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ABSTRACT

In this article, the solution of the second type of nonhomogeneous linear Fredholm integral 
equations is investigated using a three-step iteration algorithm. It has been shown that the 
sequences obtained from this algorithm converge to the solution of the mentioned equations. 
Morever, data dependency is obtained for the second type of nonhomogeneous linear Fred-
holm integral equations. This result is supported by an example.
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INTRODUCTION

Fixed point theory is a research subject in many 
branches of science such as mathematics, physics, chem-
istry, biology, engineering, economics etc. The origin of 
the fixed point theory goes back to the Liouville, Cauchy, 
Lipschitz, Peano and Picard approximation methods, which 
were used extensively especially in the theory of differential 
equations towards the end of the 19th century [5,6,11,13]. 
In 1922, Stephan Banach introduced the Banach fixed 
point theorem, which proved the existence and unique-
ness of the fixed point under various conditions. One of the 
important results he obtained is that the sequence obtained 
with the Picard iteration converges to the fixed point [9]. 
Banach fixed point theorem, especially in the second half 
of the 20th century, made it possible to define many fixed 
point theorems with iteration models developed by many 
researchers by taking different spaces and mapping classes. 

In time, these developments caused the subject to settle in 
the literature as fixed point theory [4,6,10,18,19,25,41].

In parallel with the studies on fixed point theory, many 
contraction maps have been defined depending on the 
problem and space studied. For example; Lipschitzian map, 
contraction map, contraction-like map, non-expanding 
map, pseudo contraction, quasi contraction map, almost 
contraction map are some of them [6,10,19].

The concept of iteration method, whose origin goes 
back centuries, was introduced by Liouville and used by 
Cauchy. In 1890, Picard showed a theoretical approach to 
the fixed point with the iteration he defined and started 
the development process of the iteration method concept, 
which is still studied today [37]. Some iteration methods 
used in fixed point theory are listed below according to 
their development in the literature: Mann iteration method 
[29], Krasnosel’skii iteration method [28], Schaefer iteration 
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method [39], Halpern iteration method [19], Kirk iteration 
method [27], Ishikawa iteration method [21], Noor itera-
tion method [30], Multistep iteration method [35], S iter-
ation method [4], Two Steps Mann iteration method [41], 
Kirk-Ishikawa and Kirk-Mann iteration methods [30], SP 
iteration method [35], CR and Kirk-Noor iteration meth-
ods [12], Kirk-SP and Kirk-CR iteration methods [20], 
S* iteration method [23], Picard-Mann iteration method 
[26], Abbas-Nazir iteration method [1], Picard-S iteration 
method [18], New three-step iteration method [25].

With these developments, the fixed point theory is basi-
cally grouped under three headings: topological, metric and 
discrete fixed point theory. In addition, the theory has been 
studied in relation to many mathematical structures such as 
metric spaces, normed spaces, real analysis, linear algebra, 
ordinary differential equations theory, integral equations 
theory. Also, for many iteration methods developed, there 
are many studies on convergence equivalence, convergence 
speed, strong convergence of newly defined transforma-
tions to fixed points and data dependency [1,8,12-15,32].

The interest in integral equations is increasing day by day 
due to the relationship of integral equations with differen-
tial equations and their widespread use in differential equa-
tion techniques. Thus, the theory of integral equations has 
become one of the most common areas of applied mathe-
matics. Topics have been updated gradually and many solu-
tion methods have been developed [2,3,16,17,22,31-34,42].

The organization of this paper is as follows. In Section 
2, we provide necessary background. In Section 3, strong 
convergence of the second type of nonhomogeneous lin-
ear Fredholm integral equations is investigated by using the 
three-step iteration algorithm. Finally, data dependence is 
obtained for the second type of nonhomogeneous linear 
Fredholm integral equations and this result is supported by 
an example.

KNOWN RESULTS

Definition 1 Let (𝑋, 𝑑) be a metric space and 𝑇 ∶ 𝑋 → 𝑋 
be a mapping. 𝑇 is called a Lipschitzian mapping, if there is 
a 𝜆 > 0 number such that

𝑑(𝑇 𝑥, 𝑇 𝑦) ≤ 𝜆 𝑑(𝑥, 𝑦)

for all 𝑥, 𝑦 ∈ 𝑋 [10]. 
Definition 2 Let (𝑋, 𝑑) be a metric space, 𝑇 ∶ 𝑋 → 𝑋 be 

a Lipschitzian mapping. If there is at least one 𝜆 ∈ (0 , 1) real 
number such that

𝑑(𝑇 𝑥, 𝑇 𝑦) ≤ 𝜆 𝑑(𝑥, 𝑦)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑇 is called a contraction mapping. 𝜆 is 
called the contraction ratio [10]. 

Geometrically, this definition can be interpreted as 𝑇 𝑥
and 𝑇 𝑦, which are images of any 𝑥 and 𝑦 points, are closer 
together than 𝑥 and 𝑦 [10].

Definition of contraction mapping in 𝑋 normed space by

‖𝑇 𝑥 − 𝑇 𝑦‖ ≤ 𝜆 ‖𝑥 − 𝑦‖

where 𝜆 ∈ (0 , 1) the contraction ratio.
Below is the statement of Banach fixed point theorem 

[9].
Theorem 1 If (𝑋, 𝑑) is a complete metric space and 𝑇 ∶ 

𝑋 → 𝑋 is a contraction mapping,
• 𝑇 has one and only one fixed point 𝑥 ∈ 𝑋.
• For any 𝑥0  ∈ 𝑋, iteration sequence (𝑇 𝑛𝑥0 )  (ie iteration 

sequence (𝑥𝑛)  defined by 𝑥𝑛 = 𝑇 𝑥𝑛−1 for all 𝑛 ∈ ℕ) con-
verges to unique fixed point of 𝑇 .
Let us give the definition of the following three-step 

iteration algorithm, which was shown to be faster than 
many iteration algorithms such as Picard, Mann, Ishikawa, 
Noor, SP, S, CR and Picard-S by Karakaya et al. in 2017.

Definition 3 The iteration method

  
(1)

for 𝑥0  ∈ 𝑋, where 𝑋 is a Banach space, 𝑇 ∶ 𝑋 → 𝑋 is 
an operator, and  is a sequence satisfying 
certain conditions, is called the three-step iteration method 
[25]. 

Definition 4 Let 𝑓(𝑡) be a continuous function given 
on [𝑎, 𝑏] and 𝑥(𝑡) be a function on [𝑎, 𝑏] whose solution is 
desired. The integral equations in the form of

  (2)

where 𝜆 is a parameter and a continuous function given 
over the region 𝑘(𝑡, 𝑠) , are called second type of nonho-
mogeneous linear Fredholm integral equations. Here 𝑘 is 
called the kernel of the equation [5].

Lemma 1 Since the kernel of the integral equation defi-
ned in equation (2)  is 𝑘, bounded and continuous over the 
region 𝐷 = {(𝑡, 𝑠) ∶ 𝑎 ≤ 𝑡, 𝑠 ≤ 𝑏}, there is a 𝑀 such that

  (3)

for all (𝑡, 𝑠) ∈ 𝐷  [5].
Let us now state the existence uniqueness theorem for 

nonhomogeneous linear Fredholm integral equations.
Theorem 2 Consider the operator 𝑇 ∶ (𝐶[𝑎, 𝑏] , ‖⋅‖) →

(𝐶[𝑎, 𝑏] , ‖⋅‖) defined by 

  (4)

with 𝑓(𝑡) ∈ 𝐶([𝑎, 𝑏] ) . Since,
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for 𝑀 in equation (3) , 𝑇 is a contraction mapping if 𝛼 
= |𝜆 |𝑀 < 1. In this case, the solution of the Fredholm inte-
gral equation is the fixed point of the operator 𝑇 , and when 
𝛼 = |𝜆 |𝑀 < 1 it is obtained from the Banach fixed point 
theorem that there is only one fixed point in 𝐶[𝑎, 𝑏] . The 
solution is the limit of the iteration

  (5)

for all 𝑛 ∈ ℕ with a starting point 𝑥0  on [𝑎, 𝑏] [5]. 
Definition 5 Let 𝐴1,  𝐴2 ∶  𝐶 → 𝐶 be operators. If ‖𝐴1𝑥

− 𝐴2𝑥‖ ≤ 𝜀 for each 𝑥 ∈ 𝐶 and constant 𝜀 > 0 , then 𝐴2 is 
called the approximation operator of 𝐴1 [40].

Lemma 2 Let  and  be two non-negative 
real sequences satisfting the following condition:

 

where  for each  and 
 as 𝑛 → ∞. Then  [43]. 

Lemma 3 Let  be a non-negative real sequence 
and there exists 𝑛0  ∈ ℕ such that for each 𝑛 ≥ 𝑛0  satisfting 
the following condition:

where 𝜇𝑛 ∈ (0 , 1)  such that  and  
Then,

 

the inequality holds [40].

MAIN RESULTS

Theorem 3 Let 𝑇 ∶ (𝐶[𝑎, 𝑏] , ‖⋅‖) → (𝐶[𝑎, 𝑏] , ‖⋅‖) be an 
operator and {𝛽𝑛}∞ ⊂ [0 , 1]  be a sequence satisfying cer-
tain conditions. In this case, the integral equation given by 
equation (2)  has a unique solution in the form of 𝑥∗ ∈ 𝐶[𝑎, 
𝑏] and the sequence {𝑥𝑛}∞ obtained from the iteration algo-
rithm given by equation (1)  converges to this solution.

Proof Consider the sequence {𝑥𝑛}∞ obtained from the 
iteration algorithm given by equation (1)  constructed with 
the operator 𝑇 ∶ (𝐶[𝑎, 𝑏] , ‖⋅‖) → (𝐶[𝑎, 𝑏] , ‖⋅‖) . It will be 
shown that for 𝑛 → ∞ is 𝑥𝑛 → 𝑥∗. Using equation (1) , equa-
tion (4)  and conditions of Theorem 2, we are obtained the 
following inequality.

Then,

  (6)

is found. Similarly, the following inequalities are 
obtained.

  
(7)

  

(8)

If inequalities (8) and (7) are written in inequality (6),

is found. By applying induction to the last inequality, 
the following inequality is obtained. 

Thus,

and the proof is completed. 
Now, let us examine the data dependency of the solu-

tion of the integral equation given by equation (2) using the 
iteration algorithm given in equation (1). Consider the fol-
lowing integral equation, the operator

  (9)

where 𝑔(𝑡) is continuous on [𝑎, 𝑏] , ℎ(𝑡, 𝑠) is a continu-
ous function given over the region 𝐷 = {(𝑡, 𝑠) ∶ 𝑎 ≤ 𝑡, 𝑠 ≤ 𝑏}

and 𝜆 1 is a parameter.
If the iteration algorithm given in equation (1)  is 

reconstructed with operators 𝑇 (4) and 𝑆(9) , respectively, 
the following iteration algorithms can be written.

  

(10)

  

(11)
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Theorem 4 Let the sequence  satisfy the 
condition  for each 𝑛 ∈ ℕ. Consider the sequence 

 obtained from equation (10) and the sequence 
 obtained from equation (11). Let the solutions of 

the integral equations (4) and (9) be 𝑥∗ and 𝑢∗, respectively, 
with the conditions of Theorem 3.
· Let the constants N and ε1 exist such that 

 and  for 
each 

· Let the constant ε2 exists such that  

for each 𝑛 ∈ ℕ.(Let at least one of  be 

nonzero.) 
If 𝑥𝑛 → 𝑥∗ and 𝑢𝑛 → 𝑢∗ as 𝑛 → ∞, then the inequality

is valid, with 𝜆 0  = max{|𝜆 |, |𝜆 1|}.
Proof The following inequality is obtained using the 

hypotheses of the theorem.

  

(12)

Similarly,

  

(13)

  

(14)

If inequality (14) is written in inequality (13), the fol-
lowing inequality is obtained.

  (15)

Finally, the following inequality is found.

  

(16)

Using the following hypotheses:

if inequality (16) is written in inequality (15),

is obtained. If this last inequality is written in inequality 
(12),

and

are found. Using ,

is obtained. Using , 

  
(17)

is found from the last inequality. Let 
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 requires  for each 𝑛 ∈ ℕ. Hence, the 
inequality given by inequality (17)  satisfies the conditions 
of Lemma 3. Then,

is obtained. Since 𝑥𝑛 → 𝑥∗ and 𝑢𝑛 → 𝑢∗ as 𝑛 → ∞.

  (18)

is found. 
Example 1 
where 𝑘(𝑡, 𝑠) = 𝑡𝑠 is a continuous function given over 

the region 𝐷 = {(𝑡, 𝑠) ∶ 0 ≤ 𝑡,  𝑠 ≤  1}.

for each 0  ≤  𝑡, 𝑠 ≤  1. Since  
The equation in question has only one continuous solution 
𝑥∗ on [0 , 1] . Let’s define the following algorithm with the 
operator

for the solution.

On the other hand,

where ℎ(𝑡, 𝑠) = 1 is a continuous function given over 
the region 𝐺 = {(𝑡, 𝑠) ∶ 0 ≤ 𝑡,  𝑠 ≤  1}.

for each 0  ≤  𝑡, 𝑠 ≤  1. Since  
The equation in question has only one continuous solution 
𝑢∗ on [0 , 1] . Let’s define the following algorithm with the 
operator

for the solution.

Thus,

is found. Let the constants 𝑁, 𝜀 1 and 𝜀 2 exist such that

for 𝑛 ∈ ℕ and each (𝑡, 𝑠) ∈ [0 , 1] . So, all the conditions 
of Theorem 4 are satisfied. If the fixed points are written in 
inequality (18) ,

is obtained. Indeed,  and  are found. 
Thus,

is provided.

CONCLUSION

In this article, the solution of the second type of nonho-
mogeneous linear Fredholm integral equations is investi-
gated using a three-step iteration algorithm. The aim of this 
article is to show that the sequence obtained from equation 
(1) iteration method converges strongly to the solution of 
equation (2). That is, it has been shown that the sequences 
obtained from this algorithm converge to the solution of 
the mentioned equations. Morever, data dependence is 
obtained for the second type of nonhomogeneous linear 
Fredholm integral equations and this result is supported by 
an example. Interested researchers can obtain new results 
on strong convergence and data dependence by using dif-
ferent iteration methods and different integral equations.
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