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ABSTRACT 

In financial time series, one of the most challenging problems is predicting stock prices since 
the data generally exhibit deviation from the assumptions of stationary and homoscedasticity. 
For  homogenous non-stationary time series, the Autoregressive Integrated Moving Average 
(ARIMA) model is the most commonly used linear class including some transformation such 
as differencing and variance stabilizing process. However, stock market data is often nonlinear, 
which indicates that more advanced methods are necessary. Genetic Programming (GP) is 
one of the evolutionary computational methods that could capture both linear and nonlinear 
patterns in time series data. The present study aims to build a machine learning tool using 
GP for prediction The Istanbul Stock Exchange National 100 (XU100) index and compare the 
obtained results with conventional seasonal ARIMA(SARIMA) and ARCH models. In order 
to achieve this goal, it was first modeled with the SARIMA model after appropriate transfor-
mations were made to the stock price series and the diagnostic control result showed that the 
residual of the SARIMA model have the heteroscedasticity problem. Then, the ARCH model 
was applied to SARIMA residuals to eliminate this effect and an integrated SARIMA-ARCH 
model is obtained. Since it is possible and capable to model nonlinear and non-stationary 
time series using GP without any pre-assumptions, we proposed GP to predict the stock price 
series. The function set of GP consists of not only arithmetic but also trigonometric functions. 
To the best of our knowledge, this study is the first to predict XU100 stock price data using 
GP. In this experiment, the data set consists of the daily closing prices of the XU100 index over 
775 days from the beginning of 2017 until the end of January 2020. The experimental results 
obtained show that the accuracy metrics used in the study are lower in the proposed GP model 
compared to other models. These results reveal that the GP method provides better  predictive 
results for the financial time series data of the XU100 index than traditional methods.
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INTRODUCTION 

 Prediction of financial time series is a complex task 
since the data is often non-stationary and usually exhibit 
nonlinear patterns. Traditionally, Autoregressive Integrated 
Moving Average (ARIMA) models are the most widely 
used linear methods that predict the behavior of time series 
based on both linear combinations of historical observa-
tions called autoregressive (AR) components and error 
terms called moving average (MA) components [1]. The 
procedure of fitting an ARIMA model is known as the Box-
Jenkins method involves three steps: model identification, 
parameter estimation, and diagnostic checking [2]. ARIMA 
methods are applicable to non- stationary time series which 
can be stabilized by various transformations. If the data 
display evidence of non- stationary (e.g., having trend or 
seasonality), the first step should be to remove the trend 
and seasonal components. One of the simplest and most 
effective ways to stabilize the variance over time is to apply 
power transformations such as taking logarithm, square 
root or cube root of the time series. The other useful trans-
formation technique is differencing the data for eliminating 
the trend and seasonality. For removing the seasonality, if it 
is necessary one can take seasonal differencing or use mov-
ing average method. If there is a seasonality pattern in time 
series, following the Box and Jenkins’ pragmatic approach, 
the generalization of ARIMA model called seasonal ARIMA 
(SARIMA) can be applied for seasonal and non-stationary 
data. In ARIMA modeling, the error process is assumed to 
be independent and identically normally distributed, and 
homoscedastic (i.e. error terms have a constant variance). 
When the data is non-normal or homoscedasticity assump-
tion is violated, the Box-Cox transformation can be applied 
since the transformed time series may approximately fol-
low a time process with normal error terms. After the data 
is transformed into stationary, the next step is the model 
identification usually based on correlogram and the param-
eter estimation. Once a model is identified and estimated, 
the last and the most important step is to verify whether 
the selected model is adequate by checking the residuals. 
Diagnosis in the ARIMA model involves checking for resid-
uals between predicted and actual series and determining 
if they are independent, not serially correlated, normally 
distributed, and homoscedastic. If the candidate model is 
not adequate, then the model identification and parameter 
estimation steps should be repeated until a suitable model 
is found [3]. Although ARIMA methods are widely used for 
short-term forecasting, there are some drawbacks of these 
models. First, many attempts are required until the best 
model is achieved for a specific data set. Second, the model 
order identification involves a trial and error approach that 
is the choice of the best ARIMA model is based on subjec-
tive evaluation. Therefore, the performance of the chosen 
ARIMA model may require an expert analysis. Also, one 
of its major limitations is that it is applicable to linear time 

series. When the linearity assumption is not satisfied, the 
accuracy performance of prediction results may reduce [4, 
5]. Furthermore, when the time series exhibit non-constant 
variance in error terms called heteroscedasticity problem, 
this problem sometimes cannot be solved by transform-
ing the data. Then, ARIMA is not appropriate method for 
heteroscedastic time series forecasting. The autoregres-
sive conditional heteroscedasticity (ARCH) model and its 
extensions are one of the appropriate time series forecasting 
methods to deal with the nonlinearity and heteroscedas-
ticity problem. Although several proposed methods focus 
mostly on predicting linear and stationary time series, a 
considerable number of studies have emerged in the lit-
erature for nonlinear and non-stationary processes. In his 
fundamental book [6], Priestly made tremendous contribu-
tions to this area. In the literature, these time series fore-
casting methods may be based on neural networks, support 
vector machines, hidden Markov models, or Bayesian 
models. See, e.g., [7–15], among others. A comprehensive 
review study for nonlinear time series can be found in [16].

 An alternative approach for time series prediction is 
derived from the use of evolutionary algorithms. In partic-
ular, Genetic Programming (GP) which is a metaheuristic 
optimization method introduced by Koza [17] is generally 
used for automatic programming or finding out mathemati-
cal functions. Moreover, GP has been efficiently used in time 
series prediction for capturing both linear and nonlinear 
relationships. For instance; Kaboudan, proposed a trading 
strategy based on predictions of stock prices using GP and 
introduced a new metric to measure the probability of a spe-
cific time series is GP-predictable [18]. Duan and Povinelli, 
extended the Kaboudan’s metric to estimate the predictabil-
ity of time series and presented stock price forecasting using 
GP [19]. Kľúčik et al., used GP as a symbolic regression for 
forecasting time series of industrial production index and 
showed that GP outperformed traditional ARIMA models 
[20]. Lee and Tong, proposed a hybrid method based on 
ARIMA and GP for nonlinear time series forecasting and the 
hybrid method outperforms the other forecast methods [21]. 
Recently, Claveria and Tonna performed symbolic regression 
via GP to forecast economic growth [22]. 

 The aim of the present paper is to build a predictive model 
for nonlinear time series of the daily closing stock price value 
of the Istanbul Stock Exchange National 100 (XU100) index 
using GP and to compare the prediction performance with 
traditional time series models. To the best of our knowledge, 
it is the first study focused on predicting the XU100 stock 
price index with GP. By using an integrated SARIMA-ARCH 
as a benchmark model, we aim to uncover the advantages of 
GP, such as time saving and powerful predictive modeling. 
The rest of the paper is organized as follows: The next sec-
tion gives a brief overview of the prediction methods used in 
this study. Then, the data analysis and obtained experimental 
results are discussed and a comparison between prediction 
models is provided. The study is concluded in the last section. 
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PREDICTION MODELS

In this part of the study, ARIMA, SARIMA, ARCH, 
and GP methods are briefly explained in the following 
subsections.

ARIMA Model
Autoregressive Moving Average (ARMA) model is 

one of the most common classes for modeling stationary 
time series. A stationary time series {Yt} is an ARMA(p, q) 
 process if for every t

Y Y Y e e et t p t p t t q t q� � � � � � �� � � �� � � �1 1 1 1... ...  (1)

where {et} is a sequence of serially uncorrelated error 
terms with zero mean and finite variance (shortly, it is 
said to be white-noise); (.)φ  and (.)θ  are the pth and qth 
degree polynomials sharing no common factors, respec-
tively. Using backshift operator B (which is defined as
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 ARIMA model which is reproduced by alteration of an 
ARMA model can be applied for homogeneous non-stationary 
time series. Frequently, the non-stationary data can be trans-
formed into stationary data by taking proper degree of differ-
ence. ARIMA model is defined by three parameters p, d, and 
q which represent the order of autoregressive, differencing and 
moving average parameters, respectively. Then, ARIMA(p,d,q) 
process is expressed using backshift operator B as follows:

� �( )B Y B ed
t t� � ( )  (3)

where Dd = (1 - B)d indicates d nonnegative order of 
difference where D is difference operator and {et} is white-
noise. The ARIMA(p,d,q) process reduces into ARMA(p,q) 
if and only if d is equal to zero. In other words, {Yt} is an 
ARIMA (p,d,q), (d > 0) process if Xt = (1 - B)d Yt is an 
ARMA(p,q) process. For more details about ARIMA mod-
els we refer to [23], among others. 

SARIMA Model
Since the ARIMA model given in the equation (3) is 

for non-stationary and non-seasonal time series data, Box 
and Jenkis [2] proposed a generalization to ARIMA model 
to deal with seasonality which is called SARIMA model. 
Suppose that d and D are nonnegative integers. {Yt} is a sea-
sonal ARIMA(p,d,q) × (P,D,Q) [s] process with period s if 
the differenced series Xt = (1 - B)d (1 - Bs)D Yt is an ARMA 
process defined as follows: 
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SARIMA model is defined by parameters p, d, q, P, D, 
and Q which represent the order of autoregressive, differ-
encing, moving average, seasonal autoregressive, seasonal 
differencing, and seasonal moving average parameters, 
respectively [23].

ARCH Model
An ARIMA model for the time series {Yt} assumes 

that the conditional variance ht of {Yt} given {Ys, s < t} 
is independent from t and from {Ys, s < t} that is con-
ditional variance is constant through time. However, 
return series of financial assets often exhibit heterosce-
dasticity due to the volatility clustering property. This 
property means that large changes in return series tend 
to be followed by large changes, and small changes in 
return series tend to cluster together. One of the useful 
ways to deal with heteroscedasticity problem is to use 
autoregressive conditional heteroscedasticity (ARCH) 
models proposed by Engle [24] and its extensions. If Pt 
is the closing price of a particular stock index at time t, 
then the return of the financial time series is defined as 
log(Pt) - log(Pt-1) = D log Pt, and usually denoted by rt. 
Let h t t t( ) |� �� 2

1  denotes the conditional variance or con-
ditional volatility of rt , given returns through time t - 1. 
Then, ARCH(1) model for the {rt} is given as follows:

r et t t t� �� 1  (5)

h t r t( ) � � �� �0 1
2

1  (6)

where {et} ~iid N(0,1), {et} is independent of rt-1, i = 1, 
2, …, and �0 0� , �1 0�  are unknown parameters. The 
ARCH(q) model is the extension of the equation (6) and 
given as follows:
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where �0 0� , �i i q� 0 1,   = , ,  , and q is a positive 
integer and referred to as ARCH order.

The generalized ARCH (GARCH) model is introduced 
by Bollersev [25] and GARCH (p,q) model is the general-
ization of the equation (7) and defined as follows:

h t h h h

r r r
t t p t p

t t q t q

( ) � � � � �

� � � �
� � �

� � �

� � � �

� � �
0 1 1 2 2

1
2

1 2
2

2
2



  (8)

where �0 0� , �i i p� �0 1, , ,  , �i i q� �0 1, , ,  ; 
and p and q are positive integers and referred to as GARCH 
order and ARCH order, respectively [23].
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GP Model
Genetic Programming, which is originally developed 

by Koza [17] as an extension of the genetic algorithm, is 
an evolutionary computation method based on ideas of 
biological evolution to handle a complex problem. GP is 
generally used in problems such as discovering mathemat-
ical functions or automatic programming. Therefore, it is 
also referred as symbolic regression. The structure of the 
Genetic Programming consists of the following steps: 

Step1:  Define the terminal set which are the input variables 
of the problem and constants. 

Step2:  Define the set of primal functions usually include 
arithmetic operators or other mathematical functions.

Step3:  Randomly create an initial population of individual 
 programs consists of existing function and terminal set.

Step4:  Select a fitness function to measure the accuracy of 
prediction.

Step5:  Determine the parameters for controlling the 
algorithm.

Step6: Determine the stopping condition.
Step7:  Iteratively execute the following sub-steps i–iv called 

generation until the stopping condition is met.

i) Run each program in the population and figure out its 
fitness using the problem’s fitness function.

ii) Select one or two individual computer program from 
the population based on fitness function to participate 
in the four genetic operations given in the next step.

iii) Create new individuals for the population by using the 
following genetic operations:
a) Reproduction: Copy the selected individuals from 

the current generation to the next population. 
b) Crossover: By recombining randomly chosen parts 

from two selected individuals, create new individu-
als for the next population 

c) Mutation: By randomly mutating a randomly cho-
sen part of one selected individuals, create one new 
individual for the next population 

d) Inversion: Choose an inversion operation from 
the operations and create one new individual for 
the next population by using the chosen inversion 
 operation to one selected individual.

iv) When the stopping criterion is satisfied, the best pro-
gram (individual) in the population produced during 
the algorithm. The result may be an approximate 
 solution to the problem. 

For detailed information about Genetic Programming, 
we refer to well-known book of Koza [17], among others.

Performance Evaluation
In the present study, the Mean Squared Error (MSE), 

the Root Mean Squared Error (RMSE), the Mean Absolute 
Error (MAE), the Mean Percentage Error (MPE), the Mean 

Absolute Percentage Error (MAPE), the symmetric Mean 
Absolute Percentage Error (sMAPE), the Mean Error (ME), 
and The Theil’s U-statistics are used as metrics to measure 
and compare the prediction accuracy of methods. These 
measures are defined as follows: 
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where yt is actual value, ŷt is predicted value, et = yt - ŷt 
 prediction error and n is the sample size.

EXPERIMENTAL RESULTS

The data set of the present study consists of daily clos-
ing price the XU100 stock index over 775 days, from the 
beginning of 2017 until the end of January 2020 and it is 
obtained from the website https://tr.investing.com/. It is a 
usual  practice to use the first n observations as a training 
period and to test it in data separated from the training 
period. We split the available data consisting of total 775 
observations in two parts of 70%–30%. Data from the date 
02-Jan-17 to 22-Feb-19 are used as the training period (542 
observations) and the test period (233 observations) is from 
the date 25-Feb-19 to 31-Jan-20. The predictive models are 
fitted on training data and model performances are mea-
sured and compared on the test period. All computations 
are performed via the R programming version of 3.6.2.

Time series graphs or called time-plots are useful 
to observe how the series exhibits patterns over time or to 

ˆ

ˆ



Sigma J Eng Nat Sci, Vol. 39, No. 2, pp. 110-122, June, 2021114

predict, for example, the stock market index is trending 
up or down. The behaviour of the daily closing stock price 
index of the XU100 is investigated by the time-plot given 
in Figure 1.

From Figure 1, some distinguishable patterns such that 
upward and downward trends are observed. It indicates that 
the series does not have a stable mean and variance that is 
the original pattern of the XU100 series is not stationary. For 
the initial step, we apply log transformation to the stock price 
data to try to stabilize the variance over time. Suppose that 

the closing price of XU100 index on trading day t is denoted 
by Pt. Then, natural logarithm of closing price is denoted by 
{Yt}, where Yt = log Pt. Then, the time-plot of log-transformed 
data on training period is given in Figure 2.

From Figure 2, the log stock price data have more con-
stant fluctuations, but still have non-constant variance and 
exhibit trend component. Below in Figure 3, to confirm the 
indication of non-stationary, we examine the sample auto-
correlation function (ACF) and the sample partial autocor-
relation function (PACF), and Augmented Dickey-Fuller 

Figure 1. The time series graph of daily XU100 closing stock price index.

Figure 2. The time series graph of daily XU100 closing log stock price index on training period.
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(ADF) test results are given in Table 1 for the level of log 
stock price series. 

According to Figure 3, the ACF decays extremely slowly 
which strongly points out the time series of XU100 is 
non-stationary. This result is also supported by the results 
of ADF test given in Table 1. The number of lag in the test 
equation is determined as 5 using Akaike Information 
Criteria (AIC) and the test equation including both inter-
cept and trend is given as 

 
�Y t Y Y et t i t

j
t� � � � � �� �

�
�� � � �1 1

2

5

where the hypothesis are H0 : δ = 0 and H1 : δ < 0. The DF 
test statistics of zero mean (neither intercept nor trend), 
single mean (an intercept and no trend), and trend (both 
intercept and trend) models are greater than the critical 
values for 1%, 5% and 10% significance levels. As a result, 
the null hypothesis that the Yt = log Pt  series contains a 
unit root is failed to reject, i.e., Yt = log Pt  series in level 
is not stationary. Therefore, the 1st differencing transforma-
tion is performed to Yt = log Pt  series as follows: D log Pt = 

log (Pt) - log (Pt-1). The first difference of logged stock price 
series is called stock return series and denoted by rt. After 
the 1st differencing, XU100 index series becomes stationary 
as shown in Figure 4.

From Figure 4, the stock return series of XU100 index 
appears to randomly oscillate around zero which means 
that there is rather weak autocorrelation and this result 
is confirmed by the sample ACF graph displaying that 
the autocorrelation coefficients are close to zero given in 
Figure 5. However, there is evidence that the stock return 
series exhibit heteroscedasticity because the volatility clus-
tering can be observed in Figure 4. We will address this 
problem in the diagnostic check of model residuals.

Moreover, we implement ADF test for the first differ-
ence of log stock price series, i.e., stock return series. The 
results are presented in Table 2.

According to Table 2, The DF test statistics of zero mean 
(neither intercept nor trend); single mean (an intercept and 
no trend), and trend (both intercept and trend) models are 
less than the critical values for 1%, 5% and 10% significance 
levels. Therefore, the null hypothesis that the rt = D log Pt  
series contains a unit root is rejected, i.e., Yt = log Pt series 

Figure 3. ACF and PACF graphs of log stock price series.

Table 1. Augmented Dickey-Fuller test for the level of log stock price series

Yt = log Pt Level

Model neither intercept nor trend an intercept and no trend both intercept and trend

Critical Values
%1 %5 %10 %1 %5 %10 %1 %5 %10 

-2.58 -1.95 -1.62 -3.43 -2.86 -2.57 -3.96 -3.41 -3.12
DF Statistics 1.1917 -2.5731 -2.5354
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Figure 4. The time series graph of daily stock return on training period.

Figure 5. ACF and PACF graphs of stock return series.

Table 2. Augmented Dickey-Fuller test for the first difference of log stock price series

rt = Δ log Pt First Difference

Model neither intercept nor trend an intercept and no trend both intercept and trend

Critical Values
%1 %5 %10 %1 %5 %10 %1 %5 %10

-2.58 -1.95 -1.62 -3.43 -2.86 -2.57 -3.96 -3.41 -3.12
DF Statistics -18.647 -18.6888 -18.6837
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in the first difference is stationary. Therefore, the integrated 
part (I) of our ARIMA model will be equal to 2, that is d = 1.

We determine the appropriate values of order parameters 
of the ARIMA(p,d,q) (P,D,Q)[s] model by visually examin-
ing the ACF and PACF graphs of the first- differenced log 
stock price series given in Figure 5. Since there are signifi-
cant spikes at lags nearly 5, 10, 20 and 40 both in ACF and 
PACF graphs, we are suspicious about weekly seasonality 
with period 5 since there are 5 trading days in a week. D is 
equal to 0 as there is no need for seasonal differencing. Also, 
the ACF and PACF graphs exponentially decay to 0 as lag 
increases implying that the non-seasonal order of autore-
gressive and moving average parameters could be 1. Based 
on the prior information from ACF and PACF graphs and 
after many attempts, the candidate ARIMA(1,1,1) (2,0,1) 
[5] model and its variations having significant  parameters 
are listed according to AICc in Table 3.

According to Table 3, the best model is chosen 
ARIMA(1,1,1) (2,0,1) [5] with minimum corrected Akaike 
Information Criteria (AICc). The fitted parameters of 

ARIMA(1,1,1) (2,0,1)[5] model, shortly called SARIMA 
model, are given in Table 4.

From Table 4, all fitted parameters are statistically 
 significant and the SARIMA model for the first difference 
of log stock price series D log Pt , i.e., for the stock return 
series rt is obtained as follows:
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where {et} is the error term series. 
The model fit statistics such that Log-likelihood, AIC, 

AICc, Bayesian  Information Criteria (BIC), σ 2, RMSE, 
MAE and autocorrelation of errors at lag 1 (ACF1) are 
given in Table 5. 

To verify whether the fitted model is adequate, the resid-
uals are checked with Ljung-Box test for autocorrelation, 
and ARCH-LM test for conditional heteroscedasticity. The 
results are given in Table 6, and Table 7, respectively. Also, 
the graphs related to residual analysis is given in Figure 6.

Table 3. AICc values for the candidate ARIMA(p,d,q) (P,D,Q)[s] models

Model AICc Model AICc

ARIMA(1,1,1)(1,0,0)[5] -3242.421 ARIMA(0,1,1)(2,0,1)[5] -3233.631

ARIMA(1,1,1)(1,0,1)[5] -3240.636 ARIMA(0,1,0)(2,0,1)[5] -3235.642
ARIMA(1,1,1)(2,0,1)[5] -3243.448 ARIMA(2,1,2)(2,0,1)[5] -3240.220

Table 4. SARIMA model results

AR1 MA1 SAR1 SAR2 SMA1

Coefficients -0.9890 0.9566 -0.9431 -0.0799 0.9226

Standard Error -0.0117 0.0224 -0.0649 -0.0445 0.0470

p-value -0.0009 0.0009 -0.0009 -0.0019 0.0000

Table 5. SARIMA model fit statistics

Performance 
Metrics

Log- 
likelihood

AIC AICc BIC σ 2 RMSE MAE ACF1

p-value 1627.8 -32.436 -3243.45 -3217.84 0.00014 0.01193 0.0092 0.02849

Table 6. Ljung-Box test results for SARIMA model residuals
Lag 10 15 20 25 35 50 100
Ljung-Box Q Statistic 3.4626 7.085 11.26 12.978 34.665 56.639 90.442
df 5 10 15 20 30 45 95
p-value 0.629 0.717 0.734 0.878 0.255 0.114 0.613

Table 7. ARCH-LM test results for SARIMA model residuals
Lag 10 15 20 25 35 50 100
ARCH-LM Statistic 60.016 63.743 87.076 111.776 163.229 200.603 311.698
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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It is noticed from Table 7 that the p-values corre-
sponding to the ARCH-LM statistics are less than the all 
significance levels. Thus, the null hypothesis that there is 
no ARCH effect is rejected. To handle with the heterosce-
dasticity problem observed in the residuals, we fit ARCH 
models to the residuals series of obtained SARIMA model, 
i.e., ARIMA(1,1,1)(2,0,1) [5] and the fitted ARCH(1) 
model is given in Table 8. We would also like to point out 
that ARCH(q) and GARCH(p,q) models with order greater 
than 1 are also implemented but their parameters found 
insignificant. 

The residual analysis given in Figure 6 shows that there 
are not significant spikes in the ACF graph and residuals are 
approximately normally distributed. However, the variance 
of residuals does not seem to be constant over time. The 
graphical results are also confirmed as follows. 

In Table 6, we observe that that the p-values corre-
sponding to Ljung-Box Q statistics at different lags are 
greater than the significance level 5%. Therefore, the null 
hypothesis that the residuals are independently distributed 
is failed to reject, that is there is no autocorrelation in the 
residuals of SARIMA model.

Figure 6. The residual analysis for SARIMA model.
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number is 49950, and the best fitted approximated solution 
is given as follows:

 

1 2 1 1 1

1 1

2 1 2 1

1 1 1 1

1 1 2 1 1

( , ) cos( 2.425 ) / sin( )
/((sin(cos( 2.425 ) / sin( )
/((sin( ) ) ))

                  ( cos( 2.425 ) / sin( )
/((sin( ) ) ))) )

f x x x x x
x x

x x x x
x x x x

x x x x x

= − − +
− +
+ × × +

× − − +
+ × × ×

According to Table 8, the fitted parameters of ARCH(1) 
are statistically significant, and the model is represented as

 h t e ut t( ) � � ��0.0001177 0.1724 2
1

where {ut} is the error term series. Table 9 gives the 
ARCH-LM test results for ARCH(1) model residuals. 

It is clearly seen from Table 9 that the p-values cor-
responding to the ARCH-LM statistics are greater than 
the significance level 5%. Then, the null hypothesis that 
there is no ARCH effect in ARCH(1) residuals is failed 
to reject. 

Consequently, the adequacy of the model is ensured 
and we integrate the ARCH(1) model to the ARIMA(1,1,1)
(2,0,1)[5] model and the integrated model shortly called 
SARIMA-ARCH.

In Table 10, we compare the SARIMA and SARIMA-
ARCH model performances on training period to empha-
size the improvement in accuracy metrics, and we would 

also like to remark that we do not use SARIMA model for 
the prediction as it does not provide the homoscedasticity 
assumption.

According to Table 10, it can be said that the proposed 
SARIMA-ARCH model provides slightly better predictive 
performance than the SARIMA model for XU100 stock 
return series. Then, we continue to model the XU100 stock 
return series with one of the evolutionary computational 
methods GP.

Now using the parameters given in Table 11, Genetic 
Programming is adopted to fit training data of the stock 
return series rt using function set with arithmetic functions  
(+, -, ×, /) also including other mathematical functions 
sinus (sin), cosinus (cos), natural logarithm (log), expo-
nential (exp), square root (sqrt). In order to make compar-
ison, we use the same p order of autoregressive variables of 
SARIMA model for the terminal set and therefore the input 
variables are x1 = rt-1, x2 = rt-5 and x3 = rt-10.

The log and sqrt functions are avoided against negative 
arguments and / operator is avoided against division by 0. 
The fitness function is selected as MAE. Based on the fit-
ness function, for reproduction the selection of individuals 
is done with the tournament selection algorithm. Crossover 
and mutation operators are applied to the selected individ-
uals generating new individuals for the next generations. 
The size of population is 100. In Table 11, the parameter of 
GP used in this experiment is summarized. 

Eventually, the Genetic Programming algorithm is 
stopped after 1000 evolution steps, fitness evaluation 

Table 8. ARCH(1) model results
Coefficients Estimate Standard Error p-value
α0 1.177e-04 8.438e-06 0.000
α1 1.724e-01 4.982e-02 0.000
Ljung-Box Test 
for Squared 
Residuals

χ 2 df p-Value

0.095893 1 0.7568

Table 10. SARIMA and SARIMA-ARCH model performance metrics for training set

Model MSE RMSE MAE MPE MAPE sMAPE ME Theil’s U

SARIMA 0.00014 0.01193 0.00920 0.00819 0.13331 0.13331 0.00057 0.00025
SARIMA-ARCH 0.00014 0.01192 0.00919 0.00613 0.13314 0.13314 0.00043 0.00025

Table 9. ARCH-LM test results for ARCH(1) model residuals
Lag 10 15 20 25 35 50 100
ARCH-LM Statistic 12.007 12.182 14.445 20.537 31.804 36.803 57.054
p-value 0.285 0.665 0.807 0.7181 0.6232 0.918 0.999

Table 11. GP configuration
Population size 100
Function set (+, -, ×, /, sin, cos, log, exp, sqrt)
Terminal set rt-1, rt-5, rt-10

Fitness function Mean Absolute Error
Crossover function Random subtree crossover
Mutation rate 0.3
Crossover rate 0.7
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The model performance of the best GP model on train-
ing period is represented in Table 12. 

Finally, we compare the prediction performance of 
SARIMA-ARCH and GP models on test samples according 
to MSE, RMSE, MAE, MPE, MAPE, sMAPE, ME, and Theil’s 
U metrics. The performance results are presented in Table 13.

From Table 13, it is obviously seen that GP has bet-
ter predictive performance than SARIMA-ARCH model 
according to RMSE, MAE, MPE, MAPE, sMAPE, and ME 
metrics. For instance, GP fits the data with MAE of 0.00975 
while SARIMA-ARCH model produce MAE of 0.00981. 

The results show that GP can perform well on the data set 
XU100 stock return series. 

 In Figure 7, the one-step-ahead predictions that are the 
test performance on the stock price data set are presented. 
The representation of Genetic Programming only includes 
AR and SAR terms, i.e., past values of stock return data, but 
the improved solutions are nonlinear due to the operators 
belong to the function set. The graphical and experimen-
tal results show that GP yields statistically lower prediction 
errors for the daily XU100 stock price index series relative 
to integrated SARIMA-ARCH model. 

Table 12. GP model performance metrics for training set.

Model MSE RMSE MAE MPE MAPE sMAPE ME Theil’s U

GP 0.00014 0.01204 0.00913 -0.01083 0.13222 0.13219 -0.00074 0.00025

Table 13. SARIMA-ARCH and GP model performance comparison for test set

Model MSE RMSE MAE MPE MAPE sMAPE ME Theil’s U

SARIMA-ARCH 0.00018 0.01346 0.00981 -0.00680 0.14215 0.14215 -0.00049 0.00028
GP 0.00018 0.01323 0.00975 -0.00866 0.14134 0.14132 -0.00057 0.00028

Figure 7. The out-of-sample performances for SARIMA-ARCH and GP models.
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NOMENCLATURE 

p Order of autoregressive parameter
d Order of differencing parameter
q Order of moving average parameter
P Order of seasonal autoregressive parameter
D Order of seasonal differencing parameter
Q Order of seasonal moving average parameter
B Backshift operator 
Pt Closing price of stock index
rt Stock return series
ht Conditional variance

Greek symbols
ϕ Autoregressive parameter
θ Moving average parameter
Φ Seasonal autoregressive parameter 
Θ Seasonal moving average parameter
α  Autoregressive conditional heteroscedasticity 

parameter
β  Generalized autoregressive conditional  

heteroscedasticity parameter
Δ Difference operator

Subscripts 
t Refers to time
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