2Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Işık University, Istanbul, Türkiye
Abstract
On microblogging sites, which are gaining more and more users every day, a wide range of ideas are quickly emerging, spreading, and creating interactive environments. In some cases, in Turkey as well as in the rest of the world, it was noticed that events were published on microblogging sites before appearing in visual, audio and printed news sources. Thanks to the rapid flow of information in social networks, it can reach millions of people in seconds. In this context, social media can be seen as one of the most important sources of information affecting public opinion. Since the information in social networks became accessible, research started to be conducted using the information on the social networks. While the studies about spam detection and identification of opinion leaders gained popularity, surveys about these topics began to be published. This study also shows the importance of spam detection and identification of opinion leaders in social networks. It is seen that the data collected from social platforms, especially in recent years, has sourced many state-of-art applications. There are independent surveys that focus on filtering the spam content and detecting influencers on social networks. This survey analyzes both spam detection studies and opinion leader identification and categorizes these studies by their methodologies. As far as we know there is no survey that contains approaches for both spam detection and opinion leader identification in social networks. This survey contains an overview of the past and recent advances in both spam detection and opinion leader identification studies in social networks. Furthermore, readers of this survey have the opportunity of understanding general aspects of different studies about spam detection and opinion leader identification while observing key points and comparisons of these studies.