 
effects of various structural and ground motion parame-
ters on the residual displacement of non-degraded bilinear 
SDOF systems under near-fault ground motion records 
and proposed a prediction by implementing ANN with the 
Backpropagation model. They stated that ANN has good 
accuracy in predicting the residual displacements of SDOF 
systems. 

Although ANN has a complex procedure for the esti-
mation of reliable results, it is useful in predicting with 

high correlation in case of the complex relationships 
between variables. However, despite its complex proce-
dure, it is relatively easy to determine an output value by 
using a proper computer program that runs the proposed 
ANN training. 

In this study, IDR equations are estimated for SDOF sys-
tems using ANN methods with two different models Scaled 
Conjugate Gradient (SCG) and Bayesian Regularization 
Backpropagation (BRB). Results of ANN methods were 
compared with the nonlinear regression analysis results 
given in the study of Borekci et al. [28]. IDR data were taken 
from the study of Borekci et al. [28] and the data were com-
puted for a set of 53 natural vibration periods ranging from 
T = 0.1 s. to T = 3 s. (T = 0.1:0.02:0.2, 0.22:0.03:1, 1.1:0.1:3), 
6 strength reduction factors (Ry =1.5, 2, 3, 4, 5, 6), 3 post-
yield stiffness ratios (αs = 0%, 3%, 5%) and 160 ground 
motion records and 27 different combinations of degra-
dation. 4121280 time history analyses were conducted to 
estimate IDR. While the considered hysteretic model and 
its parameters have been stated in Section 2, knowledge 
about the ground motion records and selection parameters 
has been given in Section 3. The estimation procedure of 
IDR and details of the ANN method have been comprehen-
sively explained in Sections 4 and 5, respectively. Results of 
the ANN method and comparison of the ANN method and 
nonlinear regression solutions have been given in Section 
6. ANN methods, especially the BRB model, proved to be a 
better estimator for IDR than the methods already available 
in the literature. The presented ANN model is fast, accu-
rate, and easy to use on any PC.

HYSTERETIC MODEL AND PARAMETERS

Experimental investigations revealed that the behavior 
of RC buildings or components subjected to cyclic loading 
deviates from the bilinear hysteretic response, with stiff-
ness-strength degradation persisting throughout the cyclic 
loading process [17]. Degradation has a significant effect on 
IDR, especially in the short period region of the response 
spectrum [24, 25, 27, 28]. Thus, the stiffness and strength 
degrading peak-oriented hysteretic model should be con-
sidered to estimate a reliable IDR of RC buildings. For this 
purpose, an energy-based stiffness and strength degrading 
peak-oriented hysteretic (SSDPH) model with the collapse 
potential is considered in this study. This model adheres to 
the fundamental hysteretic rules proposed by Clough and 
Johnston [32], later modified by Mahin and Bertero [33]. 
However, the backbone curve has been adjusted by Ibarra 
et al. [16] to incorporate strength capping and residual 
strength, as illustrated in Figure 1 [16]. In Figure 1, fr rep-
resents the residual strength, fc is the maximum strength, uc 
denotes the cap displacement at the onset of the softening 
branch, and Kc represents the post-capping stiffness, typi-
cally with a negative value. An example of SSDPH cycling is 
illustrated in Figure 2. For further details, refer to the study 
by Ibarra et al. [16]. 
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Ibarra et al. [16] proposed three degradation parame-
ters: γ, uc/uy, and αc. γ denotes the rate of deterioration, 
with faster deterioration associated with decreasing values 
of γ. For instance, γ = 50, γ = 100, and γ = 150 correspond 
to severe, moderate, and low degradation systems, respec-
tively [26]. uc/uy represents the ratio between the displace-
ment at peak strength and yield strength. The considered 
ratios of uc/uy are 2, 4, and 6, where these values signify 
non-ductile, medium ductile, and very ductile structures, 
respectively [34]. αc is utilized to define the post-capping 
stiffness ratio and is characterized by negative values. The 
values of αc include -6% [26], -14%, and -21% [35], rep-
resenting small, medium, and large slopes, respectively. In 
this study, the medium slope is assumed to be -14%.

In this study, two collapse criteria were considered: 
dynamic instability and energy exhaustion. As is seen 
in Figure 2, once the post-capping branch reaches the 

horizontal axis, dynamic instability, accordingly, collapse 
occurs [16, 26, 35, 36]. If a slight increase in the input’s inten-
sity leads to minor alterations in the response, the structure 
undergoing this input is considered stable [37, 38]. In other 
words, when the post-capping branch intersects the hori-
zontal axis, the stiffness of the system becomes zero, and 
this situation causes huge and erroneous responses in the 
solution. Otherwise, the structure will not be stable and it 
is called dynamic instability. The second assumption is the 
energy-based collapse and if hysteretic energy capacity is 
exhausted, the system collapses. In this study, reaching the 
hysteretic energy dissipation capacity is the second crite-
rion for the collapse in addition to the dynamic instability. 
Degradation occurs with the combination of degradation 
parameters (γ, uc/uy, αc), and all the combinations consid-
ered within the scope of this study are given in Table 1.

Table 1. Considered combinations of deterioration parameters

Name γ αc uc/uy Name γ αc uc/uy
γ50_αc6_uc/uy2 50 -6% 2 γ100_αc14_uc/uy6 100 -14% 6
γ50_αc6_uc/uy4 50 -6% 4 γ100_αc21_uc/uy2 100 -21% 2
γ50_ αc6_uc/uy6 50 -6% 6 γ100_αc21_uc/uy4 100 -21% 4
γ50_αc14_uc/uy2 50 -14% 2 γ100_αc21_uc/uy6 100 -21% 6
γ50_αc14_uc/uy4 50 -14% 4 γ150_αc6_uc/uy2 150 -6% 2
γ50_αc14_uc/uy6 50 -14% 6 γ150_αc6_uc/uy4 150 -6% 4
γ50_αc21_uc/uy2 50 -21% 2 γ150_αc6_uc/uy6 150 -6% 6
γ50_αc21_uc/uy4 50 -21% 4 γ150_αc14_uc/uy2 150 -14% 2
γ50_αc21_uc/uy6 50 -21% 6 γ150_αc14_uc/uy4 150 -14% 4
γ100_αc6_uc/uy2 100 -6% 2 γ150_αc14_uc/uy6 150 -14% 6
γ100_αc6_uc/uy4 100 -6% 4 γ150_αc21_uc/uy2 150 -21% 2
γ100_αc6_uc/uy6 100 -6% 6 γ150_αc21_uc/uy4 150 -21% 4
γ100_αc14_uc/uy2 100 -14% 2 γ150_αc21_uc/uy6 150 -21% 6
γ100_αc14_uc/uy4 100 -14% 4

Figure 2. An example for a hysteretic behavior with cyclic 
degradation and collapse.

Figure 1. Backbone curve of Peak-Oriented hysteretic be-
havior [16].
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Ground Motion Records
In this study, 80 ground motion records with two hor-

izontal components were utilized. As a search criterion, 
all the records had magnitudes ranging from 6 to 7.9, and 
their fault mechanism was identified as strike-slip. The 
ground motion records were then categorized into four 
groups based on the local soil conditions at the recording 
station, each comprising 20 ground motions. The stations 
in the first group correspond to site class A, with an average 
shear wave velocity exceeding 750 m/s. The second group 
includes ground motions with average shear wave veloci-
ties between 360 m/s and 750 m/s, corresponding to site 
class B. The third group consists of ground motions with 
average shear wave velocities between 180 m/s and 360 
m/s, denoted as site class C. The last group, corresponding 
to site class D in accordance with the USGS classification, 
encompasses the remaining 20 ground motion records with 
an average shear wave velocity lower than 180 m/s. Details 
about the selected ground motions can be found in the 
study conducted by Borekci et al. [28].

Estimation of Inelastic Displacement Ratio (CR)
IDR is the ratio of IDD (ui) and elastic displacement 

demand (ue). It is expressed as in Eq (1) and shown with CR.

  (1)

CR is estimated for SDOF systems with constant lateral 
strength. CR data has been taken from the study of Borekci 
et al. [28] and the equation of motion was solved with the 
Newmark-Beta method considering the SSDPH model. 
Nonlinear time history analyses were performed for SDOF 
systems with a viscous damping ratio of 5%. The analyses 
included various strength reduction factors (Ry = 1.5, 2, 3, 4, 
5, 6). Inelastic displacement ratios were determined across a 
range of 53 natural vibration periods ranging from T = 0.1 
s to T = 3 s, with specific intervals defined as follows: T = 
0.1:0.02:0.2, 0.22:0.03:1, 1.1:0.1:3. The post-yield stiffness 
ratio (αs) was considered at values of 0%, 3%, and 5%. For 
160 ground motion records, 6 strength reduction factors 
(Ry), 53 vibration periods (T), 3 post-yield stiffness (αs), and 
27 different degradation combinations, 4121280 nonlinear 
time history analyses were conducted. All the considered sys-
tems reach collapse capacity with dynamic instability before 
the energy exhaustion. Chenouda and Ayoub [26] conducted 
a similar study with this study and suggested a “collapse 
period” (Tcol) for the limit of dynamic instability.

In Figure 3, a plot of CR and limit collapse period is 
given. A system with a period shorter than the collapse 
period experiences collapse due to dynamic instability. If 
more than 50% of the considered ground motion records 
induce dynamic instability in the structure, it is assumed 
that a system with this period collapses [26]. To quantify 
this behavior, a new equation for the collapse period (Tcol) 
is proposed. This equation is formulated as a function of 
degradation parameters (γ, uc/uy, αc), and Ry, and is derived 
through nonlinear regression analysis. Although Borekci et 
al. [39] proposed an equation for Tcol for constant γ (γ = 
50,100, 150), the new equation is proposed to estimate Tcol 
considering γ when it is needed to use different values of γ 
except 50, 100, 150 in the estimation of CR. The proposed 
equation of Tcol is given in Eq. (2) and coefficients of Eq. 
(2) are given in Table 2. It is clear from Table 2 that the 
correlations of Eq. (2) are considerably high. Detailed infor-
mation about the estimation of Tcol can be seen in the study 
of Borekci et al. [39].

  
(2)

Although CR is estimated for all systems, CR values of 
T<Tcol are not considered in the estimation of the equation 
of CR since it is not logical to determine IDD for the period 
collapse that occurs. In Figure 4, CR plots are given for the 
T = 0 – 3 sec. and T = Tcol – 3 sec. It is clear from Figure 4, 
that there is not a useful displacement demand in the col-
lapse zone.

Table 2. Constant parameters of Eq. (2)

Soil Class x1 x2 x3 x4 x5 R2
A 0.174586 2.009938 -0.7484 -0.677429 0.815143 0.986
B 0.26917 2.36351 -1.2121 -0.94013 0.97244 0.952
C 0.200187 1.760572 -0.6703 -0.782313 0.715947 0.958
D 0.37187 1.72804 -0.608066 -0.734563 0.706503 0.976

Figure 3. An example for a CR depicting the collapse po-
tential.
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Borekci et al. [28] proposed an equation for CR and it 
is given in Eq. (3). In Eq. (3), a, b, c, d, e, and f are the con-
stants of the equation. Detailed information can be found 
in the study of Borekci et al. [28].

  

(3)

In this study, CR values determined in the study of 
Borekci et al. [28] were estimated via the ANN method 
and compared with Eq. (3). The flowchart of the MATLAB 
code for the calculation of CR is given in Figure 5. System 
data (Ry, T, γ, uc/uy, αc, αs) is selected and input into the 
MATLAB program. Tcol is estimated with Eq (2) and the 
period of the system (T) compared with Tcol. If T > Tcol, CR 
is estimated using ANN, else if the program does not esti-
mate CR since the system collapses.

ANN METHODOLOGY

Artificial Neural Network is a commonly used tech-
nique, which mimics the neural system of the human brain 
to solve engineering problems. ANN is a powerful tool, 
especially for complex engineering problems where the 
relations among the effective parameters of the problem 

are difficult to define deterministically. There are different 
kinds of ANN architectures, but this study is focused on 
feed-forward back propagation architecture which is one 
of the most common techniques used in supervised learn-
ing. An ANN model has a three-layered fully connected 
structure consisting of an input layer, hidden layers, and an 
output layer. Fully connected means that each neuron in a 
layer is connected to each neuron of the next layer. Thus, 
the number of connections or synapses between two layers 
can be calculated by multiplying the number of neurons in 
two consecutive layers. Each synapse has a weight that is 
multiplied by its signal or value. The input layer includes 

Figure 4. CR plots estimated via time history analysis.

Figure 5. Flowchart for estimating CR employing ANN.
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the independent variables which are connected to the first 
hidden layer which is connected to another hidden layer or 
finally an output layer. Each hidden layer consists of one 
or more artificial neurons. A neuron calculates its output 
(y) as in Eq. (4) using a predetermined activation function 
(f) and a bias (b). Usually, a sigmoid function is used as an 
activation function which needs one argument calculated 
by adding up signals reaching that neuron with the bias.

  
(4)

Where j is the neuron index, n is the number of connec-
tions at the input side, wij is the weight from input i, and the 
xi is the value from input i. 

Each neuron in the Output layer is connected to a single 
output so the number of neurons in the output layer is lim-
ited by the number of outputs. So, this process where each 
layer feeds the data to the next layer of neurons is called 
the feed-forward mechanism. Back propagation is the gen-
eral name for how the errors are calculated and distributed 
during the training of the ANN. During the supervised 
training, an expected value for the inputs is known. Hence 
an error can be calculated and distributed to the neurons 
by modifying the weights of the connections and the bias 
of the neurons. Each feed forward and back propagation 
pair in the training phase is called an epoch. The training 
continues until certain criteria are met. 

The complexity of a neural network is determined by the 
number of hidden layers and the number of neurons in the 
hidden layers which directly change the number of unknowns 
that are needed to be determined by the training, namely the 
weights and the biases. Since there is no exact method to 
choosing a number of layers or number of neurons in each 
layer trial and error method is usually employed. As a rule of 
thumb simple is better than complex so the goal is to find the 
simplest architecture which gives good results with a good 
ability for generalization. The ability of generalization is the 
ability of the ANN to give good results to unknown input 
combinations within the input range. When too many hid-
den neurons/layers are present, or training was continued for 
too many epochs the ANN may overlearn the training data 
set which in return will lose its ability to generalize. 

The training aims to minimize the errors between the 
results and the expected values by updating the weights 
of the connections and the biases. Training of the ANN in 
this study was conducted by two different training algo-
rithms, Scaled Conjugate Gradient (SCG) and Bayesian 
Regularization Backpropagation (BRB). SCG method 
allows the usage of GPU acceleration during the training 
process while the BRB method uses only CPU. 

The SCG algorithm is in the family of Conjugate Gradient 
(CG) algorithms which was developed to overcome the slow 
learning process associated with the gradient descent (GD) 
algorithm. In CG search for the minimum error is conducted 
in conjugate directions as given in Eq. (5). 

  (5)

Where pi and pi+1 are the conjugate directions, w is the 
weight matrix e is the error matrix, and αi and βi have to 
be calculated in each iteration. A line search is required in 
each computationally expensive iteration. SCG overcomes 
this by calculating the Hessian matrix with the approxima-
tion given in Eq. (6).

  
(6)

Where E’’ and E’ are the second and the first derivative 
of the sum of squared error. P is the search direction, σ and 
λ are parameters controlling the second derivation approxi-
mation and indefiniteness of the Hessian Matrix. 

Basic methods like standard back propagation or gra-
dient descent backpropagation etc. have very slow con-
vergence. Faster convergence up to 10 – 100 times can be 
achieved by Levenberg-Marquardt (LM) algorithm [40]. 

LM optimization is one of the most popular methods 
in training ANN models due to its speed and accuracy. The 
speed advantage is achieved by an approximation of the 
Hessian matrix. The Hessian matrix can be approximated 
as shown in Eq. (7) when the performance function con-
sists of the square of the errors;

  (7)

Where J is the Jacobian matrix which consists of the first 
derivatives of the network errors concerning the weights and 
biases. The gradient, g can be computed as given in Eq. (8);

  (8)

Where e is a vector of errors. The Jacobian matrix is 
computed by a back propagation technique since it is much 
less computationally expensive than computing the Hessian 
matrix. Hence the LM algorithm calculates optimized val-
ues by Eq. (9) starting from random initial weights. 

  (9)

In Eq. (9), J is the Jacobian matrix of output errors, I is 
the identity matrix, and μ is a learning parameter. 

Training of the ANN in this study was conducted by 
the BRB algorithm which is an enhanced version of the LM 
optimization method with improved generalization prop-
erties. In the BRB algorithm, the Bayes’ theorem incorpo-
rates into the regularization scheme. This overcomes some 
problems like overlearning due to using a high number of 
neurons or poor learning due to a low number of neurons. 
BRB algorithm can be defined by the Eq. (10);

  
(10)
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Where w is the weight, β and α are called regularization 
parameters, Ew is the sum of squares of network weights, and 
m is the number of weights. Ew is also known as “penalty 
term” or “weight decay” or “decay rate”. ED is the error func-
tion and is used as the mean of squares of the network error 
in this study. n is the number of data pairs, o is the prediction 
from the ANN model and t is the corresponding target value.

In the BRB technique, the uncertainty in the weight vector 
is taken into account by the probability distribution of beliefs 
in different values (P(w|α)) which is also called the prior den-
sity. During the training process, prior density is converted to a 
posterior distribution by Bayes’ theorem (Eq. (11)). 

   
(11)

Where P(w|α,β,D) is the posterior density, P(D|w,β) is 
the likelihood function which is the probability of the error, 
P(D|α,β) is the evidence or the normalization factor [41].

Maximizing the posterior probability provides the opti-
mal weights of the network in the training process. This can 
be achieved by minimizing the regularized objective func-
tion (F(w)). 

Prior and likelihood probabilities can be written as 
shown in Eq. (12), and Eq. (13), respectively assuming 
Gaussian distribution for the weight and data.

  (12)

  (13)

Hence posterior density can be obtained as given in Eq. 
(14),

  (14)

Then the optimal values of the regularization parame-
ters can be calculated from the data by using Bayes’ theo-
rem as shown in Eq. (15),

  
(15)

Where P(α,β)is the prior probability and P(D├α┤,β) is 
the likelihood term of the regularization parameters [41]. 
The optimal values of regularization parameters can be 
obtained by using Eq. (16) [42].

  
(16)

Where γ is the effective parameter, m is the number of 
parameters, and H is the Hessian matrix of the objective 
function F(w). Foresee and Hagan [43] described the itera-
tive process for the optimization of the weights and regular-
ization parameters. The procedure starts with the selection 
of the initial α, β, and w values. Then LM algorithm is run 
for one epoch to compute the weights which minimize the 
objective function, F(w). In the next step, γ and the updated 
values of α and β are computed. Then a new epoch of the 
LM algorithm is run followed by the update of regularization 
parameters until convergence is reached.

ANN Structure
Results obtained from the Newmark model were used to 

train the ANN for the prediction of IDR of degrading SDOF 
systems. The ANN model has six inputs and one output vec-
tor. Input and output vectors are given in Eq. (17) and Eq. 
(18), respectively. In Eq. (17), St describes the soil type.

  
(17)

 

Figure 6. ANN model architecture.
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  (18)

Model Architecture showing model inputs and outputs 
together with model structure is presented in Figure 6. In 
this study data from 74181 cases were divided into training 
and validation data sets, %85 of the data was reserved for 
training while %15 of the data was used for validation to 
check for overfitting. The check was done by calculating the 
performance function in the validation data set and stop at 
the point where the errors in the validation data set contin-
uously increase for a certain number of epochs. When this 
happens the weights and biases were reverted to the point 
where the errors were minimum.

ANN model performance was evaluated by using accu-
racy measures consisting of absolute percentage Error E, 
Correlation Coefficient (R), Mean Squared Error (MSE) 
which was also used in the training process, and Mean 
Absolute Error (MAE). Accuracy measures used in this 
study are given in Eq. (19) – (22), respectively;

  (19)

  
(20)

  
(21)

  
(22)

Where oi is the output and ti is the target value for the 
ith output.  is the mean of the output values, and  is the 
mean of the target values. N is the number of data pairs.

Optimum Model Selection
All the ANN models created have 7 inputs and one out-

put as described earlier. So, each model searches for the 
optimum 8-dimensional surface passing through the point 
cloud. The complexity of the surface is dependent on the 
number of neurons and the number of hidden layers as they 
determine the number of parameters to be determined to 
define the resultant surface. If we define the complexity as 
the number of unknown parameters to be determined by 
training, then the complexity of an ANN can be calculated 
by the following equation.

  
(23)

Where n is the number of layers including input 
and output layers, and Ni is the number of neurons in 
layer i. The evolution of model performance with model 
complexity is shown in Figure 7 for different model 
architectures.

Results show that two and three-layer models converge 
much faster than the others while giving the best perfor-
mance per complexity. ANN modeling is not always about 
getting the minimum error from the model. We also want to 
have a model with minimum complexity so that the model 
behavior is more predictable and has a high generalization 
ability. Up to three hidden layers were considered in this 
study for both SCG and BRB models. Overall BRB method 
resulted in higher precision models for one, two, or three 
hidden layers. An increasing number of hidden layers also 
increased the accuracy for both SCG and BRB methods. An 
increasing number of neurons seem to close the error gap 
between one two and three-layer BRB models. SCG models 
with higher hidden layer counts usually gave better results 
than their similar complexity variants with fewer hidden 
layers.

Figure 7. Mean square error of SCG and BRB methods for different model architectures.



Sigma J Eng Nat Sci, Vol. 42, No. 1, pp. 211−224, February, 2024220

COMPARISONS THE RESULTS FOR ANN AND 
NONLINEAR REGRESSION ANALYSIS

In this study, ANN models for CR are proposed for 
degraded peak-oriented hysteretic behavior by BRB and 
SCG training technique and are compared to nonlinear 

regression analysis results from Borekci et al. [28]. Although 
nonlinear regression analysis is a classical method used in 
literature and many studies use this method to achieve the 
equation of CR, ANN is a modern method and almost there 
is no study about CR using ANN. This study aims to inves-
tigate the reliability and performance of ANN models with 

Figure 8. CR plots for ANN methods, Eq. (3) and exact result architectures.
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Figure 9. Dispersion of CR for ANN methods (SCG and BRB) and proposed equation.
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two different training algorithms and different architec-
tures for the estimation of CR. In Figure 8, some example CR 
plots are given for ANN models, Eq. (3), and the target val-
ues. Model names represent the number of neurons in the 
hidden layers. According to Figure 8, ANN methods give 
more similar plots to exact results than Eq. (3). Especially, 
the results of BRB have a good fit with the target results in 
comparison to SCG. CR plot of Eq. (3) is very smooth and 
this smooth behavior is not able to catch the undulations of 
the target values. A comparison of SCG and BRB shows that 
SCG models in general have smoother diagrams suggesting 
that the final values of weights are less than that of similar 
BRB models. 

Scatter diagrams of CR for ANN methods (SCG and 
BRB) and Eq. (3) are given in Figure 9. Figure 9 gives the 
±20% zone of dispersion. Figure 10 shows the diagram 
of correlation coefficients of CR for different estimation 
methods. According to Figure 9 and Figure 10, the cor-
relation coefficients of all ANN methods are higher than 
Eq. (3) by Borekci et al. [28]. That means ANN gives 
more reliable results than nonlinear regression analysis. 
BRB (20 10) gives the highest correlation coefficient with 
0.9822 whereas the Eq. (3) gives the lowest correlation 
coefficient with 0.943.

The most important thing to keep in mind while using 
the ANN technique to define a function is the function’s 
validity range. Any function’s validity created by ANN 
curve fitting is limited by the training dataset limits. In this 
study, the limits of the training dataset are defined by Tmin 
= Tcol value. As a result, the resultant models are only valid 
between T=Tcol and T=3 seconds. The lack of points outside 
the validity range results in unpredictable behavior mostly 
governed by the points near the edge of the point cloud. 
Especially models with higher weight values have a higher 
unpredictability in this region.

CONCLUSION 

It is important to determine a reliable IDD in earth-
quake engineering and CR is an easy and practical method 
to estimate IDD. Thus, CR was estimated for SSDPH behav-
ior with collapse potential to consider the more realistic 
behavior of RC buildings. In this study, the CR equation was 
estimated using ANN methods for the data considered in 
the study of Borekci et al. [28] and compared with the equa-
tion estimated with nonlinear regression analysis. With this 
study, ANN results of CR can be given as computer code 
and researchers and/or engineers can easily estimate more 
reliable CR by using this computer code. The following con-
clusions can be drawn from the results of this study:
• ANN models give better-performing results than the 

nonlinear regression model in terms of the correlation 
coefficient. The highest prediction accuracy has been 
achieved by BRB (20 10) with R2 = 0.9822 correlation 
coefficient. Even the smallest correlation coefficient of 
the ANN model, which is 0.9614 of SCG (69), is higher 
than the coefficient of nonlinear regression analysis 
with 0.943.

• Despite its complexity, ANN performs better accuracy 
than nonlinear regression analysis in case of complex 
relationships between variables. Thus, ANN can be pre-
ferred in the prediction of CR since CR is susceptible to 
many variables including structural and ground motion 
parameters.

• Curve fitting for multi-parameter regression analysis 
is strongly dependent on the selected formulation. By 
using ANN, a preselected form is not required. 

• SCG ANN models with two and three hidden layers 
performed better than their one and two hidden layer 
counterparts.

• SCG ANN models resulted in smoother and less per-
forming results than BRB ANN models.

Figure 10. Correlation coefficients of different CR estimation methods.
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• BRB ANN models had a steeper learning curve achiev-
ing better performance with less complexity. Also, two 
and three hidden layer BRB models achieved simi-
lar performance levels but achieved better than single 
layer BRB models at low complexity. As the complexity 
increases the difference in model performance between 
single and more hidden layer models was decreased. 

• ANN models will give a continuous space of results. 
When the output space is limited by a combination of 
input parameters, some criteria are needed to be adopted 
to eliminate results outside the valid range. A new Tcol 
equation is proposed to use with the ANN model.
As a result, ANN performs better accuracy in the pre-

diction of CR than the nonlinear regression model. It is rec-
ommended to use the proposed ANN model to estimate a 
reliable inelastic displacement ratio of degrading RC struc-
tures. Since it may help in the selection of proper records in 
the CR estimation procedure, it can be important to evaluate 
the effects of each ground motion parameter on CR, taking 
into account the soil-structure interaction, in future studies. 
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