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ABSTRACT 

 

This study presents a mixed type finite element procedure for the linear buckling analysis of moderately thick 

plates lying on orthotropic elastic foundation. Kinematical expressions are due to the Mindlin plate theory and 

von Kármán strains. The force intensity exerted by orthotropic foundation on the plate is reflected according 
to the Pasternak model. Material directions of the foundation coincides with the global axes of the plate. The 

first variation of the systems nonlinear functional is obtained by following the Hellinger-Reissner principle. 

This expression is linearized according to the incremental formulation, thus the system and geometric matrices 
of the problem are obtained. Finite element equations are constructed by discretizing the plate domain with 

four noded isoparametric quadrilateral elements. After a static condensation procedure, force and couple type 

field variables are removed from the equations in order to reduce the problem into the solution of a standard 
Eigen-value system. Firstly, a convergence and comparison study is presented to verify the formulation and 

numerical procedure. The effects of foundation and plate parameters on the critical buckling loads are 

investigated.  
Keywords: Mindlin plate, orthotropic pasternak foundation, Hellinger-Reissner, mixed finite elements, linear 

buckling. 

 

 

1. INTRODUCTION 

 

Structural elements encounter different loading cases under their service conditions. It is 

especially important for thin-walled structures (e.g. columns, plates, shells) to be analyzed by 

means of buckling states in order to build a proper design. Determination of critical load of linear 

elastic buckling is therefore a crucial step for structural systems. Limited to some special cases, 

elastic buckling loads of structures can be determined analytically [1]. It is well known that, 

mechanical responses of structures are dramatically affected from the interaction with an elastic 

medium [2]. This complicated state can be simulated using simple mechanical models e.g. elastic 

foundation assumptions. The literature on buckling analysis of plates resting on elastic foundation 

involves various plate theories (Classical Plate Theory (CPT), First Order Shear Deformation 

Theory (FSDT) etc.) and solution methods. Xiang et al. [3] presented an analytical solution for 

the  free vibration analysis of Mindlin plates resting on Pasternak foundation under the action of 

in-plane loading. As a special case of the problem they also presented expressions for buckling 
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analysis. Xiang et a l. [4], expanded the problem in [3] to the analysis of simply supported 

symmetrically laminated cross-plies. Lam et al. [5] presented exact solutions for static, free 

vibration and buckling analyses of Levy plates on Pasternak foundation. In order to solve the 

problem presented in [3] for different boundary conditions and nonuniform loading case Akhavan 

et al. [6] suggested an exact solution procedure. Matsunaga [7] employed power series to obtain 

free vibration and buckling characteristics of higher order shear deformable plates interacting 

with two parameter foundation. Park and Choi [8] adopted simplified FSDT and presented an 

analytical solution procedure for bending, free vibration and buckling analyses of plates resting 

on Pasternak foundation. Doğruoğlu and Omurtag [9] performed the buckling analysis of 

laminated composite thin plates  resting on Pasternak foundation by introducing a mixed finite 

element method (MFEM). Setoodeh and Karami [10] employed a finite element procedure based 

on 3D elasticity theory to investigate static, free vibration and buckling behavior of plates with 

distributed and point type elastic supports. Recently, Kutlu and Omurtag [11] presented a mixed 

finite element solution of the linear buckling problem of moderately thick plates resting on 

isotropic Pasternak foundation. This study extends the study of the authors [11] by presenting a 

mixed finite element solution procedure for the linear buckling analysis of isotropic and 

homogeneous FSDT plates resting on orthotropic foundation. The field equations of the problem 

are based on the von Kármán deformation field and Mindlin plate assumptions. Different shear 

foundation parameters are taken into account in global coordinate directions to reflect a 

orthotropic version of Pasternak foundation model. Hellinger-Reissner variational principle is 

used to obtain the first variation of the defined problem. Nonlinear expression is linearized 

according to incremental formulation, hence the system and geometric matrices are determined. 

Plate domain is discretized by four noded quadrilateral elements where field variables are 

interpolated by bilinear shape functions. Integrals are calculated numerically according to 2 2  

Gauss scheme. Generated system and geometric matrices are condensed statically in order to 

produce a standard eigen-value system. Firstly, the proposed formulation and numerical scheme is 

verified through some convergence studies. The effect of foundation and plate parameters on the 

buckling load is examined by introducing some original results. 

 

2. FIELD EQUATIONS AND FORMULATION 

 

Under the assumptions of Mindlin plate theory, mid-plane deformations (   and  ) and 

curvatures ( ) of a plate involving von Kármán terms can be described in terms of the 

displacement field as follows [12]: 
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        (1) 

 

Here, , ,u v w  are mid-plane displacements of the plate in global , ,x y z  directions and 
x  and 

y  are rotation of plate sections about y  and x  axes respectively. In subscripts, the terms 

inserted after a comma refers to a partial derivative of the variable with respect to that term.  

Equilibrium equations of a large deflecting Mindlin plate interacting with orthotropic foundation 

can be expressed as follows [13]. 

Here k  is the Winkler parameter and fxG  and fyG  are shear foundation parameters in global 

x  and y  directions, respectively. , ,xx yy xyN N N  are in-plane forces, , ,xx yy xyM M M  are moments 

and ,xz yzQ Q  are transverse shear forces. , ,x y zq q q  refer to the intensity of external loads acting in 

, ,x y z  directions, respectively (Fig. 1). The Hellinger-Reissner variational principle describes the 

first variation of a system as follows [14]: 
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Figure 1.  a) Directions of the stress res ultants of the plate interacting with foundation   b) Plate 

dimensions  

 

According to Eq. (3), both sets of constitutive equations and equilibrium equations are 

satisfied in a weak form.  Inserting field Eqs. (1) and (2) in Eq. (3) yields the first variation of the 

system: 
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Here, E , G  and h  are Young modulus, shear modulus and thickness of the plate 

respectively.   reflects domain of plate’s mid-plane and   denotes plate boundary where t̂  is 
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traction at the boundary. The first variation with given in Eq. (4) involves both displacement and 

stress resultant type field variables with nonlinear terms. Applying the incremental formulation 

[15] yields the following scheme for an iterative ( iterationstep)i   solution of static problem: 
 

( 1) ( ) ( 1) ( ) ( 1) ( );( )nl i i i i i i
     

      K K X F K X X X                                                                  (5) 
 

Here 


K  collects the linear part of system matrix while  ( 1)nl i


K  involves nonlinear terms. 


F

is the external load vector and ( 1)i



K  is the state vector. X  is the vector of field variables, 

namely displacements, forces and force couples. In order to revolve into a buckling analysis, in-

plane force components will be considered constant which yields their variations become zero 

0xx yy xyN N N     . Finally, neglecting the external loads on the system Eq. (5) becomes an 

eigen-values system: 
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Here, b corresponds to the critical value of the in-plane loading regarding the buckling load.  

Kg is the geometric matrix of the system. After eliminating the stress resultant type field variables 

from Eq. (6), a system in terms of displacements can be obtained. After static condensation the 

condensed system matrix is obtained as follows: 
 

       
T 1*

uu su ss su


    K k k k k                                                                                                  (7)  

 

Hence, the following form of the eigen-value problem can be expressed: 
 

    * 0T

b g      K K U                                                                                                        (8) 
 

U  reflect the mode vector (eigen-vector) corresponding to a buckling load of the system 

obtained from Eq. (8) as an eigen-value.  

 

3. NUMERICAL RESULTS 

 

In order to verify the proposed procedure and numerical solution, some comparison and 

convergence analyses are performed for square plates. Then the effect of orthotropic foundation 

parameters on the buckling results of rectangular plates of different parameters will be discussed. 

First, a very thin plate is analyzed without a contact with foundation and then thin plate and 

moderately thick plate cases are considered with foundation interaction. Dimensions ,a b  denotes 

side length of rectangular plate along ,x y  directions, respectively (Fig. 1b). In terms of plate’s 

bending rigidity 3 2/12(1 )D Eh    and side length, foundation parameters and buckling load 

are presented in nondimensional form as 4 /k kb D , 
2 /f fG G b D , and 

2 /b bN N b D . 

Poisson’s ratio of the plate is kept constant 0.3   in calculations. 
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a)                                                                    b) 

 

Figure 2.  Uniaxially loaded plate a) SSSS boundary conditions b) SCSC boundary conditions 

 

3.1. Convergence and Comparison Example 1: Very Thin Plate (No Foundation) 

 

The proposed mixed finite element formulation overcomes the shear locking problem which 

is encountered in shear deformable plate solutions. In order to reflect this property of the 

formulation, a very thin square plate ( / 1000b h  ) is handled. Four edges of the plate are 

considered to be simply supported. A range from 4 to 400 elements are employed in domain 

discretization and convergence is observed for increasing number of elements. Critical value of 

the uniformly acting unidirectional in-plane load (Fig. 2a) is presented in Fig. 3 and compared 

with the result given in [8] (Table 4). Observing Fig. 3 yields that the mixed finite element 

solution for very thin plate case converges consistently and is in very good agreement with 

literature. For instance, 20 20  mesh configuration has a difference of 0.2% with CPT result. 

This example reveals that the formulation does not suffer shear locking problem and gives good 

results even for very thin plate case. 

 

 
 

Figure 3. Critical buckling load 
2/bN   of simply supported very thin square plate with respect 

to number of elements  

 

3.2. Convergence and Comparison Example 2: Thin Plate on Isotropic Elastic Foundation 

 

In this example, buckling loads are calculated for thin ( / 100b h  ) square plates resting on 

Pasternak foundation and under the action of a uniaxial loading along x  direction. 

Nondimensional foundation parameters are selected as 100k   and 10fx fyG G   and results 

are compared with the exact solutions presented in [6]. Nondimensional buckling loads of SSSS 

(Fig. 2a) and SCSC (Fig. 2b) supported plates are presented in Fig. 4. Denoting number of half 

waves in ( ,x y ) directions as (m,n); buckling loads corresponding to (m,n)=(1,1) mode and 
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(m,n)=(2,1) mode are calculated for SSSS and SCSC plate, respectively. According to Fig. 4, a 

consistent convergence behavior and good agreement with exact solution is obtained for both 

support configurations. However, it is observed that results of SSSS plate converges faster 

compared to CCCC plate.  

 

 
a)                                                                         b) 

 

Figure 4.  Nondimensional buckling load bN  of thin square plate resting on Pasternak foundation 

a) SSSS Plate b) SCSC Plate 

 

3.3. Convergence and Comparison Example 3: Moderately Thick Square Plate on Elastic 

Foundation 

 

This example updates the parameters of the Example 2 by changing the thickness to width 

ratio to / 10b h  . This moderately thick plate is investigated under the SSSS boundary 

condition. The critical buckling load of the square plate is compared with the results presented in 

[6] and given in Fig. 5. A consistent convergence behavior is also observed in this example. 

However, compared to thin plate case, a minor difference with the results of [6] is noticed.  

 

 
 

Figure 5.  Nondimensional buckling load bN  of moderately thick square plate resting on 

Pasternak foundation 
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3.4. Orthotropic Foundation Example:  Effect of Shear Foundation Parameter and Aspect 

Ratio on Buckling Load of Plates with Different Thickness 

 

This example introduces some linear buckling loads of rectangular plates resting on 

orthotropic Pasternak foundation. For this purpose, the Winkler foundation parameter is kept 

constant  100k   and three different foundation configurations are considered, namely ( , )fx fyG G

=(10,10),(10,20),(10,40). Three different aspect ratios are selected as /a b   1,1.5,2 and two 

different thickness to width ratios are chosen, namely /h b  0.01,0.1. Regarding the presented 

convergence analyses, three different mesh configurations of 16 16 , 24 16 , 32 16  elements 

are employed in three different plate domains of  aspect ratios /a b   1,1.5,2, respectively. 

mode is presented in Table 1 for different foundation and plate parameters. It is observed from the 

Table 1 that as shear foundation parameter and plate aspect ratio increases, the buckling load is 

less effected from the increase of thickness to width ratio. The effect of aspect ratio on the 

buckling load increases as the ratio of shear foundation parameters ( /fy fxG G ) increases. 

However, this effect is almost the same for different thickness to width ratios of the plate. Finally, 

as expected the change in /fy fxG G  ratio becomes more influential on the buckling load of the 

plate as the aspect ratio ( / )a b  diverges from 1. 

 

Table 1. Buckling load ( bN ) of uniaxially loaded simply supported rectangular plates for 

different foundation and plate configurations corresponding to (m,n)=(1,1) mode 
 

 
 

 / 0.01h b    / 0.1h b   

 ( , )fx fyG G   (10,10) (10,20) (10,40)  (10,10) (10,20) (10,40) 

 
1 

 
69.4166 79.4149 99.4116 

 
66.3711 76.2258 95.9353 

a/b 
1.5 

 
101.5391 124.0766 169.1516 

 
98.6770 120.9726 165.5639 

 
2 

 
152.1889 192.2812 272.4659 

 
148.7013 168.2994 267.8478 

 

4. CONCLUSION 

 

This study proposes a finite element formulation for the linear buckling analysis of 

moderately thick plates resting on orthotropic foundation. Shear deformation of the plate is based 

on Mindlin plate assumptions. Using von Kármán deformations differential equations of the plate 

regarding large deflection problem are obtained. Pasternak foundation model in orthotropic form 

is included in the formulation where material directions of the foundation coincide with global 

axes. First, variation of the problem’s functional is obtained by following the Hellinger-Reissner 

variational principle. Next, this nonlinear equation is linearized according to incremental 

formulation to yield system and geometric matrices. For the numerical procedures, four noded 

quadrilateral elements with bilinear shape functions are employed where a 2×2 Gauss scheme is 

adopted for the calculation of integrals. After constructing the system matrix, it is condensed by 

eliminating stress resultant type field variables to construct a standard eigen-value problem. The 

proposed mixed formulation is verified through some convergence and comparison analyses. It is 

shown that the mixed formulation does not suffer shear locking problem. Some original results 

are presented to the literature by investigating the effect of orthotropic foundation parameters and 

aspect ratio of the plate on the buckling behavior of the plate. 
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