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ABSTRACT 

 

Takagi-Sugeno (T-S) fuzzy modeling is a useful tool to represent complex nonlinear systems into a class of 

linear subsystems with fuzzy sets and reasoning. Presented is an extension of the T-S fuzzy modeling 

approach for uncertain nonlinear systems with state time-varying delay to derive robust delay-dependent 𝐻∞ 
control methodology. To this end, we investigate the stability and performance conditions for uncertain T-S 

fuzzy systems with time-varying delay by the Lyapunov-Krasovskii functional. Then, the stabilization is 
fulfilled through a fuzzy state-feedback controller. For the synthesis condition, one of the recently developed 

methods is utilized, and that the solution is dependent on the size and change rate of the delay. The 

formulations are performed based on the solution of linear matrix inequalities (LMIs). Finally, two numerical 
examples are presented to validate the effectiveness of the proposed design. 

Keywords: Robust control, time-delay systems, Takagi-Sugeno fuzzy systems. 

 

 

1. INTRODUCTION 

 

Time-delays exist in many real-world systems due to the lags in transmission and transport, in 

general, they have a negative effect on the stability and control design. The stability and 

stabilization of these systems have been extensively studied in control literature [1-3]. To this 

end, stabilization and control results are categorized into two main parts: delay-independent [4] 

and delay-dependent [5] stabilizations. In the first case, the delay is not dependent on the delay 

size and holds for all positive time delays. In this case, the designed controller remains stable 

against all variations of the delay. However, the delay-dependent case holds for all magnitude of 

the delay smaller than a given bound. There are two main approaches to the stability of a delay-

dependent system. The first is Razumikhin's theory, which is known as a way of solving 

continuous uniformly bounded delays. The second is Lyapunov-Krasovskii functionals (LKFs) 

that can tackle both differentiable uniformly bounded delays with delay derivatives bounded, and 

continuous uniformly bounded delays. In this work, the latter approach is used. 

Since stability is the main consideration for any dynamical system, how to establish a less 

conservative stability condition is vital. To this end, the synthesis involves selecting an 

appropriate LKF based upon the Lyapunov stability theory. In [6], stabilization of T-S fuzzy 

systems with time-varying delay is investigated with augmented LKFs. In [7], delay-partitioning 
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LKF is studied for the stability of T-S fuzzy systems with time-varying delays. Improvement in 

conservativeness is achieved in both cases with the price of heavy computation. In [8-9], delay-

product-type functional approaches are proposed in the construction of LKFs. The main idea is to 

multiple delay terms with nonintegral terms, which presents some advantages. The crucial step in 

the analysis is not only the selection of LKFs but also to use accurate integral bounding 

techniques to obtain linear matrix inequalities. Last decades witness many efforts to derive tighter 

inequalities by various integral bounding techniques with the goal of finding a better way to deal 

with integral terms appearing in the derivatives of LKFs. Jensen’s inequality [10] approach is a 

commonly used integral bounding method because it requires fewer decision variables than 

existing ones as well as offering good performance behavior.  In [11], Wirtinger-based inequality 

conditions are proposed to handle single integral terms of quadratic functions. Most recently, 

Bessel inequality with Legendre polynomials bounding technique is investigated to reduce 

conservatism of the stability of the systems with time-varying delays [12]. Although conservatism 

is substantially reduced with derived LMIs, the computational complexity may need further 

analysis.  In [13], a class of integral inequalities for quadratic functions via auxiliary functions is 

proposed. They investigate the stability analysis of time-varying delay systems using their 

proposed method. It is noted that these aforementioned researches mainly consist of deriving 

extended-like Jensen inequalities by introducing additional quadratic terms.  

The T-S fuzzy control technique has offered a tool for modeling of nonlinear systems via a set 

of local linear models [14-15]. With this in mind for Takagi-Sugeno fuzzy modeling, a local 

linear controller in a specific operation region is designed, and then fuzzy interpolation 

incorporates the nonlinear system, defined for each sub-model by weighting functions. This 

modeling is simple and the system dynamics is characterized in the state-space. In this paper, the 

linear controller for each local sub-system that includes delay is designed. The parallel distributed 

compensation (PDC) scheme facilities the control design. The resulting controller is nonlinear via 

the fuzzy blending operation of linear controllers. This feature enables researchers to apply the 

well-established modern control methods [16-17]. These control methods have been utilized for 

linear and nonlinear systems successfully. For instance, state-feedback control [18] and output-

feedback control [19] are designed for nonlinear systems without time delays. Moreover, several 

successful application results have been reported in the literature. In [20], a T-S approach is 

utilized to capture the nonlinear behavior of an electronic power steering system. Constrained and 

saturated control input cases are studied based on the LMI solution. Reference [21] proposes 

Takagi-Sugeno-Kang models to model a nonlinear anti-lock braking system (ABS) by the idea of 

nature-inspired optimal tuning of the membership functions. In [22], the authors investigate a 

hierarchical identification and robust control via the T-S fuzzy-neural model of the ABS with an 

active suspension system. [23] models nonlinear tire forces with membership functions, and a 

fuzzy state-feedback controller is computed in terms of LMIs solution for delay-free vehicle 

lateral dynamics. Since uncertainties exist in different application areas, robust control design is 

introduced for both delayed and delay-free systems in [24-25]. Moreover, designs in [26-27] 

investigate robust stabilization and control for uncertain fuzzy systems with time-varying delay 

by LKFs. The work [28] addresses the design method of delay-dependent robust control for 

uncertain fuzzy systems with a constant time delay.  In [29], robust delay-dependent control of 

uncertain T-S systems with interval time-varying delay is studied. In [30], robust control problem 

for uncertain T–S fuzzy systems with time-varying delay in a range is studied by introducing 

integral inequalities. In [31], a robust control method is proposed with an LKF involving triple 

integral terms for interval time-varying delays. Based on the mentioned literature, research in 

robust control for uncertain T-S fuzzy systems with time-varying delay presents a gap to reduce 

the conservatism as well as the number of the decision variables in the analysis.  

In the presented study, we investigate the stability, performance, and control design 

challenges for uncertain nonlinear time-varying delay systems. The main contribution of this 

work is to design a less conservative delay-dependent 𝐻∞ fuzzy state-feedback controllers for 
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uncertain nonlinear time-delay systems by the selection of Lyapunov-Krasovskii functional, 

which ensures reduced conservativeness by avoiding any model transformation or bounding of 

cross terms, and a relaxation method using slack variables on the basis of the work presented in 

[32]. Unlike the aforementioned methods, this paper deal with fast time-varying delay meaning 

that the upper bound of delay variation rate is greater than one. Formulations are performed based 

on the solution of a set of linear matrix inequalities. The proposed LMIs are solved numerically 

using available convex programming toolbox cvx route [33] to obtain the gains of fuzzy state-

feedback controllers. The structure of this paper is presented as follows. Section 2 introduces the 

background information on T-S fuzzy modeling, Section 3 illustrates the main results and the 

final LMIs for controller computation, and Section 4 introduces two numerical examples to 

validate the findings. Lastly, conclusions are drawn in Section 5. 

 

2. PRELIMINARIES AND BACKGROUND 

 

2.1.  Preliminaries and Notations 

 

We use standard notations throughout the paper as follows. ℝ is for the set of real numbers, 

ℝ𝑚×𝑛 denotes the real set of matrices with dimension of 𝑚 × 𝑛. Real symmetric and positive real 

symmetric of 𝑛 × 𝑛 matrices are denoted by 𝕊𝑛×𝑛, 𝕊+
𝑛×𝑛, respectively. Transpose of an element 

(𝑖, 𝑗) is denoted by the star ⋆, corresponds to (𝑗, 𝑖) in a symmetric matrix.  
 

 Schur complement formula is defined for a given any symmetric matrix, 
 

𝑀 = [
𝐴 𝐵
𝐵𝑇 𝐶

], then the following conditions are equivalent, 𝑀 ≥ 0,𝐶 ≥ 0, 𝐴 − 𝐵𝐶−1𝐵 ≥ 0. 
 

 For a positive definite symmetric matrix 𝑃 > 0 and a differentiable signal 𝑥 in [𝑎, 𝑏] →
ℝ𝑛, the following is defined in the context of Jensen’s inequality:  
 

∫ �̇�(𝑢)𝑃�̇�(𝑢) ≥
1

𝑏 − 𝑎
(𝑥(𝑏) − 𝑥(𝑎))𝑇𝑃(𝑥(𝑏) − 𝑥(𝑎))

𝑏

𝑎

. 

 

2.2.  Problem Statement 

 

  In this article, we study a nonlinear system with a time-varying delay, which is represented by 

the following T-S fuzzy model that is composed of 𝑟 plant rules: 
 

♦ Plant rule i: 
 

IF   𝑝1(𝑡) is 𝑀𝑖1 and…. and 𝑝𝑙(𝑡)  is 𝑀𝑖𝑙 THEN 
 

�̇�(𝑡) =  𝐴𝑖𝑥(𝑡) + 𝐴𝜏𝑖𝑥(𝑡 − 𝜏(𝑡)) + 𝐵1𝑖𝑤(𝑡) + 𝐵2𝑖𝑢(𝑡)                                                              (1) 

𝑧(𝑡) =  𝐶1𝑖𝑥(𝑡) + 𝐶𝜏𝑖𝑥(𝑡 − 𝜏(𝑡)) + 𝐷1𝑖𝑤(𝑡) + 𝐷2𝑖𝑢(𝑡),   
𝑖 = 1, 2, …… , 𝑟,  

𝑥(𝜃) = 𝜙(·), ∀𝑡 ∈ [−𝜏𝑚𝑎𝑥, 0],  
 

where 𝑥(𝑡) ∈  ℝ𝑛  is the system vector, 𝑤(𝑡)  ∈  ℝ𝑛𝑤  is the  exogenous disturbance with 

finite energy in the space 𝑙2[0 ∞), 𝑢(𝑡) ∈  ℝ𝑛𝑢  is the control input vector, 𝑧(𝑡) = ℝ𝑛𝑧 is the 

controlled outputs, 𝜙(·)  denotes the initial system condition, and 𝜏(𝑡) is a differentiable scalar 

function representing time-delay with bounded variation. Initial condition function 𝜙 is a given 

function in 𝔏 ([−𝜏𝑚𝑎𝑥 0], ℝ𝑛), 𝑟 is the number of IF-THEN rules; 𝐴𝑖 , 𝐴𝜏𝑖 , 𝐵1𝑖 , 𝐵2𝑖 , 𝐶1𝑖 ,  𝐶𝜏𝑖 ,
𝐷1𝑖 , and 𝐷2𝑖 are real-valued constant matrices with appropriate dimensions, the premise variables 

and the fuzzy membership function grades are 𝑝𝑗(𝑡) and 𝑀𝑖1 ( 𝑗 = 1,…… , 𝑙, 𝑖 = 1,… . . , 𝑟), 

respectively. 
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Given a pair of 𝑥(𝑡), 𝑢(𝑡)), the global model outputs are expressed: 
 

�̇�(𝑡) =
∑ 𝜔𝑖(𝑝(𝑡))𝑟

𝑖=1 [𝐴𝑖𝑥(𝑡) + 𝐴𝜏𝑖𝑥(𝑡 − 𝜏(𝑡)) + 𝐵1𝑖𝑤(𝑡) + 𝐵2𝑖𝑢(𝑡)]

∑ 𝜔𝑖(𝑝(𝑡))𝑟
𝑖=1

, 

= ∑ℎ𝑖(𝑝(𝑡))[𝐴𝑖𝑥(𝑡) + 𝐴𝜏𝑖𝑥(𝑡 − 𝜏(𝑡)) + 𝐵1𝑖𝑤(𝑡) + 𝐵2𝑖𝑢(𝑡)]

𝑟

𝑖=1

, 

 

𝑧(𝑡) =
∑ 𝜔𝑖(𝑝(𝑡))[𝐶1𝑖𝑥(𝑡) + 𝐶𝜏𝑖𝑥(𝑡 − 𝜏(𝑡)) + 𝐷1𝑖𝑤(𝑡) + 𝐷2𝑖𝑢(𝑡)]𝑟

𝑖=1

∑ 𝜔𝑖(𝑝(𝑡))𝑟
𝑖=1

, 

= ∑ℎ𝑖(𝑝(𝑡))[𝐶1𝑖𝑥(𝑡) + 𝐶𝜏𝑖𝑥(𝑡 − 𝜏(𝑡)) + 𝐷1𝑖𝑤(𝑡) + 𝐷2𝑖𝑢(𝑡)],

𝑟

𝑖=1

 

𝑥(𝜃) = 𝜙(·) ,                      ∀𝑡 ∈ [−𝜏𝑚𝑎𝑥 , 0]                       

(2) 

 

The truth value for the i-th rule is defined as 
 

𝜔𝑖(𝑝(𝑡)) = ∏𝑀𝑖𝑗 (𝑝𝑗(𝑡))

𝑙

𝑗=1

. 

𝜔𝑖(𝑝(𝑡)) ≥ 0,    𝑖 = 1,2,…… , 𝑟, ∑𝜔𝑖(𝑝(𝑡)) > 0.

𝑟

𝑖=1

 

 

 

where 𝑀𝑖𝑗 (𝑝𝑗(𝑡)) is the grade of membership and the weighting function for the i-th rule is 
 

ℎ𝑖(𝑝(𝑡)) =
𝜔𝑖(𝑝(𝑡))

∑ 𝜔𝑖(𝑝(𝑡))𝑟
𝑖=1

. 
 

 

Moreover, the fuzzy weighting functions ℎ𝑖(𝑝(𝑡)) satisfy 
 

∑ℎ𝑖(𝑝(𝑡))

𝑟

𝑖=1

= 1,   ℎ𝑖(𝑝(𝑡)) ≥ 0. 
 

 

All membership functions are continuous as well as the deffuzification method is. 

 

3. STABILITY AND PERFORMANCE OF T-S FUZZY TIME-DELAY SYSTEMS 

 

3.1.  Stability Analysis 

 

The analysis is initiated by defining an unforced model below: 
 

�̇�(𝑡) = ∑ℎ𝑖(𝑝(𝑡))

𝑟

𝑖=1

𝐴𝑖𝑥(𝑡) + 𝐴𝜏𝑖𝑥(𝑡 − 𝜏(𝑡)). 
(3) 

 

The following theorem construct the sufficient condition for asymptotic stability of the 

unforced model.  
 

Theorem 1: The time-delay fuzzy system presented in (3) is asymptotically stable for all 0< 𝜏(𝑡)  
≤ 𝜏𝑚𝑎𝑥 if there exist constant matrices 𝑃,𝘘, 𝑅 ∈  𝕊+

𝑛×𝑛 such that the following LMI is feasible for 

𝑖 = 1,… . . , 𝑟,  
 

[

∑   
1,1 𝑃𝐴𝜏𝑖 +  𝑅 𝜏𝑚𝑎𝑥𝐴𝑖

𝑇𝑅

⋆ −(1 − �̇�(𝑡))𝑄 − 𝑅 𝜏𝑚𝑎𝑥𝐴𝜏𝑖
𝑇𝑅

⋆ ⋆ −𝑅

] <  0.                                                                           (4) 
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with  ∑   
1,1 = 𝐴𝑖

𝑇𝑃 + 𝑃𝐴𝑖 +  𝑄 − 𝑅.       
 

Proof: We consider the following Lyapunov-Kasovskii functional 
 

𝑉(𝑥(𝑡)) =  𝑉1(𝑥(𝑡)) + 𝑉2(𝑥(𝑡)) + 𝑉3(𝑥(𝑡)), 

𝑉1(𝑥(𝑡)) =  𝑥𝑇(𝑡)𝑃𝑥(𝑡), 

 𝑉2(𝑥(𝑡)) =  ∫ 𝑥𝑇(𝜉)𝘘𝑥(𝜉)
𝑡

 𝑡−𝜏(𝑡)

𝑑𝜉, 

𝑉3(𝑥(𝑡)) =  ∫ ∫ �̇�𝑇(𝜉)𝜏𝑚𝑎𝑥𝑅�̇�(𝜉)𝑑𝜉𝑑𝜃
𝑡

𝑡+𝜃

0

−𝜏𝑚𝑎𝑥
. 

(5) 

 

It is clear to see that 𝑉(𝑥(𝑡)) is positive definite with infinitesimal upper bound functional. In 

order (3) to be asymptotically stable, it is necessary and sufficient the time derivative of (5) is 

negative definite along the system trajectory. Then we have  

�̇�1(𝑥(𝑡)) =  �̇�𝑇(𝑡)𝑃𝑥(𝑡) + 𝑥𝑇(𝑡)𝑃�̇�(𝑡), 

�̇�2(𝑥(𝑡)) =  𝑥𝑇(𝑡)𝘘𝑥(𝑡) − (1 − �̇�(𝑡))𝑥𝑇(𝑡 − 𝜏(𝑡))𝘘𝑥(𝑡 − 𝜏(𝑡)), 

�̇�3(𝑥(𝑡)) = 𝜏𝑚𝑎𝑥
2 �̇�𝑇(𝑡)𝑅�̇�(𝑡) − ∫ �̇�𝑇(𝜃)𝜏𝑚𝑎𝑥𝑅�̇�(𝜃)𝑑

𝑡

𝑡−𝜏𝑚𝑎𝑥

𝜃, 

 

 

Since 𝜏(𝑡) ≤  𝜏𝑚𝑎𝑥, then 
 

−∫ �̇�𝑇(𝜃)𝜏𝑚𝑎𝑥𝑅�̇�(𝜃)𝑑
𝑡

𝑡−𝜏𝑚𝑎𝑥
𝜃  ≤  −∫ �̇�𝑇(𝜃)𝜏𝑚𝑎𝑥𝑅�̇�(𝜃)𝑑

𝑡

𝑡−𝜏(𝑡)
𝜃.     

 

Using Jensen’s inequality, we can bound the integral term in �̇�3(𝑥(𝑡))  
 

∫ �̇�𝑇(𝜃)𝜏𝑚𝑎𝑥𝑅�̇�(𝜃)𝑑
𝑡

𝑡−𝜏(𝑡)

𝜃 ≤ −
𝜏𝑚𝑎𝑥

𝜏(𝑡)
(∫ �̇�𝑇(𝜃)

𝑡

𝑡−𝜏(𝑡)

𝑑𝜃)

𝑇

𝑅 (∫ �̇�𝑇(𝜃)
𝑡

𝑡−𝜏(𝑡)

𝑑𝜃) = 

                                                             −
𝜏𝑚𝑎𝑥

𝜏(𝑡)
[𝑥(𝑡) − 𝑥(𝑡 − 𝜏(𝑡))]𝑇𝑅[𝑥(𝑡) − 𝑥(𝑡 − 𝜏(𝑡))].   

 

Bounding the −
𝜏𝑚𝑎𝑥

𝜏(𝑡)
 ≤ -1, the expression for �̇�3(𝑥(𝑡)) 

 

   �̇�3(𝑥(𝑡)) ≤  𝜏𝑚𝑎𝑥
2 �̇�𝑇(𝑡)𝑅�̇�(𝑡) − [𝑥(𝑡) − 𝑥(𝑡 − 𝜏(𝑡))]𝑇𝑅[𝑥(𝑡) − 𝑥(𝑡 − 𝜏(𝑡))].  

 

Substituting the derivative term gives 

�̇�(𝑥(𝑡))  ≤    �̇�𝑇(𝑡)𝑃𝑥(𝑡) + 𝑥𝑇(𝑡)𝑃�̇�(𝑡) +  𝑥𝑇(𝑡)𝘘𝑥(𝑡) − (1 − �̇�(𝑡))𝑥𝑇(𝑡 − 𝜏(𝑡)) 

𝘘𝑥(𝑡 − 𝜏𝑚𝑎𝑥) + 𝜏𝑚𝑎𝑥
2 �̇�𝑇(𝑡)𝑅�̇�(𝑡) − [𝑥(𝑡) − 𝑥(𝑡 − 𝜏(𝑡))]𝑇𝑅[𝑥(𝑡) − 𝑥(𝑡 − 𝜏(𝑡))] .  

(6) 

 

This inequality provides the stability condition for (3). To derive the matrix form of the 

equation, we replace �̇� term in (6). The stability condition for each sub-system is  
 

�̇�(𝑥(𝑡)) ≤ ∑ ℎ𝑖(𝑝(𝑡))𝑟
𝑖=1 [𝑥𝑇(𝑡)(𝐴𝑖

𝑇𝑃 + 𝑃𝐴𝑖 + 𝑄 − 𝑅 + 𝐴𝑖
𝑇𝜏𝑚𝑎𝑥

2 𝑅𝐴𝑖)𝑥(𝑡) + 𝑥𝑇(𝑡)(𝑃𝐴𝜏𝑖 + 𝑅 +

𝐴𝑖
𝑇𝜏𝑚𝑎𝑥

2 𝑅𝐴𝜏𝑖)𝑥(𝑡 − 𝜏(𝑡)) + 𝑥𝑇(𝑡 − 𝜏(𝑡))(𝐴𝜏𝑖
𝑇 𝑃 + 𝑅 + 𝐴𝜏𝑖

𝑇 𝜏𝑚𝑎𝑥
2 𝑅𝐴𝑖)

𝑇
𝑥(𝑡) + 𝑥𝑇(𝑡 −

𝜏(𝑡))(−(1 − �̇�(𝑡))𝑄 − 𝑅 + 𝐴𝜏𝑖
𝑇 𝜏𝑚𝑎𝑥

2 𝑅𝐴𝜏𝑖)𝑥(𝑡 − 𝜏(𝑡))],  
 

This leads to  
 

�̇�(𝑥(𝑡)) ≤ ∑ ℎ𝑖(𝑝(𝑡)) [
𝑥(𝑡)

𝑥(𝑡 − 𝜏(𝑡))
]
𝑇

[
𝐴𝑖

𝑇𝑃 + 𝑃𝐴𝑖 + 𝑄 − 𝑅 𝑃𝐴𝜏𝑖 + 𝑅

⋆ −(1 − �̇�(𝑡))𝑄 − 𝑅
]𝑟

𝑖=1 +

 [
𝐴𝑇

𝐴𝜏𝑖
𝑇 ] 𝜏𝑚𝑎𝑥

2 𝑅 [
𝐴𝑖

𝑇

𝐴𝜏𝑖
𝑇 ]

𝑇

[
𝑥(𝑡)

𝑥(𝑡 − 𝜏(𝑡))
] < 0.  

 

This equation turns to (4) by applying Schur complement formula.                                                     

∎ 
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3.2.  Performance Analysis 

 

Theorem 2: The time-delay fuzzy system (1) is asymptotically stable for all 0 < 𝜏(𝑡) ≤  𝜏𝑚𝑎𝑥 

and satisfies the condition ‖𝑧‖2  ≤  𝛾‖𝑤‖2 if there exist constant matrices 𝑃, 𝘘, 𝑅 ∈  𝕊+
𝑛×𝑛 and a 

scalar 𝛾>0 such that the following LMI holds 
 

for all 𝑖 = 1,2, …… , 𝑟,  
 

[
 
 
 
 
 
∑   

1,1 𝑃𝐴𝜏𝑖 +  𝑅

⋆ −(1 − �̇�(𝑡))𝑄 − 𝑅

𝑃𝐵1𝑖 𝐶1𝑖
𝑇 𝜏𝑚𝑎𝑥𝐴𝑖

𝑇𝑅

0 𝐶𝜏𝑖
𝑇 𝜏𝑚𝑎𝑥𝐴𝜏𝑖

𝑇 𝑅

⋆ ⋆
⋆ ⋆

−𝛾𝐼 𝐷1𝑖
𝑇 𝜏𝑚𝑎𝑥𝐵1𝑖

𝑇 𝑅
⋆ −𝛾𝐼 0
⋆ ⋆ −𝑅 ]

 
 
 
 
 

 < 0.                                                        (7) 

 

Proof: Applying the Schur complement formula on (7) results in    
 

[
 
 
 
 
∑   

1,1 𝑃𝐴𝜏𝑖 +  𝑅

⋆ −(1 − �̇�(𝑡))𝑄 − 𝑅

𝑃𝐵1𝑖 𝐶1𝑖
𝑇

0 𝐶𝜏𝑖
𝑇

⋆ ⋆
⋆ ⋆

−𝛾𝐼 𝐷1𝑖
𝑇

⋆ −𝛾𝐼]
 
 
 
 

−

[
 
 
 
𝜏𝑚𝑎𝑥𝐴𝑖

𝑇𝑅

𝜏𝑚𝑎𝑥𝐴𝜏𝑖
𝑇 𝑅

𝜏𝑚𝑎𝑥𝐵1𝑖
𝑇 𝑅

0 ]
 
 
 

(−𝑅)−1 ∗ [𝜏𝑚𝑎𝑥𝑅𝐴𝑖 𝜏𝑚𝑎𝑥𝑅𝐴𝜏𝑖 𝜏𝑚𝑎𝑥𝑅𝐵1𝑖 0],  

 

and 
 

[
 
 
 
 
∑   

1,1 𝑃𝐴𝜏𝑖 +  𝑅

⋆ −(1 − �̇�(𝑡))𝑄 − 𝑅

𝑃𝐵1𝑖 𝐶1𝑖
𝑇

0 𝐶𝜏𝑖
𝑇

⋆ ⋆
⋆ ⋆

−𝛾𝐼 𝐷1𝑖
𝑇

⋆ −𝛾𝐼]
 
 
 
 

+  

[
 
 
 
𝐴𝑖

𝑇

𝐴𝜏𝑖
𝑇

𝐵1𝑖
𝑇

0 ]
 
 
 

 𝜏𝑚𝑎𝑥
2 𝑅

[
 
 
 
𝐴𝑖

𝑇

𝐴𝜏𝑖
𝑇

𝐵1𝑖
𝑇

0 ]
 
 
 
𝑇

< 0.  

 

Applying the second schur complement again leads us to the compact form of  
 

[

∑   
1,1 𝑃𝐴𝜏𝑖 +  𝑅 𝑃𝐵1𝑖

⋆ −(1 − �̇�(𝑡))𝑄 − 𝑅 0
⋆ ⋆ −𝛾𝐼

] + [

𝐶1𝑖
𝑇

𝐶𝜏𝑖
𝑇

𝐷1𝑖
𝑇

] 𝛾−1 [

𝐶1𝑖
𝑇

𝐶𝜏𝑖
𝑇

𝐷1𝑖
𝑇

]

𝑇

+ [

𝐴𝑖
𝑇

𝐴𝜏𝑖
𝑇

𝐵1𝑖
𝑇

] 𝜏𝑚𝑎𝑥
2 𝑅 [

𝐴𝑖
𝑇

𝐴𝜏𝑖
𝑇

𝐵1𝑖
𝑇

]

𝑇

 < 0.  

  

Further arrangements on the matrix inequality gives the final expression 
 

�̇�(𝑥(𝑡)) ≤

∑ ℎ𝑖(𝑝(𝑡)) [

𝑥(𝑡)

𝑥(𝑡 − 𝜏(𝑡))
𝑤(𝑡)

]

𝑇

[

∑   
1,1 𝑃𝐴𝜏𝑖 +  𝑅 𝑃𝐵1𝑖

⋆ −(1 − �̇�(𝑡))𝑄 − 𝑅 0
⋆ ⋆ −𝛾𝐼

] + [

𝐶1𝑖
𝑇

𝐶𝜏𝑖
𝑇

𝐷1𝑖
𝑇

] 𝛾−1 [

𝐶1𝑖
𝑇

𝐶𝜏𝑖
𝑇

𝐷1𝑖
𝑇

]

𝑇

+𝑟
𝑖=1

[

𝐴𝑖
𝑇

𝐴𝜏𝑖
𝑇

𝐵1𝑖
𝑇

] 𝜏𝑚𝑎𝑥
2 𝑅 [

𝐴𝑖
𝑇

𝐴𝜏𝑖
𝑇

𝐵1𝑖
𝑇

]

𝑇

[

𝑥(𝑡)

𝑥(𝑡 − 𝜏(𝑡))
𝑤(𝑡)

] < 0.  

 

It is important to note that this expression is equivalent to  
 

�̇�(𝑥(𝑡))  ≤  �̇�𝑇𝑃𝑥 + 𝑥𝑇𝑃�̇� + 𝑥(𝑡)𝑇𝘘𝑥(𝑡) − (1 − �̇�(𝑡))𝑥𝑇(𝑡 − 𝜏(𝑡))𝘘𝑥(𝑡 − 𝜏(𝑡))

+ 𝜏𝑚𝑎𝑥
2 �̇�𝑇(𝑡)𝑅�̇�(𝑡) − [𝑥(𝑡) − 𝑥(𝑡 − 𝜏(𝑡))]𝑇𝑅[𝑥(𝑡) − 𝑥(𝑡 − 𝜏(𝑡))]

− 𝛾𝑤𝑇(𝑡)𝑤(𝑡) + 
1

𝛾
𝑧𝑇(𝑡)𝑧(𝑡) < 0. 

 

In the above equation, integrating the both sides from 0 to ∞ leads to 𝐻∞ performance 

index ‖𝑧‖𝐿2
≤  𝛾‖𝑤‖𝐿2

 [34].                                                                                                            

∎ 
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3.3.  Employing Slack Variable Approach 

 

The standard LMI characterization approach may cause bilinear matrix inequality due to the 

multiplication of the terms 𝑃𝐴𝑖 and 𝑅𝐴𝑖 unknown matrix functions are not suitable for the 

synthesis of finding the feasible solutions. One way of dealing with this problem is Projection 

Lemma. This approach does not only provide a flexible way in the synthesis, but also introduce a 

far less conservative condition. 
 

Lemma 1: The time-delayed fuzzy system presented by (1) is asymptotically stable for all 

0 < 𝜏(𝑡) ≤  𝜏𝑚𝑎𝑥 and satisfies the condition ‖𝑧‖2  ≤  𝛾‖𝑤‖2 if there exist constant matrices 

𝑃, 𝘘, 𝑅, 𝑉1, 𝑉2, 𝑉3 ∈  𝕊+
𝑛×𝑛, and a scalar 𝛾>0 such that the following LMI holds  

 

for all 𝑖 = 1,2, …… , 𝑟, 
 

[
 
 
 
 
 
−𝑉1 − 𝑉1

𝑇 𝑃 − 𝑉2
𝑇 + 𝑉1𝐴𝑖 −𝑉3

𝑇 + 𝑉1𝐴𝜏𝑖

⋆ Ψ22 + 𝐴𝑖
𝑇𝑉2

𝑇+𝑉2𝐴𝑖 𝑅 + 𝐴𝑖
𝑇𝑉3

𝑇+𝑉2𝐴𝜏𝑖

⋆
⋆
⋆
⋆

⋆
⋆
⋆
⋆

Ψ33 + 𝐴𝜏𝑖
𝑇 𝑉3

𝑇+𝑉3𝐴𝜏𝑖

⋆
⋆
⋆

𝑉1𝐵1𝑖 0 𝑉1 + 𝜏𝑚𝑎𝑥𝑅

𝑉2𝐵1𝑖 𝐶1𝑖
𝑇 𝑉2 − 𝑃

𝑉3𝐵1𝑖

−𝛾𝐼
⋆
⋆

𝐶𝜏𝑖
𝑇

𝐷1𝑖
𝑇

−𝛾𝐼
⋆

𝑉3

0
0

(−1 − 2𝜏𝑚𝑎𝑥)𝑅 ]
 
 
 
 
 

< 0.  

(8) 

 

with Ψ22 =  𝘘 − 𝑅 and Ψ33 =  −(1 − �̇�(𝑡))𝑄 − 𝑅.  
 

Proof. The proof is inspired from [35]. First, we write the definition of Projection Lemma 

defining the following linear matrix inequality with a symmetric matrix Φ and appropriately 

dimensioned two matrices Λ and Γ: 
 

Φ +  Λ𝑇Θ𝑇Γ + Γ𝑇ΘΛ < 0.                                                                                                               (9) 
 

has a feasible solution in terms of Θ if and only if 
 

 𝒩Λ
TΦ𝒩Λ < 0, and                                                                                                                       (10 ) 

 

 𝒩Γ
TΦ𝒩Γ 

< 0,                                                                                                                              (11) 
 

where 𝒩Λ and 𝒩Γ are any basis of the null spaces of Λ and Γ, respectively. Writing (8) in the 

format (9), we have 
 

Φ = 

[
 
 
 
 
 
 
0 𝑃 0 0 0 𝜏𝑚𝑎𝑥𝑅

⋆ Ψ22 𝑅 0 𝐶1𝑖
𝑇 −𝑃

⋆ ⋆ Ψ33 0 𝐶𝜏𝑖
𝑇 0

⋆ ⋆ ⋆ −𝛾𝐼 𝐷1𝑖
𝑇 0

⋆ ⋆ ⋆ ⋆ −𝛾𝐼 0

⋆ ⋆ ⋆ ⋆ ⋆ (−1 − 2𝜏𝑚𝑎𝑥)𝑅]
 
 
 
 
 
 

, Λ = [−𝐼   𝐴𝑖    𝐴𝜏𝑖    𝐵1𝑖    0   𝐼],  

 Γ =  [
𝐼 0 0
0 𝐼 0
0 0 𝐼

0 0 0
0 0 0
0 0 0

] , Θ = [𝑉1
𝑇𝑉2

𝑇 𝑉3
𝑇] T.  

 

and the null spaces of 𝛬 and Γ are shown as; 
 

𝒩Λ =

[
 
 
 
 
 
𝐴𝑖 𝐴𝜏𝑖 𝐵1𝑖 0 𝐼
𝐼 0 0 0 0
0 𝐼 0 0 0
0 0 𝐼 0 0
0 0 0 𝐼 0
0 0 0 0 𝐼]

 
 
 
 
 

, and 𝒩Γ = 

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0
𝐼 0 0
0 𝐼 0
0 0 𝐼]

 
 
 
 
 

.  

 

The first solvability condition in (10) leads to the LMI (7) and the following is obtained by 

the second solvability condition (11).  
 

Robust Delay-Dependent 𝐻∞ Control Design for …      /   Sigma J Eng & Nat Sci 38 (3), 1351-1368, 2020 



1358 

 

[
−𝛾𝐼 𝐷1𝑖

𝑇 0
⋆ −𝛾𝐼 0

⋆ ⋆ (−1 − 2𝜏𝑚𝑎𝑥)𝑅

] < 0.                                                                                           (12) 

 

∎ 

 

3.4.  State-Feedback 𝑯∞ Synthesis 

 

The design of a fuzzy controller is sought in this section. The designed controller not only 

provides the asymptotic stability but also possesses an energy-to-energy norm, ℒ2, less than 𝛾. 

The control law is given for each i-th rule as 
 

𝑢(𝑡) =  ∑ℎ𝑖(𝑝(𝑡))𝐾𝑖𝑥(𝑡)

𝑟

𝑖=1

. 
 (13) 

Substituting (13) into (2), we obtain the corresponding closed-loop system  
 

�̇�𝑐𝑙(𝑡) =  ∑ ℎ𝑖
2(𝑝(𝑡)){𝐺𝑖𝑖𝑥(𝑡) +𝑟

𝑖=1 𝐴𝜏𝑖𝑥(𝑡 − 𝜏(𝑡)) + 𝐵1𝑖𝑤(𝑡) + 2∑ ℎ𝑖(𝑝(𝑡))ℎ𝑗(𝑝(𝑡))𝑖<𝑗   

{
𝐺𝑖𝑗 + 𝐺𝑗𝑖

2
𝑥(𝑡) +

𝐴𝜏𝑖𝑥(𝑡 − 𝜏(𝑡)) + 𝐴𝜏𝑗𝑥(𝑡 − 𝜏(𝑡))

2
+

𝐵1𝑖𝑤(𝑡) + 𝐵1𝑗𝑤(𝑡)

2
}, 

𝑧𝑐𝑙(𝑡) =  ∑ ℎ𝑖
2(𝑝(𝑡)){𝐽𝑖𝑖𝑥(𝑡) + 𝐶𝜏𝑖𝑥(𝑡 − 𝜏(𝑡)) + 𝐷1𝑖𝑤(𝑡) +𝑟

𝑖=1 2∑ ℎ𝑖(𝑝(𝑡))ℎ𝑗(𝑝(𝑡))𝑖<𝑗   

{
𝐽𝑖𝑗 + 𝐽𝑗𝑖

2
𝑥(𝑡) +

𝐶𝜏𝑖𝑥(𝑡 − 𝜏(𝑡)) + 𝐶𝜏𝑗𝑥(𝑡 − 𝜏(𝑡))

2
+

𝐷1𝑖𝑤(𝑡) + 𝐷1𝑗𝑤(𝑡)

2
}, 

 

where 𝐺𝑖𝑗 = 𝐴𝑖 + 𝐵2𝑖𝐾𝑗  and 𝐽𝑖𝑗 = 𝐶1𝑖 + 𝐷2𝑖𝐾𝑗 . 
 

Theorem 2: Consider the fuzzy time-delay system (1), there exist a state-feedback controller of 

the form (13) such that the closed-loop system is asymptotically stable for all 0 < 𝜏(𝑡) ≤  𝜏𝑚𝑎𝑥, 

and satisfies the condition ‖𝑧‖2  ≤  𝛾‖𝑤‖2 if there exist constant matrices �̃�, �̃�, �̃� and 𝑈 ∈
 𝕊+

𝑛×𝑛 , two given scalars 𝜆2 and 𝜆3, matrix 𝑌𝑖  ∈ 𝕊𝑛𝑢×𝑛, and a scalar 𝛾>0 such that the following 

LMIs hold  

for all 𝑖 = 1,2, …… , 𝑟,  
 

[
 
 
 
 
 
 −2𝑈 �̃� − 𝜆2𝑈 + 𝐴𝑖𝑈 + 𝐵2𝑖𝑌𝑖 −𝜆3𝑈 + 𝐴𝜏𝑖𝑈

⋆ Ψ̃22 Ψ̃23

⋆
⋆
⋆
⋆

⋆
⋆
⋆
⋆

Ψ̃33

⋆
⋆
⋆

𝐵1𝑖 0 𝑈 + 𝜏𝑚𝑎𝑥�̃�

𝜆2𝐵1𝑖 𝑈𝐶1𝑖
𝑇 + 𝑌𝑖

𝑇𝐷2𝑖
𝑇 𝜆2𝑈 − �̃�

𝜆3𝐵1𝑖

−𝛾𝐼
⋆
⋆

𝑈𝐶𝜏𝑖
𝑇

𝐷1𝑖
𝑇

−𝛾𝐼
⋆

𝜆3𝑈
0
0

(−1 − 2𝜏𝑚𝑎𝑥)�̃� ]
 
 
 
 
 
 

< 0,    (14) 

 

where Ψ̃22 =  Ψ22 + 𝜆2(𝐴𝑖𝑈 + 𝐵2𝑖𝑌𝑖 +  𝑈𝐴𝑖
𝑇 + 𝑌𝑖

𝑇𝐵2𝑖
𝑇 ) , Ψ̃23 =  �̃� + 𝜆2𝐴𝜏𝑖𝑈 + 𝜆3(𝑈𝐴𝑖

𝑇 +

𝑌𝑖
𝑇𝐵2𝑖

𝑇 )  and Ψ̃33 = Ψ33 + 𝜆3(𝐴𝜏𝑖𝑈 + 𝑈𝐴𝜏𝑖
𝑇 ). Ψ22 and Ψ33 as defined earlier hold.   

for all 1≤ 𝑖 < 𝑗 ≤ 𝑟, 
 

[
 
 
 
 
 
 −2𝑈 �̃� − 𝜆2𝑈 + Ф𝑖𝑗 −𝜆3𝑈 +

𝐴𝜏𝑖𝑈+𝐴𝜏𝑗𝑈

2

⋆ ¥̃22 ¥̃23

⋆ ⋆ ¥̃33

⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

                                                                               (15) 

S. Coskun     / Sigma J Eng & Nat Sci 38 (3), 1351-1368, 2020 



1359 

 

𝐵1𝑖+𝐵1𝑗

2
0 𝑈 + 𝜏𝑚𝑎𝑥�̃�

𝜆2 (
𝐵1𝑖+𝐵1𝑗

2
) Ξ𝑖𝑗 𝜆2𝑈 − �̃�

𝜆3 (
𝐵1𝑖+𝐵1𝑗

2
) 𝑈 (

𝐶𝜏𝑖
𝑇+𝐶𝜏𝑗

𝑇

2
) 𝜆3𝑈

−𝛾𝐼 (
𝐷1𝑖

𝑇 +𝐷1𝑗
𝑇

2
) 0

⋆ −𝛾𝐼 0

⋆ ⋆ (−1 − 2𝜏𝑚𝑎𝑥)�̃� ]
 
 
 
 
 
 
 
 
 

< 0. 

 

where  

 

Ф𝑖𝑗 =
𝐴𝑖𝑈 + 𝐵2𝑖𝑌𝑗 + 𝐴𝑗𝑈 + 𝐵2𝑗𝑌𝑖

2
, Ξ𝑖𝑗 =

𝑈𝐶1𝑖
𝑇 + 𝑌𝑖

𝑇𝐷2𝑗
𝑇 + 𝑈𝐶1𝑗

𝑇 + 𝑌𝑗
𝑇𝐷2𝑖

𝑇

2
,  

 

¥̃22 = Ψ22 + 𝜆2 (
𝐴𝑖𝑈 + 𝐵2𝑖𝑌𝑗 + 𝑈𝐴𝑖

𝑇 + 𝑌𝑖
𝑇𝐵2𝑗

𝑇 +𝐴𝑗𝑈 + 𝐵2𝑗𝑌𝑖 + 𝑈𝐴𝑗
𝑇 + 𝑌𝑗

𝑇𝐵2𝑖
𝑇

2
), 

 

¥̃23 = �̃� + 𝜆2 (
𝐴𝜏𝑖𝑈 + 𝐴𝜏𝑗𝑈

2
) + 𝜆3 (

𝑈𝐴𝑖
𝑇 + 𝑌𝑖

𝑇𝐵2𝑗
𝑇 + 𝑈𝐴𝑗

𝑇 + 𝑌𝑗
𝑇𝐵2𝑖

𝑇

2
), 

¥̃33 =  Ψ33 + 𝜆3 (
 𝐴𝜏𝑖𝑈 + 𝑈𝐴𝜏𝑖

𝑇 +  𝐴𝜏𝑗𝑈 + 𝑈𝐴𝜏𝑗
𝑇

2
). 

 

Then the corresponding control law is given by 𝐾𝑖 = 𝑌𝑖𝑈
−1. 

 

Proof. First we substitute the closed-loop matrices into (8) to derive the synthesis condition. 

Three different slack variable matrices are chosen to analyse the condition in (8) as 𝑉1 = 𝑉, 𝑉2 =
 λ2𝑉  and 𝑉3 =  λ3𝑉 where λ2 and λ3 are given scalars. Note that the above LMI is an inequality 

only with fixed λ2 and λ3.  Defining the new variables 𝑈 = 𝑉−1 and 𝑌𝑖 = 𝐾𝑖𝑈 by applying the 

congruence transformation using matrix diagram   (𝑈,𝑈,𝑈, 𝐼, 𝐼, 𝑈 ) to LMI (8) gives the result of 

(14) with �̃� =  𝑈𝑇𝑃𝑈, �̃� =  𝑈𝑇𝑅𝑈,  �̃� =  𝑈𝑇𝘘𝑈, Ψ̃22 = 𝑈𝑇Ψ22𝑈 and Ψ̃33 = 𝑈𝑇Ψ33𝑈 for 

1 ≤ 𝑖 ≤ 𝑟, and the result of (15) with ¥̃22 =  𝑈𝑇Ψ22𝑈  and ¥̃33 = 𝑈𝑇Ψ33𝑈 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑟. 

This completes the proof.                                                                          ∎ 
 

Remark 1: We have two LMIs conditions to be addressed to reach a feasible solution. The 

condition (14) seeks a feasible solution for each-subsequent rules, and the condition (15) for the 

cross terms. To capture the nonlinear behavior of a given system, the derived LMIs have to be 

solved simultaneously for each rule. Then fuzzy blending control law is employed to the 

nonlinear model to achieve the prescribed performance requirements. 

 

3.5. Robust 𝑯∞ Controller Synthesis for Uncertain T-S Fuzzy Systems with Time-Delay 

  

A T-S fuzzy time-delay model with norm-bounded uncertainties in the state and control that is 

composed of 𝑟 plant rules: 
 

♦ Plant rule i: 
 

IF   𝑝1(𝑡) is 𝑀𝑖1 and….. and 𝑝𝑙(𝑡)  is 𝑀𝑖𝑙 THEN 
 

�̇�(𝑡) =  (𝐴𝑖 + ∆𝐴𝑖)𝑥(𝑡) + (𝐴𝜏𝑖 + ∆𝐴𝜏𝑖)𝑥(𝑡 − 𝜏(𝑡)) + 𝐵1𝑖𝑤(𝑡) + (𝐵2𝑖 + ∆𝐵2𝑖)𝑢(𝑡) 

𝑧(𝑡) =  𝐶1𝑖𝑥(𝑡) + 𝐶𝜏𝑖𝑥(𝑡 − 𝜏(𝑡)) + 𝐷1𝑖𝑤(𝑡) + 𝐷2𝑖𝑢(𝑡), 
𝑖 = 1, 2,…… , 𝑟, 

𝑥(𝜃) = 𝜙(·), ∀𝑡 ∈ [−𝜏𝑚𝑎𝑥, 0].     

(16) 
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where the matrices ∆𝐴𝑖 , ∆𝐴𝜏𝑖 , and ∆𝐵2𝑖 denote the uncertainties in the system in the form of 
 

[∆𝐴𝑖 , ∆𝐴𝜏𝑖 , ∆𝐵2𝑖] = 𝐻𝑖∆(𝑡)[𝐸𝑖 , 𝐸𝜏𝑖 , 𝐸2𝑖],                                                                                      (17) 
 

where  𝐻𝑖 , 𝐸𝑖 , 𝐸𝜏𝑖 , 𝐸2𝑖  are known constant matrices and ∆(𝑡) is an unknown time-varying 

matrix function satisfying 
 

∆(𝑡)𝑇∆(𝑡) ≤ 𝐼.                                                                                                                              (18) 
 

The following condition provides necessary and sufficient condition for the synthesis of a 

state-feedback 𝐻∞ controller, which guarantees the asymptotic stability, and provides a prescribed 

disturbance attenuation level in the sense of ℒ2 energy norm of the uncertain T-S fuzzy system, 

presented in (16).  
 

Theorem 3: Consider the uncertain fuzzy time-delay system in (16), there exist a state-feedback 

controller of the form (13) with all admissible uncertainties of the form (17) and satisfying (18) 

such that the closed-loop system is asymptotically stable for all 0 < 𝜏(𝑡) ≤  𝜏𝑚𝑎𝑥, and satisfies 

the condition ‖𝑧‖2  ≤  𝛾‖𝑤‖2 if there exist constant matrices �̃�, �̃�, �̃� and   𝑈 ∈  𝕊+
𝑛×𝑛 , two given 

scalars 𝜆2 𝑎𝑛𝑑 𝜆3, matrix 𝑌𝑖  ∈ 𝕊𝑛𝑢×𝑛, and a scalar 𝛾>0 such that the following LMIs hold 
 

for all 𝑖 = 1,2, …… , 𝑟,  
 

[
 
 
 
 
 
 
 
 
−2𝑈 �̃� − 𝜆2𝑈 + 𝐴𝑖𝑈 + 𝐵2𝑖𝑌𝑖 −𝜆3𝑈 + 𝐴𝜏𝑖𝑈 𝐵1𝑖

⋆ Ψ̃22 Ψ̃23 𝜆2𝐵1𝑖

⋆ ⋆ Ψ̃33 𝜆3𝐵1𝑖

⋆ ⋆ ⋆ −𝛾𝐼
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

                                                         (19) 

0 𝑈 + 𝜏𝑚𝑎𝑥�̃� 𝐻𝑖 0

𝑈𝐶1𝑖
𝑇 + 𝑌𝑖

𝑇𝐷2𝑖
𝑇 𝜆2𝑈 − �̃� 𝜆2𝐻𝑖 𝑈𝐸𝑖

𝑇 + 𝑌𝑖
𝑇𝐸2𝑖

𝑇

𝑈𝐶𝜏𝑖
𝑇 𝜆3𝑈 𝜆3𝐻𝑖 𝑈𝐸𝜏𝑖

𝑇

𝐷1𝑖
𝑇 0 0 0

−𝛾𝐼 0 0 0

⋆  (−1 − 2𝜏𝑚𝑎𝑥)�̃� 0 0
⋆ ⋆ −𝜖𝑖𝑖𝐼 0
⋆ ⋆ ⋆ −𝛼𝑖𝑖𝐼 ]

 
 
 
 
 
 
 
 

< 0, 

 

where 𝛼𝑖𝑖 = 𝜖𝑖𝑖
−1, and Ψ̃22 , Ψ̃23,  and Ψ̃33 as defined earlier hold. And 

for all 1≤ 𝑖 < 𝑗 ≤ 𝑟, 
 

[
 
 
 
 
 
 
 
 
 
 −2𝑈 �̃� − 𝜆2𝑈 + Ф𝑖𝑗 −𝜆3𝑈 +

𝐴𝜏𝑖𝑈 + 𝐴𝜏𝑗𝑈

2

𝐵1𝑖 + 𝐵1𝑗

2

⋆ ¥̃22 ¥̃23 𝜆2 (
𝐵1𝑖 + 𝐵1𝑗

2
)

⋆ ⋆ ¥̃33 𝜆3 (
𝐵1𝑖 + 𝐵1𝑗

2
)

⋆ ⋆ ⋆ −𝛾𝐼
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆

 

(20) 
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0 𝑈 + 𝜏𝑚𝑎𝑥�̃� 𝐻𝑖 0

Ξ𝑖𝑗 𝜆2𝑈 − �̃� 𝜆2𝐻𝑖
𝑈𝐸𝑖

𝑇+𝑌𝑖
𝑇𝐸2𝑗

𝑇 +𝑈𝐸𝑗
𝑇+𝑌𝑗

𝑇𝐸2𝑖
𝑇

2

𝑈 (
𝐶𝜏𝑖

𝑇+𝐶𝜏𝑗
𝑇

2
) 𝜆3𝑈 𝜆3𝐻𝑖

𝑈𝐸𝜏𝑖
𝑇+𝑈𝐸𝜏𝑗

𝑇

2

𝐷1𝑖
𝑇 +𝐷1𝑗

𝑇

2
0 0 0

−𝛾𝐼 0 0 0

⋆  (−1 − 2𝜏𝑚𝑎𝑥)�̃� 0 0
⋆ ⋆ −𝜖𝑖𝑗𝐼 0

⋆ ⋆ ⋆ −𝛼𝑖𝑗𝐼 ]
 
 
 
 
 
 
 
 
 
 
 

< 0. 

 

where 𝛼𝑖𝑗 = 𝜖𝑖𝑗
−1, and Ф𝑖𝑗 , ¥̃22, ¥̃23, ¥̃33, Ξ𝑖𝑗  as defined earlier hold.  

 

Proof. We first substitute the norm-bounded uncertainties into the LMI conditions (14-15) of 

Theorem 2, a new set of LMI conditions is obtained by summation of initial LMIs (14-15) and 

corresponding uncertain part as shown below,  
 

for all 𝑖 = 1,2, …… , 𝑟,  
 

(21)= (14)+ 

[
 
 
 
 
 
0 ∆𝐴𝑖𝑈 + ∆𝐵2𝑖𝑌𝑖 ∆𝐴𝜏𝑖𝑈 0 0 0
⋆ (2,2)𝑖𝑖 (2,3)𝑖𝑖 0 0 0
⋆ ⋆ (3,3)𝑖𝑖 0 0 0
⋆ ⋆ ⋆ 0 0 0
⋆ ⋆ ⋆ ⋆ 0 0
⋆ ⋆ ⋆ ⋆ ⋆ 0]

 
 
 
 
 

< 0,  

 
 

 

where (2,2)𝑖𝑖 = 𝜆2(∆𝐴𝑖𝑈 + ∆𝐵2𝑖𝑌𝑖 + 𝑈∆𝐴𝑖
𝑇 + 𝑌𝑖

𝑇∆𝐵2𝑖
𝑇 ),  

(2,3)𝑖𝑖 = 𝜆2∆𝐴𝜏𝑖𝑈 + 𝜆3(𝑈∆𝐴𝑖
𝑇 + 𝑌𝑖

𝑇∆𝐵2𝑖
𝑇 ),  

(3,3)𝑖𝑖 = 𝜆3(∆𝐴𝜏𝑖𝑈 + 𝑈∆𝐴𝜏𝑖
𝑇 ). And 

 

for all 1≤ 𝑖 < 𝑗 ≤ 𝑟,  
 

(22)= (15)+ 

[
 
 
 
 
 
 0

∆𝐴𝑖𝑈 + ∆𝐵2𝑖𝑌𝑗 + ∆𝐴𝑗𝑈 + ∆𝐵2𝑗𝑌𝑖

2

∆𝐴𝜏𝑖𝑈 + ∆𝐴𝜏𝑗𝑈

2
0 0 0

⋆ (2,2)𝑖𝑗 (2,3)𝑖𝑗 0 0 0

⋆ ⋆ (3,3)𝑖𝑗 0 0 0

⋆ ⋆ ⋆ 0 0 0
⋆ ⋆ ⋆ ⋆ 0 0
⋆ ⋆ ⋆ ⋆ ⋆ 0]

 
 
 
 
 
 

< 0, 

 

where  

(2,2)𝑖𝑗 =
𝜆2(∆𝐴𝑖𝑈 + ∆𝐵2𝑖𝑌𝑗 + 𝑈∆𝐴𝑖

𝑇 + 𝑌𝑗
𝑇∆𝐵2𝑖

𝑇 + ∆𝐴𝑗𝑈 + ∆𝐵2𝑗𝑌𝑖 + 𝑈∆𝐴𝑗
𝑇 + 𝑌𝑖

𝑇∆𝐵2𝑗
𝑇 )

2
, 

(2,3)𝑖𝑗 =
𝜆2(∆𝐴𝜏𝑖𝑈 + ∆𝐴𝜏𝑗𝑈) + 𝜆3(𝑈∆𝐴𝑖

𝑇 + 𝑌𝑗
𝑇∆𝐵2𝑖

𝑇 + 𝑈∆𝐴𝑗
𝑇 + 𝑌𝑖

𝑇∆𝐵2𝑗
𝑇 )

2
, 

(3,3)𝑖𝑗 =
𝜆3(∆𝐴𝜏𝑖𝑈 + 𝑈∆𝐴𝜏𝑖

𝑇 + ∆𝐴𝜏𝑗𝑈 + 𝑈∆𝐴𝜏𝑗
𝑇 )

2
. 

These conditions are equivalent to 
 

for all 𝑖 = 1,2, …… , 𝑟,  
 

(21)= (14)+ 

Robust Delay-Dependent 𝐻∞ Control Design for …      /   Sigma J Eng & Nat Sci 38 (3), 1351-1368, 2020 



1362 

 

 

𝐻𝑒(

[
 
 
 
 
 

𝐻𝑖

𝜆2𝐻𝑖

𝜆3𝐻𝑖

0
0
0 ]

 
 
 
 
 

∆(𝑡)[0 𝐸𝑖𝑈 + 𝐸2𝑖𝑌𝑖 𝐸𝜏𝑖𝑈 0 0 0]) < 0,  

 

for all 1≤ 𝑖 < 𝑗 ≤ 𝑟,  
 

(22)= (15)+ 
 

𝐻𝑒(

[
 
 
 
 
 

𝐻𝑖

𝜆2𝐻𝑖

𝜆3𝐻𝑖

0
0
0 ]

 
 
 
 
 

∆(𝑡) [0
𝐸𝑖𝑈+𝐸2𝑖𝑌𝑗+𝐸𝑗𝑈+𝐸2𝑗𝑌𝑖

2

𝐸𝜏𝑖𝑈+𝐸𝜏𝑗𝑈

2
0 0 0]) < 0.  

 

where 𝐻𝑒(𝐺) Hermitian operator is defined as 𝐻𝑒(𝐺) = 𝐺 + 𝐺𝑇 . Finally, the following 

inequality is employed [36] 
 

Ω∆(𝑡)₣ + ₣𝑇∆(𝑡)𝑇Ω𝑇 ≤ 𝜖𝑖𝑖
−1ΩΩ𝑇 + 𝜖𝑖𝑖₣

𝑇₣.  
 

which holds for all scalars 𝜖𝑖𝑖 , 𝑖 = 𝑗, and 𝜖𝑖𝑗, 𝑖 < 𝑗, and all constant matrices Ω and ₣ of 

appropriate dimension. Schur complement formula is employed to (14-15) to finally compute the 

LMIs in (19-20).                                                                                                               ∎ 
 

4. NUMERICAL EXAMPLES 

 

Example 1: The following is adopted and modified from [26]. Uncertain T-S fuzzy time-delay 

model is: 
 

Rule 1: IF 𝑥2(𝑡) is 𝑀1 THEN 
 

�̇�(𝑡) =  (𝐴1 + 𝐻∆(𝑡)𝐸)𝑥(𝑡) + (𝐴𝜏1 + 𝐻∆(𝑡)𝐸)𝑥(𝑡 − 𝜏(𝑡)) + 𝐵11𝑤(𝑡) + (𝐵21 + 𝐻∆(𝑡)𝐸)𝑢(𝑡), 
𝑧(𝑡) = 𝐶11𝑥(𝑡) + 𝐷21𝑢(𝑡), 
 

Rule 2: IF 𝑥2(𝑡) is 𝑀2 THEN 
 

�̇�(𝑡) =  (𝐴2 + 𝐻∆(𝑡)𝐸)𝑥(𝑡) + (𝐴ℎ2 + 𝐻∆(𝑡)𝐸)𝑥(𝑡 − 𝜏(𝑡)) + 𝐵12𝑤(𝑡) + (𝐵22 + 𝐻∆(𝑡)𝐸)𝑢(𝑡), 
𝑧(𝑡) = 𝐶12𝑥(𝑡) + 𝐷22𝑢(𝑡). 
 

where 
  

𝐴1 = [
0.3 0.1
0 0.2

], 𝐴𝜏1 = [
−1 0.4
0.2 0.1

], 𝐵11 = [
1 0
0 1

], 𝐵21 = [
0.1 0.4
0 −1

], 𝐶11 = [
0.1 1
0 1

],  

𝐷21 = [
0.3 −0.3
0 0.2

],  

𝐴2 = [
0.1 0.3
0.7 0.1

], 𝐴𝜏2 = [
0.1 0
0.5 0.4

], 𝐵12 = [
1 0
0 1

], 𝐵22 = [
0.2 1
0.4 −0.3

], 𝐶12 = [
0.1 0.4
0 0.1

],  

𝐷22 = [
0.2 0
0 −0.1

], 𝐻 = [
−0.1 0
0.1 −0.1

],  𝐸 = [
0.1 0
0 0.1

], ∆(𝑡) = [
𝑐𝑜𝑠𝑡 0
0 𝑠𝑖𝑛𝑡

]  
 

To present a comparison study, the disturbance attenuation level is chosen as 𝛾 = 2. 
According to the Theorem 3 in this paper, Table 1 provides maximum allowable time delay 

bounds for different delay variation rates below 
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Table 1. Comparison of maximum allowable time delay 
 

�̇� 0.1 0.5 0.9 1.1 5×105 

𝜏𝑚𝑎𝑥 [26] 0.9103 0.8763 0.7832 0.7454 0.7454 

𝜏𝑚𝑎𝑥 [27] 0.9450 0.8997 0.7941 0.7480 Not reported 

𝜏𝑚𝑎𝑥 of Theorem 3 0.9667 0.9238 0.8322 0.7959 0.7959 

 

LMIs (19-20) are simultaneously solved to compute the maximum time-delay allowing for 

controller synthesis with respect to different delay variation rates  
�̇� using cvx route semidefinite programming mode. The solution is sensitive to the selections of 

the 𝜆2 and 𝜆3. After an 2-D search, 𝜆2=2.72 and 𝜆3=-0.5 are obtained. As observed from the 

upper bounds on the allowable delay in Table 1, the method proposed in this paper exhibits 

improved performance.  
 

Example 2: This example is to control of a truck trailer [2]. The uncertain time-delay state-space 

model is given as  

 

�̇�1(𝑡) = −𝑎
𝑣𝑡̅

(𝐿+∆𝐿(𝑡))𝑡0
𝑥1(𝑡) − (1 − 𝑎)

𝑣𝑡̅

(𝐿+∆𝐿(𝑡))𝑡0
𝑥1(𝑡 − 𝜏(𝑡)) + 𝑤(𝑡) +

𝑣𝑡̅

𝑙𝑡0
𝑢(𝑡),  

�̇�2(𝑡) = 𝑎
𝑣𝑡̅

(𝐿+∆𝐿(𝑡))𝑡0
𝑥1(𝑡) + (1 − 𝑎)

𝑣𝑡̅

(𝐿+∆𝐿(𝑡))𝑡0
𝑥1(𝑡 − 𝜏(𝑡)),  

�̇�3(𝑡) =
𝑣𝑡̅

𝑡0
sin [𝑥2(𝑡) + 𝑎

𝑣𝑡̅

2(𝐿+∆𝐿(𝑡))𝑡0
𝑥1(𝑡) + (1 − 𝑎)

𝑣𝑡̅

2(𝐿+∆𝐿(𝑡))𝑡0
𝑥1(𝑡 − 𝜏(𝑡))].  

 

The values are stated as  𝑎=0.7,  𝑙 = 2.8,    𝐿 = 5.5,  𝑣 = -1.0,  𝑡̅ = 2.0,   𝑡0 = 0.5, and −0.2619 

≤ ∆𝐿(𝑡) ≤ 0.2895 same as [28]. 

The following fuzzy rules describe the behavior of the local dynamics of the fuzzy uncertain 

system 
 

Rule 1:  IF 𝜃(𝑡) =  𝑥2(𝑡) + 𝑎
𝑣𝑡̅

2𝐿
𝑥1(𝑡) + (1 − 𝑎)𝑥1(𝑡 − 𝜏(𝑡)) is about 0, 

 

THEN �̇�(𝑡) =  (𝐴1 + ∆𝐴1)𝑥(𝑡) + (𝐴𝜏1 + ∆𝐴𝜏1)𝑥(𝑡 − 𝜏(𝑡)) + 𝐵11𝑤(𝑡) + 𝐵21𝑢(𝑡), 
 

Rule 2:  IF 𝜃(𝑡) =  𝑥2(𝑡) + 𝑎
𝑣𝑡̅

2𝐿
𝑥1(𝑡) + (1 − 𝑎)𝑥1(𝑡 − 𝜏(𝑡)) is about 𝜋 or −𝜋, 

 

THEN �̇�(𝑡) =  (𝐴2 + ∆𝐴2)𝑥(𝑡) + (𝐴𝜏2 + ∆𝐴𝜏2)𝑥(𝑡 − 𝜏(𝑡)) + 𝐵12𝑤(𝑡) + 𝐵22𝑢(𝑡), 
 

where  
 

𝐴1 =  

[
 
 
 
 −𝑎

𝑣𝑡̅

𝐿𝑡0
0 0

𝑎
𝑣𝑡̅

𝐿𝑡0
0 0

𝑎
𝑣2𝑡̅2

2𝐿𝑡0

𝑣𝑡̅

𝑡0
0]
 
 
 
 

, 𝐴𝜏1 =  

[
 
 
 
 −(1 − 𝑎)

𝑣𝑡̅

𝐿𝑡0
0 0

(1 − 𝑎)
𝑣𝑡̅

𝐿𝑡0
0 0

(1 − 𝑎)
𝑣2𝑡̅2

2𝐿𝑡0
0 0]

 
 
 
 

, 𝐵11 = [
1
0
0
] , 𝐵21 = [

𝑣𝑡̅

𝑙𝑡0

0
0

],  

𝐴2 = 

[
 
 
 
 −𝑎

𝑣𝑡̅

𝐿𝑡0
0 0

𝑎
𝑣𝑡̅

𝐿𝑡0
0 0

𝑎
𝑑𝑣2𝑡̅2

2𝐿𝑡0

𝑣𝑡̅

𝑡0
0]
 
 
 
 

, 𝐴𝜏2 = 

[
 
 
 
 −(1 − 𝑎)

𝑣𝑡̅

𝐿𝑡0
0 0

(1 − 𝑎)
𝑣𝑡̅

𝐿𝑡0
0 0

(1 − 𝑎)
𝑑𝑣2𝑡̅2

2𝐿𝑡0
0 0]

 
 
 
 

, 𝐵12 = [
1
0
0
] ,

 
𝐵22

= [

𝑣𝑡̅

𝑙𝑡0

0
0

].  

 

∆𝐴1 = ∆𝐴𝜏1 = ∆𝐴2 = ∆𝐴𝜏2 = 𝐻∆(𝑡)𝐸 with 𝐻 = [0.255 0.255 0.255]𝑇 , 𝐸 =  [0.1 0 0], and 

∆(𝑡) = sin(𝑡). 
 

The value for 𝑑 = 10 ∗ 𝑡0/𝜋 and the following is the membership functions 
 

ℎ1(𝜃(𝑡)) = (1 −
1

1+exp (−3(𝜃(𝑡)−0.5𝜋))
) (

1

1+exp (−3(𝜃(𝑡)+0.5𝜋))
), ℎ2(𝜃(𝑡)) = 1 − ℎ1(𝜃(𝑡)).  
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Figure 1. Disturbance profile. 

 

 
 

Figure 2. Initial condition response for (𝜏(𝑡) =  0.5sin (𝑡)). 
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Figure 3. Initial condition response for (𝜏(𝑡) =  sin (𝑡)). 

 

 
 

Figure 4. Initial condition response for (𝜏(𝑡) =  5sin (𝑡)). 

 

The simulation are performed for an initial condition  𝜙(·) = [0.2 -0.4 -1.2], and time-varying 

delays: 𝜏 ∈ [−0.5 0], 𝜏 ∈ [−1 0], and 𝜏 ∈ [−5 0]. The fuzzy control law 𝑢(𝑡) =

 ∑ ℎ𝑖𝐾𝑖𝑥(𝑡)2
𝑖=1  is applied to the system. The controller gains are computed using cvx route. The 

regulated output is set 𝑧1(𝑡) = 𝑧2(𝑡) = [1 0 0]𝑥(𝑡), and Figure 1 shows the applied disturbance 

profile to analyze the performance of the presented system. It is noted that the designed robust 

fuzzy 𝐻∞ state-feedback control law seeks to minimize the induced ℒ2 norm, i.e., the energy-to-

energy norm from disturbance 𝑑(𝑡) to output 𝑧(𝑡). Figures 2-4 depict state responses of the truck 

trailer system under the designed fuzzy controller for three different levels of upper delay bound. 
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For the first case, the delay is bounded within 0-0.5 seconds with the highest value (𝜏𝑚𝑎𝑥)  of 0.5 

seconds. The induced ℒ2 (𝛾 disturbance attenuation level) performance level is obtained as 

+0.0454709, which guarantees the internal stability of the system with time-varying delay. In the 

second case, the delay is varied within 0-1 second with the highest value (𝜏𝑚𝑎𝑥)  of 1 second and 

the induced ℒ2 performance level is obtained as +0.103349. One should note that the appropriate 

selection of 𝜆2 and 𝜆3 is vital, and the assigned values are 15 and 0.35, respectively. The initial 

condition plots in Figures 2-3 ensure that output of the states converges to zero within a short 

period of time, as well as the fuzzy controller possesses an improved disturbance rejection. As 

observed in Figure 2, a better disturbance rejection and better state convergence are achieved for 

𝜏(𝑡) = 0.5 sin(𝑡). In addition, it is interpreted that the negative impacts of time-varying delay on 

the regulated output are less than that of the case in Figure 3. Generally speaking, delay bound 

degenerate the closed-loop stability and performance at high values. To this end, the case of 

𝜏(𝑡) =  5sin (𝑡) is also plotted in Figure 4, which results in larger overshot on the state outputs 

along with a significant deterioration of the disturbance rejection. The induced ℒ2 performance 

level is obtained as +1.59838. The system states converge to zero value after a reasonable time 

period. It is proven that the proposed design can even handle high delay bound, wherein the 

presented system is internally stabilized with improved disturbance rejection. The simulation 

results show that the uncertain systems with time-varying delays are effectively controlled using 

the proposed robust control strategy. 

 

5. CONCLUSION 

 

Delay-dependent stabilization and robust 𝐻∞ control design for uncertain Takagi-Sugeno 

fuzzy systems with time-varying delay are studied in this paper. The nonlinear models are 

reformulated within the Takagi-Sugeno framework, and resulting individual sub-models are 

blended by the fuzzy operation of weighting functions. Lyapunov-Krasovskii functionals are 

employed to accommodate different types of delay in size and bound. Both the stability and 

performance conditions are realized through a set of linear matrix inequalities to derive a robust 

fuzzy controller. In the sequel, two numerical examples are provided. In the first example, we 

compute the maximum time-delay allowing for controller synthesis with respect to different delay 

variation rates. In the second example, we plot the time histories of the initial condition 

stabilization of an uncertain T-S fuzzy system for different delay ranges and bounds. 
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