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ABSTRACT

Phenomena in physics, plasma physics, optical fibers, chemical physics, fluid mechanics, and 
many fields are often described by the nonlinear evolution equations. The analytical solutions 
of these equations are very important to understand the evaluation of the physical models. In 
this paper, the Boiti-Leon-Manna-Pempinelli (BLMP) nonlinear partial differential equation, 
which can be used to describe the incompressible fluid flow, is analytically studied by using 
the five different techniques which are direct integration, (G' / G)-expansion method, different 
form of the (G' / G)-expansion method, two variable (G' / G, 1 / G)-expansion method, and 
(1 / G')- expansion method. Hyperbolic, trigonometric and rotational forms of solutions are 
obtained. Our solutions are reduced to the well-known solutions found in the literature by as-
signing the some special values to the constants appeared in the analytic solutions. Moreover, 
we have also obtained the new analytic solutions of the BLMP equation.
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INTRODUCTION

Certain physical systems can be explained by the non-
linear evolution equations (NLEEs) and have the chaotic 
structures due to their nature [1, 2]. It is usually very dif-
ficult to understand these chaotic structures. Hence, there 
are many mathematical models to solve the NLEEs analyti-
cally or numerically [3-30]. One of the these types of equa-
tions is Korteweg-de Vries (KdV) equation

(1)

which plays an important role in mathematical 
physics [31]. The other one is the (2+1)-dimensional 

Boiti-Leon-Manna-Pempinelli (BLMP) equation which is a 
different form of the KdV equation given bellow [32]:

 (2)

where 
etc. BLMP equation reduces the KdV equation in the case 
of  y = x [33, 34]. The solution of Cauchy problem for the 
BLMP equation was improved by using an inverse scatter-
ing scheme in Boiti et al. [33, 34]. Recently, some analytic 
solutions of the BLMP equation were obtained by Arbabi 
and Najafi using the semi-inverse variational principle 
given in Ref. [2]. The other analytic solutions of the BLMP 
equation can be seen in Refs. [1, 35-45].
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In this paper, our aim is to present the new analytic solu-
tions of the (2+1)- dimensional BLMP equation. Therefore, 
we have found the analytic solutions of the BLMP equation 
by using the five different techniques which are direct inte-
gration, (G’ / G)-expansion [3], different form of the (G’ / 
G) -expansion [4], two-variable (G’ / G, 1 / G)-expansion 
[5], and (1 / G’) -expansion methods [6]. Using these differ-
ent methods we have not only produced the same solutions 
found in the literature, but also derived new solutions of 
this equation. We believe that our solutions are more gen-
eral than the ones obtained in the literature.

The paper covers the following sections: in Section 2, 
the (G’ / G)-expansion methods to obtain analytic solutions 
of the BLMP equation are introduced. In Section 3, the ana-
lytic solutions of BLMP equation are given for five different 
techniques. Finally, Section 4 is devoted to the conclusion 
of the study.

MAERIALS AND METHODS

The general form of the partial differential equation 
(PDE) can be given 

  (3)

where  is an unknown function, P is a 
polynomial depending on u. By using transformation 

  in Eq. 3, we get an ordinary 
differential equation (ODE) as follows

  (4)

where  Now, used methods, which will be 
applied to non-linear partial differential equation, are sum-
marized in the following subsections. 

- Expansion Method 

The most general form of the solution of Eq. 4 by using 
the -expansion method is given in [3]

  (5)

where αm contains sets of unknown coefficients and G = 
G(η) satisfies the second order linear ODE given as

  (6)

where µ and L are arbitrary constants which have to be 
defined later. The more detailed discussions can be found 
in Refs.[3, 46, 47]. From the solution,  term is repre-
sented respect to hyperbolic ( ), trigonometric 
( ) and rational functions ( ), and 
they are

  

(7)

where c1 and c2 are arbitrary integration constants.

Different Form of the - Expansion Method

Li and Wang used the -expansion method in Ref.
[4] which is different than the one described in the origi-
nal case given in Ref. [3]. By using of differentform of 
-expansion method, the solution of Eq. 4 can be expressed 
in terms of  as following

  (8)

where αm and α-m are unknown coefficients and G = 
G(η) satisfies the following ODE,

  (9)

where µ is an arbitrary constant. Unknown coefficients 
and constant can be determined by similar techniques from 
algebraic equation given in -expansion method. 
term can be written as functions of hyperbolic (-µ > 0), 
trigonometric (-µ < 0) and rational functions (µ = 0), and 
they are given

  

(10)

where c1 and c2 are arbitrary integration constants. The 
more detailed discussions can be found in Refs.[4, 47].

- Expansion Method

The third method is called the -expansion method 
which is considered as the generalization of the original 

-expansion method [3]. As a pioneer work, Ref. [5] 
has applied the two-variable -expansion method and 
found the analytic solutions of Zakharov equations. Now, 
we describe the main steps of the -expansion method 
for finding the travelling wave solutions of nonlinear 
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evolution equations. First of all, we consider the following 
second order ordinary linear differential equation 

  (11)

and to have a simplicity we use the following new 
definitions

  (12)

Combining Eq. 11 with Eq. 12, it yields

  (13)

Now, we have three different forms of general solutions 
of Eq. 11 which are

Case I: When λ < 0,
The first form of the general solution of the Eq. 11 is

  (14)

and we have

where c1 and c2 are arbitrary integration constants and 
.

Case II: When λ > 0,
The second form of the general solution of the Eq. 11 is

  (15)

and we have

where c1 and c2 are arbitrary integration constants and 
.

Case III: When λ = 0,
The third form of the general solution of the Eq. 11 is

  (16)

and we have

where c1 and c2 are arbitrary integration constants. 
The more detailed discussions about the - expansion 
method can be seen in Refs. [5, 48, 49].

- Expansion Method

- expansion method is firstly introduced by Yokus 
[6]. Suppose that the solution of Eq. 4 can be expressed in 
terms of  

  
(17)

where G = G(η) satisfies the following linear ordinary 
differential equation.

  (18)

where  and µ are constants to be 
determined later, and the positive integer N can be deter-
mined by using the homogeneous balance between the 
highest order derivatives and the nonlinear terms appear-
ing in Eq. 11. Additionally, the solution of the differential 
equation given in Eq. 18 is

  (19)

where c1 and c2 are arbitrary integration constants.  
term can be expressed as

  (20)

The more detailed discussions about the - expan-
sion method can be seen in Refs.[6, 49].

ANALYTIC SOLUTIONS OF THE BLMP EQUATION

In this section, we present the analytic solutions of 
the BLMP equation given in Eq. 2 by using the different 
approaches. To do that, Eq. 2 can be converted into the 
following ODEs by using the transformation of  

:

  (21)

where . By integrating, we get

  (22)

where c is an arbitrary integration constant. Defining 
the transformation U' = W, we get

  (23)

Eq. 23 contains an extra integration constant c, differ-
ent from the literature. In literature, some authors omit 
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the arbitrary integration constant after integrating of the 
nonlinear ordinary differential equations [50]. Hence, it is 
believed that the solutions of this equation are more gen-
eral than the ones found in the literature. Additionally, we 
substitute the integration constant c = 0 in our solution to 
compare them with the literature.

Solutions of the BLMP Equation by Using Direct 
Integration 

Let us multiply right hand side of Eq. 23 with W´, hence 
we have

  (24)

Eq. 24 is an integrable equation. We have obtained the 
following first-order equation after integrating it once.

  
(25)

where c and d are integration constants. Thus, we have

  
(26)

Eq. 26 can be written for the plus sign as follows (similar 
calculation can be also done for negative sign):

  
(27)

By the integrating right side of this equation, we get

  
(28)

where e is a new arbitrary integration constant. By the 
integrating left side of this equation, we choose integration 
constants c = d = e = 0. In this case Eq. 28 can be written as

  
(29)

By rearranging Eq. 29 we get

  
(30)

Case I: Changing the variable  in Eq. 
30 and integrating once and then solving W, we get

  
(31)

Finally, by the integrating Eq. 31, we get the analytic 
solution of the BLMP equation given below

  
(32)

where . The solution given in Eq. 
32 is same as Eq. 33 in Ref.[2].

Case II: Changing the variable W = Sinx in Eq 30 and 
integrating once and then solving W, we have

  
(33)

Finally, we integrate W to obtain the analytic solutions 
of the BLMP equation given in Eq. 2.

  
(34)

where . The solution found here 
Eq. 34 is same as Eq.34 in Ref.[2].

Solutions of the BLMP Equation by Using -expansion 
Method

Eq. 2 was studied in Ref. [43] by using the -expan-
sion method with the integration constant c = 0. In this sec-
tion, we do not only study Eq. 2 by using the -expansion 
method in the case c ≠ 0, but we will also solve Eq. 2 by 
using three different forms of the -expansion methods. 
Finally, we compare our results with the existing ones in the 
literature.

Considering the homogeneous balance between the 
terms W" and W2 in Eq. 33, we have reached the following 
form of solution

  
(35)

Substituting of the Eq. 35 and its derivatives in Eq. 
33 yields a set of simultaneous algebraic equations for 

 and µ as follows
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By solving the algebraic equations given above, we get 
following set of solutions

  

(36)

where c, λ and µ are arbitrary constants. By using the Eq. 36 
in Eq. 35, we get the following analytic solutions of Eq 23

  
(37)

where , , 

c1 and c2 are arbitrary constants. Finally, we integrate the 
Eq. 37 to obtain the analytic solutions of the BLMP equa-
tion and find the hyperbolic, trigonometric and rational 
function solutions of Eq.2 given as follows

First Type: 

  (38)

where   

 and c2 are arbi-
trary constants.

If we choose the constants as c = 0, c2 = 0, and c1 ≠ 0 in 
Eq. 38, the following solutions are obtained

  (39)

  (40)

where  0 and . Eq. 39 is the 
same with the solution given in Ref. [2] as Eq. 21. But the 
solution given in Eq. 40 is a new solution.

Second Type: 

  

(41)

where , 

 and c2 are 

arbitrary constants.
If we choose the constants as c = 0, c2 = 0 and c1 ≠ 0 in 

Eq. 41, the following solutions are obtained

  
(42)

  
(43)

where  and . Eq. 42 is the 
same with the solution given in Ref. [2] as Eq. 21. But we 
find a new solution given in Eq. 43.

Third Type: 

  
(44)

where ,  
and c2 are arbitrary constants.

If we choose the constants as c = 0, c1 = 0 and c2 ≠ 0 in 
Eq. 44, the following solution are obtained

  
(45)

where  

Solutions of the BLMP Equation by Using Different 
Form of the -expansion Method

Considering the homogeneous balance between the 
terms, W" and W2, in Eq. 23, we have reached the following 
form of solution

  
(46)
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Substituting of the Eq. 46 and its derivatives in Eq. 
23 yields a set of simultaneous algebraic equations for 

 and µ. Solving the algebraic equa-
tions, the following results can be found

 
(47)

Substituting Eq. 47 in Eq. 46 and the corresponding 
solution of ODE given in Eq. 10, we obtain the analytic 
solutions of the Eq. 23 given below.

  

(48)

where W1(η) and W2(η) are solutions of the Case1 and 
Case2, respectively. Then, integrating W1 and W2 (using the 
transformation U' = W), we get the following three types of 
solutions of Eq. 2.

Type I: -µ < 0,

  

(49)

where  

   

 and  are arbitrary con-

stants and 
If we choose the constants as c1 = c2 ≠ 0 in the first equa-

tion (U1(η)) of Eq. 49, the following solution is obtained

  (50)

where  It is a new solution.
If we choose the constants as c1 ≠ 0 and c2 = 0 in the sec-

ond equation (U2(η)) of Eq. 49, the following new solution 
is obtained

  
(51)

where 
Type II: 

 

(52)

where     

  

   and 

 are arbitrary constants and 
If we choose the constants as c1 = c2 ≠ 0  in the first 

equation (U3(η)) of Eq. 52, the following new solution is 
obtained

  
(53)

where 
If we choose the constants as c1 ≠ 0 and c2 = 0  in the sec-

ond equation (U4(η)) of Eq. 52, the following new solution 
is obtained

  
(54)

where 
Type III: 

  
(55)

where c1, c2, k1 are arbitrary constants and 

If we choose the constants as c1 = 0 in equation Eq. 55, 
we reach the following solution 

  
(56)

where 

Solutions of the BLMP Equation by Using 
-expansion Method

Balancing the terms, W" and W2 in Eq. 23, we have the 
following form of solution
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  (57)

Substituting the Eq. 57 and its derivatives into Eq. 23 
and then using the Eq. 13 with Eqs. 14, 15, 16, we get the 
simultaneous algebraic equations for a0, a1, a2, b1, b2, k1, c, 
λ, µ. v, c1 and c2 in the cases λ < 0, λ > 0 and λ = 0. Then, by 
solving the algebraic equations for each case, we can obtain 
the following solutions.

Case I: λ < 0

  

(58)

Substituting Eq. 58 into Eq. 57 we have the solution of 
the Eg. 23.

  
(59)

where  Integrating Eq. 59, 
we get the following analytic solution of the BLMP equation 
as given in Eq.2.

  
(60)

where   

,  

  are arbitrary con-

stants and 

If we choose the constants as c = 0 and c1 = c2 ≠ 0 in Eq. 
60, we get the following new solutions

  
(61)

where  and 

  
(62)

where  and 

Case II: 

  

(63)

Substituting Eq. 63 into Eq. 67 we have the solution of 
the Eq. 23.

  

(64)

where  Integrating Eq. 64, 
we get the following analytic solution of the BLMP equation 
as given in Eq. 2.

  (65)

where  

 

  are arbitrary con-

stants and 
If we choose the constants as c = 0 and c1 = 0, c2 ≠ 0 and  

µ  = λc2 in Eq. 65, we get the following new solutions

  

(66)

  

(67)

where 
Case III: 

  

(68)
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Substituting Eq. 68 into Eq. 57 we have the solution of 
the Eq. 23.

  
(69)

where  Integrating Eq. 69, and then if 
we choose the integrating constants as c = c1 = c2 = 0, we get 
the following analytic solution of the BLMP equation given 
in Eq. 2.

  
(70)

where 
Eq. 70, Eq. 45 and Eq. 56 are the same solutions and they 

are compatible with the literatures.

Solutions of the BLMP Equation by Using -expansion 
Method

Balancing the terms, W" and W2 in Eq. 23, we get the 
following form of solution

  (71)

Substituting the Eq. 71 in Eq. 23 and collecting all coef-
ficients with respect to  and equating them to zero we 
get the following system of equations.

Solving the system of equations given above, we get

  (72)

Substituting these solutions into Eq. 71, we obtain the 
following solution

  
(73)

 
and c1 is an arbitrary integration constant.

Integrating Eq. 73, we get the following analytic solution 
of the BLMP equation given in Eq. 2.

  
(74)

where  

   are 

arbitrary constants and 
If we choose the integration constants as c = 0 and µ  = 

-λc1 in Eq. 74, we get the following solutions

  
(75)

  
(76)

Eq. 75 is the same as with given in Eq. 40 and is a new 
solution. Eq. 76 is the same as with given in Eq. 39 and Eq. 
21 in Ref. [2].

CONCLUSION

The Boiti-Leon-Manna-Pempinelli nonlinear partial 
differential equation is analytically studied by using the 
five different techniques which are direct integration, (G’ / 
G)-expansion, different form of the (G’ / G)-expansion, two 
variable (G’ / G, 1 / G)-expansion and (1 / G’)-expansion 
methods. Hyperbolic, trigonometric and rotational forms 
of solutions are obtained. Using these different methods 
we have not only produced the same solutions found in the 
literature, but also derived the new exact solutions of the 
differential equation. 

Using the different methods we have found two new 
solutions from (G’ / G)-expansion method, four new 
solutions from different form of the (G’ / G)-expansion 
method, four new solutions from two variable (G’ / G, 1 / 
G)-expansion method, and one new solution from (1 / G’)-
expansion method.

Finally, it is important to mention here that the analytic 
solutions found from the different techniques can be used 
to understand the dynamics of the travelling waves and 
their nonlinear features seen in different physical systems.
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