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ABSTRACT 

 

This work proposes to use the fitness scores of jobs to machines in unrelated parallel machine scheduling to 

maximize machine preferences by using the fitness scores of jobs. A bi-objective mathematical model for the 

unrelated parallel machine problem with sequence dependent setup times is designed to minimize makespan 
and maximize machine preferences of jobs. Bi-objective Simulated Annealing Algorithm is proposed for 

solving large sized problems. A Decision Support System designed for solving problems with objective 

function of the maximizing machine preferences in combination with other common scheduling objective 
functions for unrelated parallel machine scheduling problems. By using the proposed system, non-dominated 

solutions are compared and one solution is selected by considering trade-offs among performance measures of 

the solutions. 
Keywords: Unrelated parallel machine scheduling, sequence dependent setup times, machine preferences, 

simulated annealing, tabu search.  

 

 

1. INTRODUCTION 

 

Scheduling is a decision making process with the goal of optimizing one or more objectives 

as well as allocating scarce resources to tasks over time. It has an important role in manufacturing 

and service industries [1]. Parallel Machine Scheduling (PMS) allocates jobs to machines in shop 

environments which have parallel machines. Each job can be performed by any of the machines. 

Optimal scheduling of critical resources such as machinery and manpower is essential to increase 

the efficiency, utilization, and profitability of the process to a particular performance criterion. In 

the shop environments classification, there are three parallel machine environments: identical 

machines, machines with different speeds, and unrelated machines in parallel. There are m 

different machines that can process the same job in an Unrelated Parallel Machine Scheduling 

Problem (UPMSP).  

In the reviews of Allahverdi et al. [2, 3], the importance of setup times for real world 

problems and the classification of the parallel machine scheduling problems (PMSP) are given. 

Scheduling problems are classified in terms of batching versus non-batching setup times and 

sequence-independent versus sequence-dependent set-up times. There are resource alternatives 
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and sequence-dependent setup times in the plastic, glass, paper, and textile industries where setup 

times are significantly lengthy. A job may be assigned to one of the set of resources and 

consecutive jobs on the same resource must have a minimum setup time between them [4]. A 

considerable amount of theoretical research has been done in the field of PMS with sequence-

dependent setup times. Howev er, the problem of unrelated parallel machine scheduling with 

sequence-dependent setup (UPMSSDS) times is understudied compared to the identical machine 

scheduling problem. Furthermore, although the problem of PMS with identical machines has been 

studied extensively, the unrelated parallel machine scheduling problem with non-batch sequence-

dependent setup times has received less attention in the literature [5-10].  

Unrelated parallel machine scheduling, which there are multiple machines with different 

speeds and specifications for different jobs in real-world manufacturing environments, has started 

to attract wide interest recently. Ravetti et al. [11] addressed the UPMSSDS problem with an 

objective of minimizing the sum of the makespan and weighted delays.  Chen and Chen [12] 

proposed hybrid metaheuristics for the UPMSSDS problem. Tavakkoli-Moghaddam et al.[13] 

presented a two-level mixed-integer programming model that minimized bi-objectives that are the 

number of tardy jobs and the total completion time of all jobs where there are some precedence 

relationship between the jobs. They proposed an efficient genetic algorithm to solve the bi-

objective parallel machine scheduling problem. Ant Colony Optimization algorithm was used for 

the non-preemptive UPMS problem with machine-dependent and sequence-dependent setup times 

by Arnaout et al. [14]. All jobs were available at time zero, all times were deterministic, and the 

objective was to minimize the makespan. In [15], the UPMS problem was solved by using 

machine and job-sequence dependent setup times with the objective of minimizing the total 

weighted earliness and tardiness. Lin et al. [16] studied the UPMS problem with sequence and 

machine-dependent setup times under due date constraints by using an artificial bee colony 

algorithm to minimize total tardiness. Ying et al. [17] presented makespan minimization for 

scheduling unrelated parallel machines with setup times. In [18], the problems concerning UPMS 

with aging effects and deteriorating maintenance activities were studied. For the addressed 

problems, three types of aging effect model were conducted. In the study of Nadari-Beni et al. 

[19], a fuzzy bi-objective mixed-integer linear programming model was proposed to minimize 

workload imbalance and total tardiness simultaneously as a bi-objective formulation for 

UPMSSDS problem, machine eligibility restrictions, and release dates. Their model was solved 

by two meta-heuristic algorithms, namely fuzzy multi-objective particle swarm optimization and 

fuzzy non-dominated sorting genetic algorithm for solving large-scale instances. In the study of 

Eroglu et al. [20], a genetic algorithm with local search was proposed for the UPMS problem with 

the objective of minimizing makespan. Afzalirad and Rezaeian [21] proposed hybrid meta-

heuristics for unrelated parallel machine scheduling with machine eligibility and precedence 

constraints. Arroyo and Leung [22] addressed the problem of scheduling unrelated parallel batch 

processing machines with non-identical job sizes and unequal ready times. Ezugwu and Akutsah 

[23] proposed an improved firefly algorithm for the UPMSSDS problem. Bektur and Saraç [24], 

solved a generalized problem of scheduling with a common server, which is the unrelated parallel 

machine scheduling problem with sequence-dependent setup times and machine eligibility 

restrictions in the plastic part production industry. A mixed integer linear programming model 

and two metaheuristics were proposed in the study. Fanjul-Peyro et al. [25] proposed new mixed 

integer linear programs and a mathematical programming based algorithm for the unrelated 

parallel machine scheduling problem with machine and job sequence setup times with makespan 

minimization criterion.  

There are various parallel machine scheduling problems with different constraints and 

specifications so that there are many proposed models for UPMS problems in the literature. 

Nevertheless, there is a need to take into account machine preferences of the jobs for parallel 

machines that have different processing capabilities in workshops. Chuang et al. [26] and Huang 

and Liao [27] tackled the problem of PMS with machine preference in manufacturing of electro-
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etching aluminium foil. Machine prefere nce, in another words the fitness of jobs to machines, is 

a critical matter for many PMS environments. In the scheduling of different tonnage injection 

machines, it is important to assign moulds to the machines. The speeds of the machines that can 

process the job are included as the processing times of the machines in the models. However, for 

instance a machine with a high speed may not be appropriate for a specific job in terms of 

tolerances. Other processing specifications of the machines are also important for decision 

makers. For example, let us assume that a job can be handled on a milling machine or a turning 

lathe. The literature on machine scheduling suggests that machine-assignment and scheduling by 

taking machine speeds into account with respect to a particular objective function. On the other 

hand, in many practical scheduling problems, the decision of using a milling machine or a turning 

lathe for a certain job needs to be made by taking many criteria such as appropriateness of the 

machine, scrap rates, tolerances and cost into account other than the machine speed only.  

This study focuses on solving the problem of UPMSSDS with machine preference (Rm│STsd, 

Mj│Cmax, MP). By using the ranking of the machines with conflicting specifications that can 

handle an operation, the scores in the range of [0, 1] are used to solve the bi-objective scheduling 

problem. For this purpose, a multi-objective mathematical model for the problem of UPMSSDS is 

designed. The objective of the proposed model is to minimizing the makespan and to maximizing 

the machine preferences of the jobs which they are assigned to. Moreover, bi-objective simulated 

annealing algorithm is proposed to solve large sized problems.  

The remainder of the paper is organized as follows. Problem description and the mathematical 

model are given in section 2. Proposed model, bi-objective simulated annealing algorithm, is 

explained in section 3 and experimental results are presented in section 4. Section 5 offers 

discussions and introduces decision support system and section 6 concludes the paper.  

 

2. THE PROBLEM FORMULATION 

 

2.1. Problem description 

 

In most production environments, there are various machines that can process the same job. 

Scheduling activities normally consider these machines as parallel machines and scheduling is 

performed by using the machines’ speeds to meet the objective or performance criteria such as the 

makespan and tardiness. However, there are many machines with different models and types. In a 

manufacturing company, the machines have numerous conflicting specifications, i.e. cutting tool 

requirements, table size, power, spindle speed, axis travel, positioning accuracy, and repeatability. 

Specifications and geometric features of the work-piece material are also important in the 

selection process. The shape, dimensions, thickness, dimensional tolerances, and surface finish 

requirements of the parts greatly affect the selection process in determining the suitability of a 

machine for the job. Moreover, different materials demonstrate unlike reactions when they are 

exposed to deformation. As a decision-making problem, the selection of the most appropriate 

machine is of great importance for planning and scheduling. Wide range of existing types and 

models makes the selection process a complex and difficult task. The fitness of jobs to machines 

can be determined by using multi-criteria methods based on measures such as tolerance limits, 

surface finishes tolerances, amortization and scrap rates.  

Real world applications need allocation and scheduling of jobs by considering all processing 

elements. For this purpose, the UPMS problem should be solved by taking into consideration of 

the fitness of jobs to machines. There are machine preferences considering machine capability for 

a particular job to parallel machines.  Machine preferences are described in the range of [0, 1] and 

symbolized as Aik. The values in the range of [0, 1] are denotes machine preferences of a 

particular job to parallel machines. The objective is maximizing machine preferences and 

minimizing makespan. (Rm│STsd, Mj│Cmax, MP) denotes the problem of UPMSSDS with 

machine preference. There are n jobs (Jj = {J1, J2, … , Jn}) to be processed on m unrelated parallel 
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machines (Mi = {M1, M2, ... , Mm}). The subscript j refers to a job, where the subscript i refers to 

machine [1]. Each job can only be processed on one machine and preemption of jobs is not 

allowed. Each machine can process only one job at a time. Let pij denote the processing time of Jj 

(j ϵ {1, 2, ... , n}) when assigned to machine Mi (i ϵ {1, 2, ... , m}). Since machines are unrelated, 

the processing time pij of job Jj on machine Mi depends on both job and machine type. Let Sijk 

denote the machine based sequence-dependent setup time incurred when the job Jj switches to job 

Jk on machine Mi. Then 𝑆𝑖𝑗𝑘 = 𝑆𝑗𝑘 , ∀𝑖 and ∀𝑗 ≠ 𝑘. Mj symbol denotes the set of machines that can 

process job j, not all machines capable of processing job j. 𝐴𝑖𝑘 denotes the machine preferences of 

job Jk to machine Mi. It is defined between 0≤ Aik ≤ 1. The values in the range of [0, 1] denote 

machine preferences of a particular job to unrelated parallel machines. Decision variable 𝐶𝑖𝑗 

represents the completion time of job Jj at machine Mi. 𝐶𝑚𝑎𝑥 is defined as the maximum 

completion time. Decision variables 𝑥𝑖𝑗𝑘 and 𝑥𝑖𝑘  are defined as below. 
 

𝑥𝑖𝑗𝑘 = {
1, 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑗𝑜𝑏 𝑘 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                   

  
 

𝑥𝑖𝑘 = {
1, 𝑖𝑓 𝑗𝑜𝑏 𝑘 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑖          
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                   

  

 

2.2. The Mathematical Model 

 

There are general mathematical models for the UPMSSDS problem in the literature [15, 25]. 

(Rm│STsd, Mj│Cmax, MP) denotes the UPMSSDS with machine preference scheduling problem in 

this study. A bi-objective mixed integer multi-objective mathematical model is developed by 

taking into account the machine preferences, which shows the capability of a machine to handle a 

job. 
 

Objective function 1:  

Maximizing machine preferences 

𝑴𝒂𝒙 ∑ ∑ 𝐴𝑖𝑘  𝑥𝑖𝑘

𝒌𝒊

 

 (1) 

Objective function 2: Minimizing makespan 

𝑴𝒊𝒏 𝑪𝒎𝒂𝒙 

 (2) 

   

∑ ∑ 𝒙𝒊𝒋𝒌 

𝒋∈{𝑶}∪{𝑵}

𝒋≠𝒌

𝒊∈𝑴

= 𝟏 ∀𝒌 ∈ 𝑵 (3) 

   

∑ ∑ 𝒙𝒊𝒋𝒌 
𝒌∈𝑵
𝒋≠𝒌

𝒊∈𝑴

≤ 𝟏 ∀𝒋 ∈ 𝑵 (4) 

   

∑ 𝒙𝒊𝟎𝒌 ≤ 𝟏

𝒌∈𝑵

 ∀𝒊 ∈ 𝑴 (5) 

   

∑ 𝒙𝒊𝒉𝒋 ≥ 𝒙𝒊𝒋𝒌

𝒉∈{𝟎}∪{𝑵}

𝒉≠𝒌,𝒉≠𝒋

 
∀𝒋, 𝒌 ∈ 𝑵, 𝒋 ≠ 𝒌, ∀𝒊 ∈ 𝑴 (6) 

   

∑ 𝒙𝒊𝒋𝒌 = 𝒙𝒊𝒌

𝒋∈{𝑶}∪{𝑵}

 ∀𝒊 ∈ 𝑴, 𝒋 ≠ 𝒌, ∀𝒌 ∈ 𝑵 (7) 
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𝑪𝒊𝒌 + 𝑽(𝟏 − 𝒙𝒊𝒋𝒌) ≥ 𝑪𝒊𝒋 + 𝑺𝒊𝒋𝒌 + 𝒑𝒊𝒌 ∀𝒋 ∈ {𝟎} ∪ {𝑵}, ∀𝒌 ∈ 𝑵, 𝒋 ≠ 𝒌, 

∀𝒊 ∈ 𝑴 

(8) 

 

   

𝑪𝒊𝟎 = 𝟎 ∀𝒊 ∈ 𝑴 (9) 

   

𝑪𝒊𝒋 ≥ 𝟎 ∀𝒋 ∈ 𝑵, ∀𝒊 ∈ 𝑴 (10) 

   

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑖𝑗 ∀𝑗 ∈ 𝑁, ∀𝑖 ∈ 𝑀 (11) 

   

𝒙𝒊𝒋𝒌 ∈ {𝟎, 𝟏}, 𝒙𝒊𝒌 ∈ {𝟎, 𝟏}, ∀𝒋 ∈ {𝟎} ∪ {𝑵}, ∀𝒌 ∈ 𝑵, 𝒋 ≠ 𝒌, ∀𝒊 ∈ 𝑴 (12) 
 

V is a large positive number chosen to be larger than the workshop time horizon. 

The objective function given by Eq. (1)  represents the maximization of total machine 

preferences of jobs. The objective function in Eq. (2) is used to minimize the maximum 

completion time (makespan). Constraint set (3) ensures that every job is assigned to exactly one 

machine. With constraint set (4) the maximum number of successors of every job set to one. Set 

(5) limits the number of successors of the dummy jobs to a maximum of one on each machine. 

With Set (6), jobs are properly linked in machine: if a given job j is processed on a given machine 

i, a predecessor h must exist on the same machine [15]. In addition to constraints (3-6) proposed 

by Vallada and Ruiz [15], constraint (7) is used to determine whether job Jk is processed on 

machine Mi or not. It relates the decision variables xijk and xik. The first objective needs the 

decision variable xik in order to obtain the total job-machine preferences of jobs depend on the 

machine to which they are assigned. Constraint set (8) is to control the completion times of the 

jobs at the machines. Sets (9) and (10) define completion times as 0 for dummy jobs and non-

negative for regular jobs, respectively. Set (11) defines the maximum completion time. Finally, 

set (12) defines the binary variables.  

The proposed mixed integer mathematical model for the problem is coded with GAMS 23.3, 

CPLEX 12.1 solver for each objective function and it is used to test the performance of the 

metaheuristics in small problems. All experiments are performed on a PC with an Intel(R) Core 

(TM) 2 Quad CPU Q8400 processor, 2.66 GHz and 4 GB RAM. 

 

3. PROPOSED MODEL 

 

3.1. Simulated Annealing and Tabu Search Algorithms 

 

In this work, simulated annealing (SA) and tabu search (TS) algorithms are employed to solve 

large-scale UPMS problems. The performance of the algorithms is tested on small test problems.  

A solution is represented by a string of numbers comprising a permutation of n jobs for m 

machines as denoted by the set (0, 1, 2, . . ., n-1). The number (-1) is used to separate machines. 

For example, the solution representation shown in Figure 1 can be decoded as follows. Ten jobs 

are to be processed on five machines. The job operation sequences are: 4 and 3 on machine 1; 6, 

7, 9, 8, and 5 on machine 3; 2 and 1 on machine 5. Job 0 is assigned to machine 2. No jobs are 

assigned to machine 4. 
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Figure 1. Solution representation for 5 machines 10 jobs. 

 

The (m, n) shows the number of machines and number of jobs respectively. To evaluate the 

performance of the proposed model, two small test problems are generated for (5, 10) and (10, 15) 

pairs. Processing times are derived by using the uniform distribution (20, 50). Setup times are 

derived from the U (5, 20), U (20, 40), and U (40, 80) distributions for the short (SST), medium 

(MST), and long (LST) times, respectively. Machine preferences are in the range of [0, 1] random 

numbers. Due dates are derived by taking the average setup times and processing times for each 

job into account and by using alpha and beta coefficients: 
 

[∝ (
∑ 𝑆𝑗𝑘𝑗

𝑛−1
+

∑ 𝑝𝑖𝑗𝑖

𝑚
) , 𝛽 (

∑ 𝑆𝑗𝑘𝑗

𝑛−1
+

∑ 𝑝𝑖𝑗𝑖

𝑚
)]  

 

The width of the intervals is adjusted by the alpha and beta coefficients. The proposed TS and 

SA algorithms are coded in Microsoft Visual Studio 11.0. Since the coded SA and TS algorithms 

would be used in the stage of the multi-objective metaheuristic, CPLEX solver results are 

compared to the SA and TS results in order to test the algorithm’s performance. In Table 1 and 

Table 2, the performance of the SA and TS is tested for the objectives of min Cmax and max MP.  

 

Table 1. Comparisons of the optimal solutions with SA and TS results for the objective of min 

Cmax 
 

 

Test Problems 

Min Cmax 

Objective Function Value CPU(seconds) 

CPLEX SA TS CPLEX SA TS 

Dataset1 (5, 10) SST 25 27 25 0.016 0.012 0.712 

Dataset2 (5, 10) MST 41 41 41 0.015 0.141 0.733 

Dataset3 (5, 10) LST 66 73 66 0.000 0.134 0.741 

Dataset4 (10, 15) SST 15 19 20 0.032 0.185 1.159 

Dataset5 (10, 15) MST 30 35 35 0.047 0.193 1.135 

Dataset6 (10, 15) LST 53 57 59 0.031 0.211 1.142 

Dataset7 (10, 20) SST <45* 36 33 >10800* 0.572 1.221 

* The GAMS/CPLEX solver did not reach the optimal solution within 10,800 seconds. 

 

In Table 1, both SA and TS algorithms give the optimal or near-optimal solutions compared 

to the optimal solutions obtained by using CPLEX solver. The computational results of the data 

sets are presented for the same number of iterations (5000 iterations). The GAMS/CPLEX solver 

did not reach the optimal solution within 10800 seconds for the dataset7. CPLEX solver requires 

long CPU times to find an optimal solution for large-scale problems. When the number of job 

increases, the computational time dramatically increases. This issue confirms the need for 

metaheuristics for large-scale NP-hard problems. Table 1 shows that SA and TS algorithms 

perform similarly for minimizing the Cmax objective function. Both algorithms found the optimal 
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solution for the dataset2. TS algorithm found the optimal solutions for the dataset1, dataset2, and 

dataset3.  

 

Table 2. Comparisons of the optimal solutions with SA and TS results for the objective of max 

MP. 
 

 

Test Problems 

Max MP 

Objective Function Value CPU (seconds) 

CPLEX SA TS CPLEX SA TS 

Dataset1 (5, 10) SST 7.7520 7.15 7.75 0.032 0.022 0.331 

Dataset2 (5, 10) MST 7.7520 6.51 7.75 0.063 0.019 0.328 

Dataset3 (5, 10) LST 7.7520 6.59 7.75 0.109 0.015 0.331 

Dataset4 (10, 15) SST 13.1872 10.51 13.11 0.156 0.014 0.526 

Dataset5 (10, 15) MST 13.1872 10.82 13.13 0.125 0.014 0.510 

Dataset6 (10, 15) LST 13.1872 10.37 13.11 0.218 0.015 0.506 

Dataset7 (10, 20) SST 17.8172 13.58 17.38 1.377 0.016 0.461 

 

In Table 2, it is observed that TS algorithm gives better results than SA regarding the Max 

MP objective function for the same number of iterations. The solution time of SA algorithm is 

less than that of TS. SA algorithm has only one neighbourhood solution for each iteration while 

the size of neighbourhood is more than one neighbourhood solution for TS algorithm.  This is an 

expected result when the solution times of two metaheuristics are compared.  

In Table 1 and 2, it can be seen that the CPU times of SA are less than the CPU times of TS. 

On the other hand, the results of TS algorithm are better than SA algorithm results. There are 

trade-offs between solution times and solutions. Both are used in terms of variability in the 

solution space to find non-dominated solutions by using bi-objective SA algorithm. 

 

3.2. The Proposed Bi-Objective Simulated Annealing Algorithm  

 

The metaheuristics have emerged as a major advantage to solve large-scale NP-hard 

scheduling problems and have been started to use in multi-objective decision-making problems. 

Lin and Ying [28] proposed a multi-objective multi-point simulated annealing (MOMSA) 

algorithm for solving a multi-objective scheduling problem. In this paper, a MOMSA based 

algorithm is proposed for solving bi-objective UPMSSDS problems. The objectives of the 

algorithm contain the maximization of the machine preferences (max MP) and the minimization 

of the maximum completion time (min Cmax). The proposed algorithm can be presented step-by 

step as follows. 

  

Step 1: Generate solutions by using SA and TS algorithms for the max MP objective (𝐾1). Obtain 

List1 from the solutions of the two algorithms.  

Step 2: Generate solutions by using SA and TS algorithms for the min Cmax objective (𝐾2). Obtain 

List2 from the solutions of the two algorithms.  

Step 3: Select relatively good 50 solutions from the List 1 for the max MP objective and select 

relatively good 50 solutions from the List2 for the min Cmax objective. Combine solutions in ‘the 

good solutions list”, by giving the solution, the value of the objective function 1 of the solution 

(F1) and the value of the objective function 2 of the solution (F2), respectively. Delete duplicate 

solution if there is a same solution in the good solutions list from the List1 and List2. Compute the 

other objective function (1 or 2) values for the solutions in the good solutions list. Compute the 

number of good solutions, Nsol, in the list. 

Step 4: Select non-dominated solutions from the good solutions list by using the algorithm of 

Mishra and Harit [29] for finding the non-dominated set, S1. 
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Step 5: Find new non-dominated solutions by using MOMSA based Bi-objective SA Algorithm. 

 

Bi-objective SA algorithm  

(𝐼𝑖𝑡𝑒𝑟 − 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟,  𝑇0 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, α − Cooling ratio) 

1. Select 𝐾1as maximum MP and 𝐾2 as minimum 𝐶𝑚𝑎𝑥  by using the good solutions list for 

each objective 𝑀𝑃 𝑎nd 𝐶𝑚𝑎𝑥 , respectively 

2. Select a random solution (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒) from 𝑛𝑜𝑛 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑒𝑡 𝑆1 

3. Set 𝑇 ← 𝑇0, 𝐼𝑡𝑒𝑟 ← 0, 𝑁𝑆𝑜𝑙 ← 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑜𝑜𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, 𝐼𝑖𝑡𝑒𝑟 ← 2000, α = 0.9 

4. While(𝐼𝑡𝑒𝑟 < 𝐼𝑖𝑡𝑒𝑟) 

4.1. Randomly generate 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑠𝑡 of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒  

4.2. For each 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑡𝑎𝑡𝑒 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐿𝑖𝑠𝑡  

4.2.1. ∆𝑀𝑃= 𝑀𝑃(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑡𝑎𝑡𝑒) − 𝑀𝑃(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒) 

4.2.2. ∆𝐶𝑚𝑎𝑥
= 𝐶𝑚𝑎𝑥(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑡𝑎𝑡𝑒) − 𝐶𝑚𝑎𝑥(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒) 

4.2.3. 𝑃𝐴𝑐𝑐𝑒𝑝𝑡 ← 1 

     IF(∆𝑴𝑷< 0) Then  𝑃𝐴𝑐𝑐𝑒𝑝𝑡 = 𝑃𝐴𝑐𝑐𝑒𝑝𝑡 × 𝐸𝑥𝑝(−∆𝑴𝑷/(𝐾1𝑇)) 

     IF(∆𝐶𝑚𝑎𝑥
> 0) Then  𝑃𝐴𝑐𝑐𝑒𝑝𝑡 = 𝑃𝐴𝑐𝑐𝑒𝑝𝑡 × 𝐸𝑥𝑝(−∆𝐶𝑚𝑎𝑥

/(𝐾2𝑇)) 

     Generate 𝑟~𝑈(0,1) 

     IF( 𝑟 ≤ 𝑃𝐴𝑐𝑐𝑒𝑝𝑡) Then  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒 =  𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑆𝑡𝑎𝑡𝑒 

   Update 𝑛𝑜𝑛 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑒𝑡 𝑆1 

          𝑁𝑆𝑜𝑙 ← 𝑁𝑆𝑜𝑙 + 1   

4.2.4. Update the value of 𝐾1 and 𝐾2 

               4.3. 𝑇 = 𝛼 ∗ 𝑇 

               4.4. 𝐼𝑡𝑒𝑟 ← 𝐼𝑖𝑡𝑒𝑟 + 1 

               4.5. Select a random solution (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒) from the 𝑛𝑜𝑛 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑒𝑡 S1 

5. Print the non-dominated set S1 

 

T0 denotes the initial temperature and cooling ratio is α for the algorithm. The algorithm uses 

a neighbourhood search technique by progressing iteratively from one solution to another until a 

stopping condition (iteration number) is satisfied. Non-dominated set is obtained by using the bi-

objective simulated annealing algorithm. A non-dominated solution where an objective function 

can not be improved without deteriorating the other objective function. 

  

3.3. Experimental results 

 

The functioning of the algorithm is shown on dataset1 (given in Appendix), the UPMSSDS 

problem with 5 machines and 10 jobs for ‘max. MP’ and ‘min. Cmax’ objective functions. The 

good solutions list obtained by running SA and TS algorithms for the max. MP and min. Cmax 

objective functions for data sets of 5 machines and 10 jobs are given in Table 3. 
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Table 3. The good solutions list by using SA and TS algorithms. 
 

Solutions Max. MP Min. Cmax 

[4 0 -1 -1 5 7 3 6 8 -1 2 9 -1 1] 7.75 149 

[4 0 -1 -1 5 3 7 2 6 8 -1 9 -1 1] 7.71 179 

[4 0 -1 -1 7 3 5 2 6 8 -1 9 -1 1] 7.71 171 

[0 4 -1 1 -1 2 5 7 3 6 8 -1 9 -1] 7.71 174 

[0 1 4 -1 -1 6 5 8 7 3 -1 9 2 -1] 7.59 151 

[0 1 4 -1 -1 6 5 8 7 3 9 -1 2 -1] 7.43 183 

[0 1 4 -1 -1 3 5 8 7 6 9 -1 2 -1] 7.43 171 

[0 3 4 -1 -1 1 5 8 7 6 9 -1 2 -1] 7.07 153 

[0 3 4 1 -1 -1 5 9 7 6 8 -1 2 -1] 7.02 125 

[0 1 -1 5 -1 7 8 2 9 3 4 6 -1 -1] 6.84 203 

[4 3 -1 0 -1 6 7 9 8 5 -1 -1 2 1] 6.5 138 

[8 0 4 -1 -1 3 9 5 2 1 -1 7 -1 6] 6.38 147 

[-1 6 9 -1 0 3 4 5 2 1 -1 7 -1 8] 5.53 152 

[0 -1 -1 8 3 6 2 -1 4 -1 9 5 1 7] 5.46 94 

[8 -1 6 4 -1 7 3 -1 2 -1 1 9 0 5] 4.65 103 

….. 

  [5 9 -1 4 3 -1 8 1 2 -1 0 6 -1 7] 3.79 28 

[7 5 -1 4 3 -1 6 1 -1 2 0 8 -1 9] 3.7 43 

[5 9 -1 4 6 -1 8 1 -1 0 7 -1 3 2] 3.69 25 

[7 9 -1 4 3 -1 8 1 -1 0 6 2 -1 5] 3.48 35 

[2 -1 5 6 -1 1 -1 0 7 8 -1 4 3 9] 3.47 51 

[7 5 -1 4 3 -1 8 1 2 -1 0 6 -1 9] 3.41 28 

[1 7 5 -1 6 3 -1 8 0 -1 2 -1 9 4] 3.29 35 

[9 -1 8 -1 2 1 4 -1 7 0 6 -1 5 3] 3.09 55 

[7 5 -1 4 3 -1 8 1 -1 6 0 -1 2 9] 3 27 

[7 9 -1 4 3 -1 2 1 -1 0 6 8 -1 5] 2.88 35 

[7 9 -1 4 3 -1 0 1 -1 2 6 8 -1 5] 2.76 40 

[7 5 -1 4 3 -1 0 1 -1 2 6 8 -1 9] 2.73 40 

[1 5 7 -1 3 2 4 -1 9 -1 0 8 -1 6] 2.52 48 

[1 5 7 -1 3 2 4 -1 9 -1 0 8 6 -1] 2.5 48 

[7 5 1 -1 3 2 4 -1 9 -1 6 8 -1 0] 2.39 43 

[1 5 7 -1 3 2 4 -1 9 -1 6 8 -1 0] 2.39 48 

 

Non-dominated solutions given in Table 4 are selected by using the algorithm of Mishra and 

Harit [29] from the good solutions list. 
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Table 4. Non-dominated solutions (S1) 
 

Solutions Max. MP Min. Cmax 

[4 0 -1 -1 5 7 3 6 8 -1 2 9 -1 1] 7.75 149 

[0 3 4 1 -1 -1 5 9 7 6 8 -1 2 -1] 7.02 125 

[0 3 4 8 -1 5 -1 9 2 6 7 -1 1 -1] 6.88 117 

[0 3 4 8 -1 5 -1 -1 2 6 7 -1 1 9] 5.54 97 

[0 9 -1 7 4 -1 6 1 -1 2 5 -1 3 8] 5.34 46 

[1 0 -1 3 7 -1 4 6 -1 5 2 -1 8 9] 5.27 43 

[6 0 -1 3 7 -1 4 1 -1 9 2 -1 5 8] 4.91 41 

[6 1 -1 9 4 -1 8 5 -1 2 7 -1 3 0] 4.88 37 

[5 1 -1 0 4 -1 8 6 -1 3 2 -1 7 9] 4.63 34 

[0 8 -1 3 6 -1 9 1 -1 2 7 -1 4 5] 4.59 33 

[0 8 1 -1 5 -1 4 9 -1 7 6 -1 3 2] 4.55 27 

[0 8 -1 4 3 -1 1 2 -1 7 6 -1 5 9] 3.96 26 

[8 0 -1 4 3 -1 1 2 -1 7 6 -1 5 9] 3.96 26 

[5 9 -1 4 6 -1 8 1 -1 0 7 -1 3 2] 3.69 25 

 

New non-dominated solutions given in Table 5 are obtained by using MOMSA based bi-

objective SA algorithm. Dominated and non-dominated solutions are demonstrated in Figure 2. 

 

Table 5. New non-dominated set by using bi-objective SA algorithm 
 

Solutions Max. MP Min. Cmax 

[0 4 -1 -1 3 8 6 7 5 -1 2 9 -1 1] 7.75 147 

[4 -1 5 0 1 7 -1 8 2 6 3 -1 9 -1] 7.38 105 

[0 3 4 8 -1 5 -1 -1 2 6 7 -1 1 9] 5.54 97 

[0 1 4 8 -1 5 -1 -1 2 6 7 -1 3 9] 5 90 

[1 0 8 -1 7 5 -1 6 -1 3 -1 2 9 4] 4.93 46 

[1 5 0 -1 7 6 -1 2 9 -1 4 -1 3 8] 4.79 37 

[0 8 1 -1 5 -1 4 9 -1 7 6 -1 3 2] 4.55 27 

[0 8 -1 4 3 -1 1 2 -1 7 6 -1 5 9] 3.96 26 

[8 0 -1 4 3 -1 1 2 -1 7 6 -1 5 9] 3.96 26 

[5 9 -1 4 6 -1 8 1 -1 0 7 -1 3 2] 3.69 25 

 

 
 

Figure 2. Dominated and non-dominated solutions for the illustrated problem. 
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Additional non-dominated solutions can be obtained by using bi-objective SA algorithm. In 

real-life problems, it is desirable that jobs are finished as soon as possible and that jobs are 

assigned to machines with high preference value. The proposed model provides alternatives to 

scheduler/decision maker. Decision-maker can select the appropriate solution from the non-

dominated solutions list and carry out production planning activities. 

Decision-makers can select one of the non-dominated solutions to the work-shop according to 

consider trade-offs among schedules. Since an objective function value improves while another 

worse in multi-objective problems, if a decision-maker selects the last solution in Table 5 with the 

lowest value (25) in terms of the minimizing Cmax, that solution is also the one with the worst 

value in the table in terms of the maximizing MP (3. 69). The Cmax value in the first solution of 

the table with the greatest value in terms of the maximizing MP is 147. Therefore, it is the 

solution with the worst value in terms of the Cmax objective value. However, it also has the 

greatest MP value with 7.75. Decision-makers need to consider trade-offs and select the 

appropriate schedule from the non-dominated solutions list for their workshops. 

 

4. A DECISION SUPPORT SYSTEM TO SOLVE UPMSSDS WITH MACHINE 

PREFERENCES 

 

Decision maker may want to consider other objective functions besides the makespan while 

the machine preferences of jobs are maximized. It is desired to maximize the machine preferences 

of jobs and minimize total tardiness, to minimize the number of tardy jobs, or to minimize 

maximum tardiness. 

The objective to be minimized is always a function of the completion times of jobs. Cj 

denotes the completion time of job j. Dj represents the due date of job j. The lateness of job j is 

defined as Lj= Cj-Dj, which is positive when job j is completed late and negative when it is 

completed early. The tardiness of job j is defined as Tj= max (Lj, 0) and the earliness of job j is 

defined as Ej= max (-Lj, 0). The total tardiness (∑ 𝑇𝑗), maximum tardiness (𝑇𝑚𝑎𝑥), total earliness 

and tardiness ∑ 𝐸𝑗+∑ 𝑇𝑗 and the number of tardy jobs (nt) are not only measures of academic 

interest, but are often objectives in practice.  

In this study, a Decision Support System (DSS) model is designed to solve UPMSSDS with 

machine preference. The proposed model makes it possible to solve problem for common 

objective functions while maximizing machine preferences. A solution of the UPMSSDS problem 

with 10 machines and 25 jobs regarding the Min. Cmax objective function is shown in Figure 3. 

 

Multi-Objective Scheduling by Maximizing Machine …      /   Sigma J Eng & Nat Sci 38 (1), 405-420, 2020 



416 

 

 

 

 
 

Figure 3. A solution of the UPMSSDS problem with 10 machines and 25 jobs regarding the Min. 

Cmax objective function. 

 

The solution for minimizing Cmax is shown as a bar chart. While makespan is calculated as 

106, total tardiness is 999, maximum tardiness is 99, the number of tardiness job is 16, total 

earliness and tardiness is 1059, and machine preference is 11.29 for related problem. On the other 

hand, when the problem is solved for maximizing MP, makespan increases to 293 from 106 

(Figure 4).  

 

 
 

Figure 4. A solution of the UPMSSDS problem with 10 machines and 25 jobs regarding the Max. 

MP objective function 
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The machine preference increases to 22.34 from 11.29 in the solution of the UPMSSDS 

problem with 10 machines and 25 jobs regarding the Max. MP objective function (Figure 4). 

Other performance measures, total tardiness, maximum tardiness, the number of tardiness job, 

and total earliness and tardiness are obtained as 2014, 285, 17, and 2093, respectively.  

There are two non-dominated solutions in Figure 3 and Figure 4. According to the solution in 

Figure 3, makespan is 106 and machine preference is 11.29 while makespan is 293 and machine 

preference is 22.34 in Figure 4. The proposed model makes it possible to find and compare new 

non-dominated solutions (Figure 5) and select one solution by considering trade-offs among the 

performance measures of solutions. 

 

 
 

Figure 5. Finding new non-dominated solutions 

 

Decision maker can obtain new non-dominated solutions by using an interface of DSS in 

Figure 5. He/she can select an appropriate one by considering trade-offs between two objective 

function values for shop-floor from the non-dominated solutions list.   Production planners need 

to see trade-offs schedules generated for different objective functions. The designed DSS makes it 

possible to use appropriate schedule for shop-floor in planning horizon.   

 

5. CONCLUSION 

 

This paper studies unrelated parallel machine scheduling by considering the maximizing 

machine preferences. The machine preference scores taking values in the range of [0, 1] are 

obtained by taking different specifications such as scrap rates, quality, and cost into account. The 

maximizing machine preference objective function is employed together with the minimizing 

makespan. A bi-objective mathematical model for the unrelated parallel machine problem with 

sequence dependent setup times is designed and evaluated. The model aims to minimizing 

makespan and maximizing machine preferences of jobs depend on machine to which it is 

assigned. Bi-objective simulated annealing algorithm is proposed for solving the problem by 

making it possible to consider trade-offs and select the appropriate schedule to decision makers 

for their workshops.  

Solutions 
Max. 

MP 

Min. 

Cmax 
[20 5 -1 11 9 0 24 -1 22 15 18 -1 13 17 -1 6 4 2 -1 12 19 -1 1 8 14 10 21 -1 7 -1 3 -1 16 23] 22.2 290 

[11 5 -1 14 24 0 -1 15 22 9 18 -1 -1 4 2 -1 12 19 -1 17 21 10 8 -1 16 1 20 7 -1 -1 23 6 13 3] 21.88 247 

[5 -1 24 11 0 14 -1 20 15 22 18 -1 6 -1 4 9 2 10 -1 12 19 -1 8 17 -1 7 1 -1 3 -1 23 13 21 16] 21.69 235 

[5 6 -1 12 15 0 -1 2 10 -1 23 3 20 -1 4 16 18 -1 24 19 -1 11 1 21 -1 14 7 -1 17 22 -1 9 13 8] 15.66 133 

[8 2 -1 23 17 9 -1 21 1 10 -1 6 16 14 -1 19 7 22 -1 18 20 24 -1 15 0 -1 5 4 -1 11 3 -1 12 13] 14.09 107 
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The DSS is designed for solving UPMSSDS problems with objective function of the 

maximizing machine preferences in combination with other common scheduling objective 

functions for unrelated parallel machine scheduling problems. By using the proposed model, non-

dominated solutions are compared and one solution is selected by considering trade-offs among 

performance measures of the solutions in real-world applications. The designed DSS can be used 

for the unrelated parallel machine scheduling problems. For future work, the proposed model is 

able to be modified for the other machine scheduling problems. All machine environments can be 

added to the system. 
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Appendix  

Dataset for 5 machines, 10 jobs, unrelated parallel machine scheduling problem 

 

Processing times of job Jj to machine Mi. 
 

Pij 1 2 3 4 5 6 7 8 9 10 

1 3 2 16 24 29 4 18 15 1 11 

2 5 24 10 16 5 19 8 20 21 23 

3 14 3 7 28 5 25 17 30 3 14 

4 4 29 1 24 25 27 3 12 8 25 

5 13 28 6 8 5 5 27 18 17 5 

 

Sequence dependent setup times from job Jj to job Jk 
 

Sjk 1 2 3 4 5 6 7 8 9 10 

1 - 18 19 7 19 15 6 9 13 20 

2 20 - 7 20 20 12 17 7 11 19 

3 17 20 - 15 5 18 19 15 17 16 

4 11 15 7 - 16 5 9 5 6 18 

5 16 10 20 5 - 12 11 17 17 7 

6 12 12 15 16 17 - 9 15 15 7 

7 6 12 20 10 14 8 - 17 9 13 

8 16 19 20 13 7 7 9 - 18 9 

9 18 8 19 10 8 9 14 12 - 10 

10 18 14 13 19 9 17 17 11 14 - 

 

Machine preference of job Jk to machine Mi. 
 

Aik 1 2 3 4 5 6 7 8 9 10 

1 0.85303 0.07597 0.41727 0.48925 0.78025 0.13197 0.23478 0.16899 0.54701 0.18351 

2 0.62206 0.23992 0.04965 0.33772 0.38974 0.94205 0.35316 0.64912 0.29632 0.36849 

3 0.35095 0.12332 0.90272 0.90005 0.24169 0.95614 0.82119 0.73172 0.74469 0.62562 

4 0.51325 0.18391 0.94479 0.36925 0.40391 0.57521 0.01540 0.64775 0.18896 0.78023 

5 0.40181 0.23995 0.49087 0.11120 0.09646 0.05978 0.04302 0.45092 0.68678 0.08113 
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