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ABSTRACT

In this paper, we consider a non-uniform flexible structure with micro-temperature effect. 
We prove the well-posed of the problem using semi-group theory, as well as an exponential 
stability using the multiplier method without any restriction or relation on the coefficients of 
the system.

Cite this article as: Mohamed H, Salah Z, Abdelhak D. On the exponential stability of a 
flexible structure in Thermo-Elasticity with Micro-Temperature effects. Sigma J Eng Nat Sci 
2021;39(3):260–267.

Sigma Journal of Engineering and Natural Sciences
Web page info: https://sigma.yildiz.edu.tr

DOI: 10.14744/sigma.2021.00015

Technical Note

On the exponential stability of a flexible structure in thermo-elasticity 
with micro-temperature effects

Mohamed HOUASNI1,* , Salah ZITOUNI2 , Abdelhak DJEBABLA3

1Faculté des Sciences et de la Technologie, Université DBKM, Algérie
2Department of Mathematics and Informatics, Souk AhrasUniv, Souk Ahras, Algeria

3Laboratory of Applied Mathematics, University BadjiMokhtar, Annaba, Algeria

ARTICLE INFO

Article history
Received: 16 August 2020
Accepted: 14 December 2020

Key words:
Decay; Flexible structure; 
 Semigroups theory; Exponential 
stability; Micro-temperature 
damping

INTRODUCTION

In this paper, we aim to study the following inhomo-
geneous flexible structure system with micro-temperature 
effects:
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where u(x, t) is the displacement of a particle at position  
x ∈ (0, L) and time t > 0, θ and w are the temperature of the 
body and the micro-temperature vector respectively. η > 0 

is the coupling constant, that accounts for the heating effect, 
and k, k1, k2, k3, c, d, τ > 0. m(x), δ(x) and p(x) are responsi-
ble for the non-uniform structure of the body, and, respec-
tively, denote mass per unit length of structure, coefficient 
of internal material damping and a positive function related 
to the stress acting on the body at a point x. We consider the 
following initial and boundary conditions:
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The issue of existence and stability of flexible struc-
ture system has attracted a great deal of attention in the 
last years. Misra et al. [20] considered the vibrations of a 
cantilever structure modeled by the standard linear flexible 
model of visco-elasticity coupled to an expectedly dissipa-
tive effect through heat conduction
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By using semigroups theory and multiplier technique, 
they established the well-posedness and  an exponential 
stability of the system when the disturbing force is insig-
nificant. In the presence of second sound, Alves et al. [2] 
concerned with the system;
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They established the well-posedness of the system and 
proved its stability exponential and polynomial under suit-
able boundary conditions. Li et al. [18] considered this 
last with a delay term of the form μut (x, t – τ0) in its first 
equation, they proved that the system is exponential decay 
under a “small” condition on time delay. For more details 
discussion on the subject see [1, 10] and the references 
therein.

Historically, the linear theory of thermo-elasticity with 
micro-temperatures for materials with inner structure 
whose particles, in addition to the classical displacement 
and temperature fields, possess micro-temperatures was 
constructed by Iesan and Quintanilla [15, 17]. The work 
is motivated by increasing use of materials which pos-
sess thermal variation at a microstructure level. The same 
authors proved an existence theorem and established the 
continuous dependence of solutions of the initial data 
and body loads. We note that the concept of micro-tem-
perature was just used in the theory of thermodynamics 
for elastic materials with microstructure. In addition to 
micro- deformations of the string, the micro-elements 
of the continuum possess micro-temperatures which 
represent the variation of the temperature within a 
micro-volume. Originally, Grot [11] was the first to take 
into consideration the inner structure of a body in order 
to develop a thermodynamic theory for thermo-elastic 
materials where micro-elements, in addition to classic 
micro-deformations, possess micro-temperatures. While, 
the fundamental solution of the equations of the theory 
of thermo-elasticity with micro-temperatures was con-
structed by Svanadze [27]. Riha [23, 24] developed a fur-
ther study concerning heat conduction in thermo-elastic 

materials with inner structure. It is shown that the exper-
imental data for the silicone rubber containing spherical 
aluminum particles and for human blood are conform 
closely to the predicted theoretical model of thermo-elas-
ticity with micro-temperatures. We refer the interested 
readers to [3, 5, 6, 7, 8, 9, 12, 13, 14, 16, 19, 25, 26] for 
details discussion on the theory.

Motivated by works mentioned above, we investi-
gate (1)–(2) under suitable condition and establish the 
well-posedness of the problem using semi-group theory, 
as well as the stability result of the solution using the mul-
tiplier method. We should mention here that, to the best 
of our knowledge, there is no result concerning flexible 
structure system with micro-temperature effect. Our pur-
pose in the present manuscript is to obtain an exponential 
decay rate estimates of the energy function of (1) with-
out any restriction or relation on the coefficients of the 
system.

This paper is organized as follows; In the second sec-
tion, we introduce some assumptions needed in our work 
then prove the well-posedness of the system (1) – (2). In the 
last section we state and prove our stability result.

WELL-POSEDNESS OF THE PROBLEM

In this section, we present some assumptions and give 
the existence and uniqueness result of system (1) – (2) 
using the semigroup theory. Throughout this paper, cʹ rep-
resents ageneric positive constant and is different in various 
occurrences.

The aim of this section is to prove that system (1) – (2) 
is well-posed. From Equation (1)3 and the boundary condi-
tions (2), we have
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for all t ≥ 0. In the sequel, we shall work with w̃ but we write 
w for simplicity. The energy functional associated to (1) – 
(2), namely,
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we denote E(t) = E(t, u, ut, θ, w) and E(0) = E(0, u0, 
u1, θ0, w0) for simplicity of notations. Then the energy E is 
decreasing function and satisfies, for all t ≥ 0.
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To obtain precise decay rates of E(t) as t → +∞, we 
assume that

m, δ, p ∈ W1,∞ (0,L), m(x), p(x) and δ(x) > 0, ∀x ∈[0,L]. (5)

Let us introducing the vector function U = (u, v, θ, w)T,  
where v = ut, using the standard Lebesgue space L2 (0,L) and 
the Sobolev space H0

1(0,L) with their usual scalar products 
and norms for define the spaces;
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We equip Ȟ  with the inner product:
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Next, the system (1) – (2) can be reduced to the follow-
ing abstract Cauchy problem;
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where the operator A:D(A) → Ȟ is defined by
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which is dense in Ȟ.

Proposition 2.1. Let U0 ∈ Ȟ be given. Problem (6) 
 possesses then a unique solution satisfying U ∈ C(R+, Ȟ). If 
U0 ∈ D(A) then U ∈ C1 (R+,Ȟ ) ∩ C(R+,D(A)).

Proof. For any U ∈ D(A), we have
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Hence, A is monotone. Next, we prove that the operator  
I + A is surjective.

Given G = (g1, g2, g3, g4)
T ∈ H , we prove that there exists  

U ∈ D(A) satisfying

 (I + A)U = G, (7)

which gives
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Inserting v = u – g1, in (8)2, (8)3 and (8)4 we obtain

 

( ) ( )( ) ( )
( ) ( ) ( )

( )

( )

2
1 2 1 1

1 3 1
2

2

3 2 1 4 1
2

3 *

2

( ) 2 0, ,

0, ,

0, .

x x x

xx

xx x x x

xx x x x

p x u x u dw m x u

m x g g x g f L L
k u k w c cg g

f L L
k w k w k du w g dg

f L L

δ ηθ

δ
θ η θ η

θ τ τ

− + − − +

= + − = ∈
− + + + = +

= ∈
− + + + + = +

= ∈

 (9)

The variational formulation corresponding to Equation  
(9) takes the form
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where ( ) ( ) ( )1 2 2 2
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Then, B is coercive. Consequently, by the Lax-Milgram 
lemma (see [4] Corollary 5.8), system (9) has a unique 
solution
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That is
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for all φ ∈ C1([0,L]). Thus, using integration by parts and 
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Satisfies
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Proof. Differentiating Equation (15) with respect to t 

and using Equations (1)1, we get
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application of Lemma 3.2 and the last two inequality com-
pletes the proof.

Lemma 3.5. The functional
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That is

 –kθxx = f2 – ηux – k1wx ∈ L2(0,L),

then, we get

 θ ∈ H2 (0,L).

Hence, there exists a unique U ∈ D(A) such that Equation 
(7) is satisfied. Consequently, A is a maximal monotone 
operator. Then, D(A) is dense in H (see Proposition 7.1 in 
[4]) and the result of Proposition 2.1 follows from Lumer-
Phillips theorem (see [22]).

EXPONENTIAL STABILITY

In this section, we introduce some lemmas allow us to 
achieve our goal, which is the proof of the stability result. 

Lemma 3.1. [21] (Poincaré type Scheeffer’s inequality) 
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Lemma 3.3. Let (u, ut, θ, w) be the solution to system 
(1) – (2), then the energy E is non-increasing function and 
satisfies, for all t ≥ 0,
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where c' = 2δ(ξ6)/l.
Proof. Multiplying the equations in (1)1, (1)2, and (1)3 

by ut, θ and w, respectively, integrate over (0, L) and using 
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Lemma 3.4. The functional
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Integration by parts and the fact that ∫0
L wdx = 0, give us
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using Young’s inequality, we get also
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From (19) and the inequalities (20) we infer (18).
Next, we define a Lyapunov functional L and show that 

it is equivalent to the energy functional.
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 ( ) ( ) ( ) ( )1 1 2 ,t NE t I t N I t= + +L  (21)

where N and N1 are positive real numbers to be chosen appro-
priately later, satisfies

 ( ) ( ) ( )1 2 ,c E t t c E t′ ′≤ ≤L  (22)

where c1' and c2' are positive constants.
Proof. Let

 ( ) ( ) ( )1 1 2 ,t I t N I t℘ = +

then, exploiting Young’s inequality, (13) and (3) we obtain

( ) 2
1

0 0 0

2 2 2
1

0 0 0 0

2 2 2

0 0 0

2 21 1

0 0

( ) ( ( ) ( ) )

1 1( ) ( ) ( )
2 2

( ) ( )1 ( ) ( ) ( )
2 2

( )
2 2

L x L

x t

L L L L

x t

L L L

t x x

L L

t N c w y dy dx x u m x u u dx

x u dx m x u dx N c w dx m x u dx

x l m x
m x u dx p x u dx p x u dx

N lc N lc
dx w dx c E t

τ θ δ

δ τ θ

δ
λ λ
τ τ

θ

∞ ∞

 
℘ ≤ + + 

 

≤ + + +

≤ + +

′+ + ≤

∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫

where λ = in f(x∈[0,L]) {p(x)}, and c′ > 0. Consequently,

 ( ) ( ) ( ),t NE t c E t′− ≤L

which yields

 
( ) ( ) ( ) ( ) ( ).N c E t t N c E t′ ′− ≤ ≤ +L

Choosing N large enough, we obtain estimate (22).
Now, we are ready to state and prove the main result of 

this section.
Theorem 3.7. Let (u, ut, θ, w) be the solution to system 

(1) – (2), then the energy E satisfies, for all t ≥ 0,

 
2

1( ) ,c tE t c e−≤

where c1 and c2 are positive constants.
Proof. We differentiate (21), and recall (14), (16) and 

(18), we obtain

( )

( ) ( )( ) ( )
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' 2 2 2 2
2 3
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2 2
1 1 2
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2 2

1 10 0
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4 4
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2 4
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4 4
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η θ
ε ε

ε θ θ
ε ε

τ ε
ε
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+ +

 
′+ − + + + 
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∫ ∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫ ∫

∫ ∫

L

ò

( ) ( ) ( ){ }
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' 2 21
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2
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2
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3
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L

x

dx

N
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dNk N k c w dx

N
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c

w
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ε
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   ′+ − + + + +  
   
   

′+ − + + + − +   
   
 

+ − + 
 

′

∫ ∫

∫

∫ ∫

∫

ò ò

At this point, we choose ∈1 and ∈2 small enough such 
that

 –p(ξ1) + (η + d) ∈1 < 0,  –k1 c + 3c′∈2 < 0,

then we choose N1 large enough so that

 
( )1 1 2

1

3 0.
4

N k c c ηε
ε

′− + + <
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Once N1 is fixed, we then choose N large enough so that

( )1
2

2

2 1 1 2
2 1

1

2

1
3

2

0,
2

2 0,
4 4

0,
4

0.
4

N
Nc m

c dNk N k c

N
Nk

N
Nk

ξ

τ ε
ε

ε

ε

′− + + <

 ′
′− + + + + < 

 

− + <

− + <

ò

ò

Thus, using (13), we arrive at

( ) ( ) , 0,t cE t t≤ ∀ >L (23)

A combination of (22) and (23) gives

( ) ( )'
2 , 0,t c t t≤ − ∀ >L L (24)

where c2 = c/c2' , a simple integration of (24) over (0, t) yields

( ) ( ) ( ) 2
1 0 , 0.c tc E t t e t−′ ≤ ≤ ∀ >L L

Taking ( )1 10 /c c′=L  which completes the proof.
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