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ABSTRACT

Least Squares Support Vector Regression (LSSVR) which is a least squares version of the Sup-
port Vector Regression (SVR) is defined with a regularized squared loss without epsilon-in-
sensitiveness. LSSVR is formulated in the dual space as a linear equality constrained quadratic 
minimization which can be transformed into solution of a linear algebraic equation system. 
As a consequence of this system where the number of Lagrange multipliers is half that of 
classical SVR, LSSVR has much less time consumption compared to the classical SVR. De-
spite this computationally attractive feature, it lacks the sparsity characteristic of SVR due to 
epsilon-insensitiveness. In LSSVR, every (training) input data is treated as a support vector, 
yielding extremely poor generalization performance. To overcome these drawbacks, the epsi-
lon-insensitive LSSVR with epsilon-insensitivity at quadratic loss, in which sparsity is directly 
controlled by the epsilon parameter, is derived in this paper. Since the quadratic loss is sensi-
tive to outliers, its weighted version (epsilon insensitive WLSSVR) has also been developed. 
Finally, the performances of epsilon-insensitive LSSVR and epsilon-insensitive WLSSVR are 
quantitatively compared in detail with those commonly used in the literature, pruning-based 
LSSVR and weighted pruning-based LSSVR. Experimental results on simulated and 8 differ-
ent real-life data show that epsilon-insensitive LSSVR and epsilon-insensitive WLSSVR are 
superior in terms of computation time, generalization ability, and sparsity.
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INTRODUCTION

Support Vector Machines (SVMs), a machine learning 
method, were initially introduced by Vapnik in 1995 [1]. 
They were quickly recognized as an effective tool in classifi-
cation and regression tasks and have since found widespread 
application in various real-world scenarios [2-7]. Within 

the realm of regression, support vector machines are called 
Support Vector Regression (SVR) [8, 9]. SVR uses the ε-in-
sensitive l1 loss function, which disregards noise while trying 
to suppress the influence of outliers, providing better gener-
alization ability compared to least squares regression. Similar 
to the ridge regression, which minimizes a regularized l2 
loss, SVR is adept at constructing models with enhanced 

https://sigma.yildiz.edu.tr
https://orcid.org/0000-0001-8742-8189
http://creativecommons.org/licenses/by-nc/4.0/


Sigma J Eng Nat Sci, Vol. 42, No. 2, pp. 578−589, April, 2024 579

generalization abilities. This is attained by minimizing both 
regularized and ε-insensitive empirical error.

The optimal parameters for an SVR model are typically 
determined by minimizing the convex quadratic cost func-
tion formulated in the dual space. This involves utilizing 
Lagrange multipliers and a kernel to achieve the optimal 
solution. While minimizing convex quadratic costs is effi-
cient, dual representations for classical SVR encounter sig-
nificant time consumption due to the substantial number 
of optimization variables, especially when dealing with 
large datasets. To address this, a more computationally 
efficient alternative, known as the Least Squares Support 
Vector Regression (LSSVR), has been presented [10]. The 
formulation of LSSVR resembles ridge regression, using a 
regularized l2 loss, where experimental errors are treated as 
linear constraints [11]. Typically, LSSVR is formulated as a 
quadratic minimization problem subject to a linear equality 
constraint on Lagrange multipliers in the dual space.

A significant advantage of LSSVR over SVR is the pos-
sibility of having the ability to represent the primary cost 
constraint as a penalty term in the dual formulation rep-
resentation using a single Lagrange multiplier, as opposed 
to the pair of Lagrange multipliers required for training 
samples in SVR. This formulation results in LSSVR requir-
ing only half the Lagrange multipliers required for classical 
SVR compared to classical SVR, leading to a remarkable 
reduction in calculation time. 

In the LSSVR approach, the loss function used is the 
regularized squared (l2) loss; The error terms are symbol-
ized as the equality constraints, resulting in the formulation 
of a linear system of equations. Though this feature offers 
computational advantages, the sparsity property inher-
ent in traditional SVR, induced through ε-insensitivity, is 
vanished in LSSVR, where each input instance is treated as 
a support vector. Moreover, due to the squared loss used, 
LSSVR lacks robustness to outliers compared to SVR.

To deal with the lack of sparseness for LSSVR, current 
methods can be classified in two approaches: iterative and 
direct methods. In iterative methods, training samples are 
progressively eliminated either forward or backward, one 
by one, in each iteration. For instance, Suykens et al. intro-
duced the Pruned LSSVR (PLSSVR) model, which initially 
runs the standard LSSVR model and sort the resulting 
support vectors from largest to smallest. Then, it gradually 
prunes the support vectors beginning from the smallest 
value in the spectrum [12]. Additionally, they proposed 
a weighted version to enhance robustness against outli-
ers [13]. Kruif and Vries proposed an alternative pruning 
algorithm where the training sample yielding the smallest 
error after its ignorance in the previous iteration is removed 
[14]. Kuh and De Wilde [15] extended the Kruif and Vries’s 
pruning algorithm which is applied to a non-regularized 
loss to the regularized loss. Hoegaerts et al. [16] presented 
two pruning algorithms: one is based on deleting the sam-
ple with the smallest correlation with the output and the 
other on removing the sample with the least similarity to 

the best fitting span. Zeng and Chen [17] introduced the 
SMO-based pruning scheme, which eliminates samples 
that contribute the least change in the dual objective func-
tion, rather than being merely on errors. 

Zhao and Sun [18] presented a technique called recur-
sive reduced LSSVR (RRLSSVR), where data contributing 
more to the objective function are selected as support vec-
tors while considering all constraints yielded by all training 
samples. Subsequently, the improved version of RRLSSVR 
(IRRLSSVR) was introduced to get much sparser solution 
than RLLSSVR in [19]. Later, refined versions of them [20] 
were proposed to improve their performance. Si et al. [21] 
introduced the reconstructed LSSVR algorithm (RCLSSVR), 
applied in mill load prediction, which utilizes reconstructed 
support vectors. It selects reconstructed data based on den-
sity clustering information in the training dataset and to 
improve sparseness and robustness simultaneously. Sun et al. 
[22] proposed a localized generalization error model based 
on the training mean square error and sensitivity measure to 
prune support vectors in the LS-SVM. 

In direct methods, the algorithm begins with a full 
dense solution and then eliminates training samples based 
on objective criteria. For instance, Espinoza et al. [23] intro-
duced a fixed-size least squares least squares support vector 
machine (FS-LSSVM) method, utilizing Nystrm approxi-
mation with a predefined set of prototype vectors (PVs) to 
provide a solution in the primal space. Based on the similar 
idea, Mall and Suykens [24] proposed two L0-norm-reduced 
models: the sparsified primal FS-LSSVM for the input space 
and sparsified subsampled dual LSSVM for the dual space. 
Yang et al. [25] introduced a one-step compressive pruning 
strategy to construct a sparse LSSVM. Zhou [26] introduced 
a low-rank representation technique using pivoted Cholesky 
decomposition for the kernel matrix to sparsify the LSSVM. 
Later, this method was extended to a robust LSSVM using 
a non-convex truncated loss function [27]. Xia [28] used 
the Kernel Matching Tracking technique, which exploits the 
number of support vectors as the regularization parameter 
to achieve sparsity in the LS-SVM solution. Ma et al. [29] 
designed an indicator to assess the global representation of 
data points based on density and distribution of them in the 
feature space. Next, they presented a fast sparse LS-SVM 
method by choosing support vectors with a non-recursive 
strategy using global representation. 

Recently, a new sparse LSSVR model (ε-LSSVR) with 
ε-insensitivity at quadratic loss has been introduced in [30]. 
ε-LSSVR ignores errors within a given ε band, as in SVM, 
and its sparsity is controlled only by the ε parameter. Inspired 
by [30], this paper theoretically derives ε-LSSVR from the 
LSSVR model in detail, which results in fewer support vec-
tors that provide sparsity in dual space without necessitating 
computationally expensive algorithms. However, the qua-
dratic loss function of ε-LSSVR may comprise robustness 
in the presence of outliers. To address this limitation and 
improve robustness, a weighted version, ε-WLSSVR, will be 
presented in Section 2.2, for the specific case of this study.
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The pruning approach iteratively removes the con-
straints of non-support vectors backwards to build a sparse 
LSSVR model. This may result in better convergence and 
higher stability for inhomogeneous and unbalanced data-
sets. Conversely, the ε-insensitive strategy forces certain 
support vectors to move to zero, allowing direct control 
over the selection of non-zero support vectors, which 
directly influences solution sparsity and computation time.

In this study, the performances of iterative based PLSSVR, 
WPLSSVR algorithms and ε-LSSVR and ε-WLSSVR meth-
ods that provide direct sparsity are analyzed for the first time 
in terms of generalization ability, sparsity, and computation 
time on both synthetic and 8 different real-world data.

The main contributions of this paper are summarized 
as follows:
i. Directly defining the sparseness of LSSVR in the input 

space by using ε-insensitivity within the quadratic loss 
function and providing a theoretical solution.

ii. Addressing the robustness matter inherent in the qua-
dratic loss function of ε-LSSVR by introducing its 
weighted version, ε-WLSSVR.

iii. Analyzing the performances of PLSSVR, WPLSSVR, 
ε-LSSVR, and ε-WLSSVR methods for the first time 
in terms of sparsity, generalization ability, and compu-
tation time across both synthetic and 8 different real-
world datasets.
The remainder of the paper is structured as fol-

lows: Section 2 presents a review of the basic concepts of 
LSSVR followed by a full portrait of the four methods of 

interest. Section 3 examines and compares pruning-based, 
and ε-insensitivity based approaches in both synthetic 
and real-world datasets. Finally, Section 4 presents result 
descriptions and potential feature guidelines.

Least Squares Support Vector Regression
Given a training set , where xs. represents 

the sth input data vector, ys denotes the target output data 
points for the input xs, and L is the number of training data 
points, LSSVR is formulated in primal space as follows [10]:

  
(1)

  (2)

Where, C is a user defined regularization constant that 
controls the balance between empirical error (for large C) 
and generalization ability (for small C), w is the unknown 
model parameter, es representing the deviation of the actual 
output from the predicted output for each training exam-
ple, φ(.) is a nonlinear basis function, and b is the unknown 
threshold parameter. LSSVR optimization problem (1) 
in primal space is transformed into the following uncon-
strained optimization problem in dual space by applying 
the Lagrange multipliers method.

Figure 1. a) Loss function of LSSVR b) ε-insensitivity in loss function of LSSVR c) Derivative of LSSVR loss function d) 
Derivative of LSSVR loss function with ε-insensitivity.
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(3)

Where: 
· αs represents the Lagrange multipliers.
· K(xs, xr) represents kernel functions character-

ized as the inner product of two input samples 
φ(xs) and φ(xr) in the high dimensional space i.e. 

.
The predicted range of learned LSSVR for the test sam-

ple x, can be expressed as follows:

  
(4)

ε-insensitive Least Squares Support Vector Regression
ε-LSSVR, the ε-insensitive variant of LSSVR, is intro-

duced in detail in this section. According to Equation (4), 
every training data point xs contributes to the solution rep-
resentation of model except training data points with αs = 
0. Therefore, the significance of a training data point xs is 
determined by its support value αs. The values of αs, which 
are Lagrange multipliers, rarely equal zero in most practi-
cal scenarios, leading to numerous support vectors in the 
LSSVR solution representation. The optimization problem 
required to derive ε-LSSVR from LSSVR is formulated as 
follows [30]:

  
(5)

  (6)

where, the  is defined as:

  

(7)

It’s important to note that  is a continuously differen-
tiable function. Figure 1 illustrates the LSSVR loss function 
and its derivative in comparison, as well as the ε-insensitiv-
ity in loss function of LSSVR and its derivative.

The canonical representation of the first derivative of 
the ε-LSSVR loss function is as follows:

  (8)

The formulation model in terms of Lagrange multipli-
ers becomes:

  
(9)

The conditions required for the optimal solution of the 
Lagrangian formulation model (9) are as follows:

  
(10)

  
(11)

  (12)

  (13)

To derive a cost function based on the Lagrange mul-
tipliers αs it is necessary to solve for es in terms of αs in 
equation (12). There are 3 distinct regions, each of which 
establishes a relationship between αs and es in an affine 
manner:

Since es > ε implies as > 0, -ε ≤ es ≤ ε implies as = 0, and es 
< -ε implies as < 0 equation (12) can be written as 

  (14)

where,

Substituting equations (10) and (14) into equation (9) 
and using equation (11) to eliminate variables es and w, the 
optimization formulation of ε-LSSVR becomes:

  

(15)

  
(16)
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The, the last term, in equation (15), , is 
equal to . Similarly, third term,  refers to the ε-in-
sensitive squared loss function and is equal to . 
Under these conditions, equation (15) can be rearranged as 
follows to compactly represent the dual minimization for 
ε-LSSVR.

  (17)

  
(18)

The only difference observed when comparing equation 

(3) with equation (17), is that the last term, appears 

because  in the ε-LSSVR optimization problem 

of equation (17), does not seen in LSSVR model (8). In 
other words, when ε = 0, classical LSSVR is obtained as a 
particular scenario of ε-LSSVR. The ε-LSSVR optimization 
problem can be solved using any convex algorithm that 
doesn’t necessitate taking derivatives of the variables in the 
optimization formulation. Finally, the b parameter can be 
calculated using equation (13).

ε-insensitive Weighted Least Squares Support Vector 
Regression

To increase robustness against outliers, it is a common 
practice in the literature to employ weighting techniques 
for training data points [13]. However, while ε-LSSVR sup-
presses noise compared to classical LSSVR, its performance 
against outliers remains suboptimal owing to the inherent 
quadratic error characteristic shared like LSSVR. In this 
section, we apply the weighting technique to ε-insensitive 
LSSVR to improve its performance against outliers, result-
ing in the following optimization formulation.

  
(19)

  (20)

In this formulation, the parameters δs are employed 
to weight the influence of errors relative to data points on 
the loss function. The * symbol distinguishes optimization 
variables from those of ε-LSSVR. Initially, the δs remain 
constant in the initial execute of ε-WLSSVR and are sub-
sequently determined as described in equation (24) to 
calibrate the effects of data point errors based on their dis-
tribution. Employing a derivation akin to that in Section 
2, we obtain the ε-LSSVR optimization regarding Lagrange 
multipliers as follows.

  

(21)

By employing optimality conditions (first derivative 
with respect to the optimization variables) and removing  
and w*variables to solve the optimization problem in (21), 
the ε-WLSSVR optimization problem can be expressed in 
dual space as follows:

  

(22)

  
(23)

The robustness of the developed ε-WLSSVR model 
against outliers is attained by appropriately selecting the δs 
weights based on the relationship delineated in [13].

  

(24)

where the parameter  is defined regarding Inter 
Quartile Range (IQR) denoting the difference between 
the the 25th percentile (lower quartile) and 75th percentile 
(upper quartile) of the error distribution [13].

  (25)

The choices of c1 = 2.5 and c2 = 3 are recognized as 
appropriate for a Gaussian error distribution.

The minimization problem of ε-WLSSVR, as described 
by Equations (22) to (23), is convex, and therefore any con-
vex algorithm from the existing literature can be employed 
for its solution, similar to ε-LSSVR.

PRUNED LEAST SQUARES SUPPORT VECTOR 
REGRESSION

As can be seen from (4), the decision hyperplane of 
LSSVR contains all the data in the training dataset. This 
means that LSSVR loses sparsity. The pruning approach 
for sparse LSSVR aims to obtain a sparse decision hyper-
plane with fewer data. For this, non-support vectors are 
extracted recursively from the training dataset according 
to some specified criteria (error rate, number of support 
vectors, etc.). First, an initial model is built based on the 
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entire training dataset and a spectrum of support vectors 
is plotted. The data that contributes the least to the model 
are omitted gradually. The reduced LSSVR is rebuilt with 
the remaining data. These processes are continued until the 
desired error value is reached [12], which is described in 
algorithm 1.

Algorithm 1. PLSSVR 
1. Train LSSVR (3) based on L training samples 
2. Omit a small amount of training samples (5% of the 

training set) with the smallest value in the sorted sup-
port vector spectrum.

3. Re-train the LSSVR based on the reduced training set. 
4. Go to step 2, unless the user specified performance 

index degrades.

WEIGHTED PRUNED LEAST SQUARES SUP-
PORT VECTOR REGRESSION

The weighted PLSSVR minimization problem in dual 
space is as follows [13].

  
(26)

The difference between PLSSVR and WPLSSVR is 
the δs parameter. The pruning approach is performed in 
WPLSSVR as follows [13].

Algorithm 2. WPLSSVR
1. Set L = Ltot equal to the number of training samples.
2. Given Ltot training samples, find an optimal combina-

tion (kernel parameter and C) by solving (3). 
3. Compute   from the error distribution.
4. Determine the weights δs based upon es and  
5. Solve the WLSSVR (equation 26) with respect to 

6. Sort the support values, 
7. Delete a small amount of N sample points (5% of the 

Ltot samples) that have the smallest values in the sorted 
spectrum.

Table 1. Optimization formulations for PLSSVR, WPLSSVR, ε-LSSVR, ε-WLSSVR, and LSSVR models in dual space 
representations

Models Optimization formulations in dual space

LSSVR

ε-LSSVR

ε-WLSSVR

PLSSVR

WPLSSVR
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8. Retain Ltot − N samples and set Ltot:= Ltot − N.
9. Go to step 2 and retrain on the reduced training set, 

unless the user-specified performance index degrades.
Optimization formulations in dual space for PLSSVR, 

WPLSSVR, ε-LSSVR, ε-WLSSVR, and LSSVR models, are 
shown in Table 1.

From Table 1 it can be clearly seen that the only dif-

ference between ε-LSSVR and classical LSSVR is . 

If ε=0, ε-LSSVR is equivalent to conventional LSSVR. In 
addition, PLSSVR and classical LSSVR are shown with the 
same optimization formula. However, an LSSVR model is 
created based on the whole training dataset, and then the 
number of samples is iteratively reduced until it reaches the 
specified error value and the PLSSVR model is obtained. 

On the other hand, the only difference between ε-WLSSVR 

and WPLSSVR is again . When ε=0, ε-WLSSVR is 

equivalent to WPLSSVR. Similarly, all samples are used 
when creating the first model, and then the weighted and 
pruned model (WPLSSVR) is provided.

Computational Complexity Analysis 
In academic literature, the computational complexity 

of algorithms is frequently evaluated by using Big-O nota-
tion. The computational complexity of the standard LSSVR 
solution (i.e., Ax=B) is O(kL2) using the conjugate gradient 
method [13]. Here, A=I+C and A∈RLxL with row(C)=k. As 
discussed in [31], iterative algorithms (such as PLSSVR and 
WPLSSVR) incur a cost around O(tL2); where t is considered 
the number of iterations. Together with the SMO technique 
[32], ε-WLSSVR and ε-LSSVR algorithms generate a cost 
around (pL). Because p is generally less than k, it provides 
an additional falling in the computational complexity of 
ε-WLSSVR and ε-LSSVR algorithms. If the matrix A requires 
a large amount of memory, it may be recomputed at each 
iteration step. However, this incurs a cost of O(L2) per step 
and decreases the memory requirement to O(L). It’s worth 
noting that the computational complexity can vary depend-
ing on the chosen kernel type and regularization parameter.

RESULTS AND DISCUSSION

In this section, direct models (ε-LSSVR and ε-WLSSVR) 
and iterative models (PLSSVR and WPLSSVR) are com-
paratively analyzed on synthetic and real-life benchmark 
datasets. In order to ensure identical circumstances for all 
models, experiments were conducted using SMO algorithm 
[31, 32] in MATLAB 2012b environment on a PC with Intel 
Core I5 processors clocked at 3.0 GHz, 4 GB RAM, 64-bit 
Windows-7 operation system. The parameters and perfor-
mance metric used in the comparison are given in section 
3.1. Their performance on synthetic and real-life data in 
terms of number of support vectors, percentage of support 
vectors, complexity parameter, training and testing times 

are reported in Sections 3.2 and 3.3, respectively. Finally, 
in Section 3.4, the effects of the compared models on per-
formance are discussed in detail and the observed findings 
are reported.

Experimental Setup
In all the compared models, the Gaussian function 

 was selected as the kernel 
function [33]. Optimal values of regularization parameter 
(C) and kernel parameter (σ) were determined from sets 

 and , respectively, by employ-
ing classical LSSVR with 5-fold cross-validation approach. 
Root Mean Square Error (RMSE), defined as follows, was 
used as the performance index in the study.

where, f(xs) represents the estimation of the target value 
ys when xs is entered, and L representing sample count.

Synthetic Data Sets
A synthetic data set was produced using the sinc 

function, which is frequently preferred in machine learn-
ing-based regression problems [9, 33].

y sinc(x / π) with x ∊[-10,1 0].
Using the sinc function, 251 training and 250 test 

instances were derived with both uniform and random 
sampling techniques. This approach allowed the intro-
duced models to be evaluated on non-uniform data points. 
Input data points were normalized to the range [0, 1], 
while output data points remained unchanged. The train-

ing (output) samples were subjected to Gaussian noise 

 with μ=0 and σ=0,1. To improve 

robustness testing, nine artificial outliers were added to the 
noisy training set, resulting in a total of 260 data points. 

The experimental findings are illustrated through 
Figure 2 and Figure 3, while a detailed numerical analysis, 
including the number of support vectors, complexity (flat-
ness), and RMSE, is presented in Table 2.

The quantities of training and test data are detailed in 
Table 2, with the dataset randomly split in each sample. 
This procedure was repeated 10 times to remove sample 
dependence and the results were averaged and entered in 
Table 2.

Figure 2 compares the number of support vectors 
obtained when the test accuracies (RMSE test values) of the 
ε-LSSVR and PLSSVR models are equivalent. Both mod-
els achieved equal test accuracies under the conditions of 
C = 23, σ = 2-3 for PLSSVR, and C = 23, ε = 0.12, σ = 2-3 
for ε-LSSVR. From Figure 2 and Table 2, It is evident that 
ε-LSSVR requires fewer support vectors (120) compared 
to PLSSVR (174) to attain near the same test accuracy. In 
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addition, Table 2 shows that ε-LSSVR demonstrates sparsity 
both in the dual space, as indicated by the quantity of sup-
port vectors, and in the primary space, as evidenced by the 
w. Accordingly, in randomly chosen training data points, 
the ε-LSSVR exhibits fewer support vectors and lower w 
value compared to PLSSVR. 

The second comparison was conducted between 
WPLSSVR with σ = 2-3, C = 23 and ε-WLSSVR with σ = 23, 
C = 23, ε = 0.08 when the test accuracies of the LSSVR mod-
els are identical circumstances. From Figure 3 and Table 2, 
it’s clear that ε-WLSSVR (117) demands a reduced num-
ber of support vectors compared to WPLSSVR (142), all 
while retaining the same test accuracy. This indicates that 
ε-WLSSVR achieves a significantly sparser solution com-
pared to WPLSSVR. Additionally, in the case of random 
sampling, ε-WLSSVR requires fewer support vectors com-
pared to WPLSSVR. 

As seen in Table 2, while whole training examples are 
utilized in the LSSVR representation, only 40% of them are 
used in the ε-LSSVR. Conversely, pruning-based algorithms 
generally yield a solution according to user-specified error 
tolerance, thus providing a near-optimal solution. This 
means that pruning-based algorithms must be run again 
and again to obtain the favored result. On the other hand, 
ε-WLSSVR and ε-LSSVR models are quite advantageous as 
they provide a globally optimal solution without the need 
for repeated algorithms to achieve optimality. Based on the 
simulation results above, it can be inferred that ε-WLSSVR 
effectively reduces the impact of outliers while also yielding 
a sparse solution in primary and dual spaces.

Real-Life Benchmark Data Sets
The direct models (ε-LSSVR and ε-WLSSVR) and iter-

ative models (PLSSVR and WPLSSVR) were comparatively 

Figure 2. The experimental results for the artificial datasets, with parameters C = 23 and σ = 2-3 on almost the same value 
of RMSE=0.0178 a) PLSSVR produces 174 support vectors b) ε-LSSVR yields 120 support vectors with ε = 0.12.

Figure 3. The experimental results for the artificial datasets, with parameters C = 23 and σ = 2-3 on almost the same value 
of RMSE=0.0195 a) WPLSSVR generates 142 support vectors. b) ε-WLSSVR with ε = 0.08 gives 117 support vectors.
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analyzed with 8 distinct real life benchmark datasets given 
in Table 3. Space, CPU small, and Mg are from Statlib col-
lection1 while the remaining datasets are from the UCI 
machine learning repository2. To provide consistency, 
the inputs were normalized within the closed range [0,1]. 
However, no normalization was applied to the outputs, as 
scaling is carried out by the C and ε model parameters. For 
further evaluation, the performances of the ε-WLSSVR 
and ε-LSSVR models were compared with WPLSSVR and 
PLSSVR with respect to percentage of support vectors 
(%SV), the flatness (w), number of support vectors (#SV), 
computation time, and training and test approach error, 
with test performances of all models nearly equivalent.

The experimental findings of LSSVR, ε-LSSVR, 
ε-WLSSVR, PLSSVR, and WPLSSVR, models on each 
dataset are presented in Table 4. The user-defined σ and C 
parameters of the model used for each dataset are presented 
under their respective names in the first column of Table 4.

From Table 4, it is evident that the sparseness of the 
weighted and unvweighted ε-LSSVR models surpasses 

1  http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html.
2  http://archive.ics.uci.edu/ml/datasets.html.

that of PLSSVR, WPLSSVR and LSSVR, across all data-
sets. For instance, in the Concrete dataset, PLSSVR, 
WPLSSVR, LSSVR, ε-LSSVR and ε-WLSSVR mod-
els required 356, 369, 450,197 and 103 support vectors, 
respectively. This indicates that ε-LSSVR, and ε-WLSSVR 
models require fewer support vectors to achieve almost 
the same test performance. Furthermore, the flatness mea-
sure of ε-WLSSVR is lower compared to all LSSVR meth-
ods, resulting in a sparser solution within the input space. 
For example, on the Boston dataset, PLSSVR, WPLSSVR, 
LSSVR, ε-LSSVR, and ε-WLSSVR have flatness measures 
of 246, 208, 258,172, and 141, respectively, under identical 
circumstances. Moreover, ε-LSSVR outperforms all mod-
els in terms of computational time. Given the superior 
performance of the ε-LSSVR and ε-WLSSVR methods, 
they can be applied to any engineering field such as energy 
[36] and mechanics [37].

It is evident from the last column of the Table 4 that 
ε-LSSVR requires less training time compared to LSSVR, 
PLSSVR and WPLSSVR. This difference can be attributed 
to the iterative nature of pruning-based algorithms, which 
continuously refine the objective function by removing less 
significant training examples until the user-specified error 
threshold is met. In contrast, during the training process, 
ε-LSSVR disregards training samples situated within the 
ε-insensitive region of the target function, all without the 
necessity of employing recursive (and computationally 
expensive) algorithms. The user-defined error tolerance 
parameter ε directly affects the sparsity and computational 
efficiency of the solution by controlling the number of sup-
port vectors. However, it’s important to note that ε-LSSVR, 
like LSSVR, remains sensitive to outliers. To address this 
limitation, the ε-WLSSVR model incorporates a weighting 
technique to enhance its robustness.

Table 3. In-depth details regarding benchmark regression 
datasets

Datasets Sample Size Number of Features
CPU Small 8192 12
Space 3107 6
Airfoil 1503 6
Mg 1385 6
Concrete 1030 9
Boston 506 13
Yatch 308 7
Servo 167 4

Table 2. Experimental results on synthetics dataset

Hyperparameters Algortihm ε #SV RMSE
test

#TS=260 
σ=0.125
C=8
N (0, 0.01)

Random 
Sampling

ε-LSSVR 0.08 124 1,305796 0,022351
ε-WLSSVR 0.08 118 1,358898 0,020651
LSSVR - 260 1,591505 0,027793
PLSSVR - 145 1,568524 0,026620
WPLSSVR - 142 1,399055 0,020790

Uniform 
Sampling

ε-LSSVR 0.08 123 1,318347 0,020921
ε-WLSSVR 0.08 117 1,365382 0,019580
LSSVR - 260 1,682521 0,015634
PLSSVR - 168 1,642521 0,018634
WPLSSVR - 164 1,403433 0,019466

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
http://archive.ics.uci.edu/ml/datasets.html
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Table 4. Experimental results on real word regression benchmark datasets

Dataset Learning
Models

#TS #SV %SV RMSE 
train

RMSE
test

Training 
time

Servo
C=1024
σ=1,

LSSVR

100

100 100 65,24784 0,366781 0,584084 0,081989

PLSSVR 59,8 59,8 64,42886 0,478413 0,672223 0,798908

WPLSSVR 66,8 66,8 43,84360 0,568590 0,675431 0,946633

ε-LSSVR (ε=0.45) 43,6 43,6 47,38996 0,479219 0,674658 0,045995

ε-WLSSVR(ε=0.4) 39,2 39,2 23,12014 0,635481 0,671208 0,076589

Yatch
C=131072
σ=0.5

LSSVR

160

160 100 551,7821 0,085507 1,214634 3,34804

PLSSVR 156,1 97,5625 551,3142 0,277917 1,270256 6,796333

WPLSSVR 157,6 98,5 504,2195 0,338374 1,292471 9,248233

ε-LSSVR(ε=0.2) 110,1 68,8125 449,739 0,192999 1,262674 0,59776

ε-WLSSVR, ε=0.1 127,8 79.875 439,2768 0,340269 1,262524 4,118371

Boston
C=128
σ=1

LSSVR

400

400 100 258,0354 1,993912 2,851667 0,099069

PLSSVR 191,5 47,875 246,5892 2,68649 3,231517 1,551074

WPLSSVR 253,1 63,275 208,0421 2,760021 3,230102 1,709849

ε-LSSVR,ε=3 119,1 29,775 172,2871 2,581367 3,237997 0,068996

ε-WLSSVR(ε=2.6) 127,9 31,975 141,8667 2,649894 3,230158 0,146366

Concrete
C=4096
σ=1

LSSVR

450

450 100 2670,986 3,623914 6,319183 1,198805

PLSSVR 356,5 79,22222 2646,297 3,971043 6,58039 6,507052

WPLSSVR 369,9 82,2 2495,326 4,041854 6,571906 11,51769

ε-LSSVR,ε=4.8, 197,1 43,8 1564,716 4,644485 6,578823 0,489621

ε-WLSSVR,ε=4.7 193,1 42,91111 1380,526 4,777453 6,580034 1,344742

Mg
C=2
σ=0.125

LSSVR

800

799,9 99,9875 1,514474 0,104216 0,119987 0,095426

PLSSVR 391 48,875 1,431114 0,108516 0,122091 1,494786

WPLSSVR 708 88,5 1,461827 0,106925 0,122079 0,596783

ε-LSSVR,ε=0.9 364,3 45,5375 1,106773 0,112639 0,122211 0,072719

ε-WLSSVR,ε=0.9 348,3 43,5375 1,069306 0,112863 0,122406 0,14033

Airfoil
C=128
σ=0.125

LSSVR

900

900 100 280,2655 1,463983 2,665281 0,412481

PLSSVR 760 84,4444 278,2486 1,882925 2,875038 1,837134

WPLSSVR 886,8 98,53333 203,8609 1,932055 2,86893 1,677196

ε-LSSVR,ε=1.4 497,5 55,27778 211,7781 1,773606 2,87319 0,194541

ε-WLSSVR,ε=0.3 750 83,3333 190,6877 1,876238 2,874714 0,633096

Space
C=4096
σ=0.5

LSSVR

1600

1600 100 51,74661 0,089768 0,103348 10,84307

PLSSVR 1135,8 70,9875 51,07372 0,095491 0,107249 77,11352

WPLSSVR 1094,1 68,38125 47,60751 0,097645 0,10753 132,5333

ε-LSSVR,ε=0.09, 540,1 33,75625 33,2183 0,094133 0,106865 1,446744

ε-WLSSVR,ε=0.09 522,4 32,65 27,89796 0,094786 0,107426 12,03891

CPU Small
C=128
σ=0.5

LSSVR

2500

2500 100 504,8244 2,483706 3,080268 2,422676

PLSSVR 1855 74,2 497,1927 2,789671 3,222043 17,8483

WPLSSVR 1765 70,6 460,419 2,856357 3,224067 34,5773

ε-LSSVR, ε=2.5 969,7 38,788 346,417 2,738471 3,215779 0,517647

ε-WLSSVR, ε=3.1 673,7 26,948 276,9492 2,840616 3,218984 2,756323
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CONCLUSION

LSSVR stands out as a computationally efficient method 
for tackling regression problems. Nevertheless, it does have 
two notable disadvantages. Firstly, LSSVR tends to lack of 
sparsity, resulting in every input sample treated as a support 
vector. Secondly, the solution obtained with LSSVR is sensitive 
to outliers and noise within the training dataset. In order to 
address these issues, theoretically derives ε-LSSVR from the 
LSSVR model. In addition, a weighted version, ε-WLSSVR, is 
introduced to improve robustness against outliers.

To improve the sparsity of classical LSSVR, the per-
formances of the PLSSVR, ε-LSSVR, WPLSSVR and 
ε-WLSSVR methods are analyzed in terms of general-
ization ability, sparsity, and computation time on both 
artificial and 8 different real-life datasets. Experimental 
results show that ε-LSSVR and ε-WLSSVR models achieve 
sparser solution representation compared to PLSSVR, 
WPLSSVR, and LSSVR across all datasets while maintain-
ing nearly same generalization performance (RMSE test 
values). These models exhibit advantages over PLSSVR, 
WPLSSVR, and classical LSSVR regarding the number of 
support vectors. For example, in the space dataset, PLSSVR, 
WPLSSVR, LSSVR, ε-LSSVR and ε-WLSSVR models 
required 1135, 1094, 1600, 540 and 522 support vectors, 
respectively, to achieve almost the nearly identical circum-
stances. The norm of w (flatness measure) of both weighted 
and unweighted ε-LSSVR models is lower than those of all 
LSSVR models, indicating sparser solution representations 
in the primal space. For instance, in the CPU Small dataset, 
PLSSVR, WPLSSVR, LSSVR, ε-LSSVR, and ε-WLSSVR 
demonstrates flatness measures of 497, 460, 504, 346, and 
276, respectively. Additionally, ε-LSSVR outperforms all 
models in terms of computational time. 

The regression models introduced in this study can be 
optimized using any optimization algorithm developed 
for nonlinear convex large-scale quadratic problems sub-
ject to linear inequalities/equalities, potentially increasing 
computational efficiency. Furthermore, these models can 
be applied to various engineering problems in which other 
regression models have shown success.
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