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ABSTRACT 

 

In this paper, we prove some fixed point properties and demiclosedness principle for multivalued generalized 

𝛼-nonexpansive mappings in uniformly convex hyperbolic spaces. We also proposed a three steps iterative 

scheme for approximating the common fixed points of generalized 𝛼-nonexpansive mapping and prove some 

strong and Δ-convergence theorems for such operator in the setting of uniformly convex hyperbolic space. We 
provide a numerical example to show that the three steps scheme proposed in this paper performs better than 
the modified SP-iterative scheme. The results obtained in this paper extend and generalized the corresponding 

results in uniformly convex Banach spaces, CAT(0) space and many other results in this direction.  

Keywords: Generalized nonexpansive, three steps iteration, multivalued mappings, hyperbolic spaces, fixed 
point theorems. 
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1. INTRODUCTION 

 

The study of fixed point theory for nonexpansive mappings have found numerous applications 

in differential equations, integral equations, signal processing, convex optimization and control 

theory. The existence of fixed points for single-valued nonexpansive mappings was first studied 

by Browder [4] in 1965 in a real Hilbert space. This was further extended to a uniformly convex 

Banach space by Browder in [5] and Göhde in [11], and to a reflexive Banach space by Goebel 

and Kirk [10, 18]. The study of fixed points of multivalued nonexpansive mappings was initiated 

by Markin [24] and Nadler [26] using the concept of Hausdorff metric. 

Let 𝑋 be a metric space and 𝐾 be a nonempty subset of 𝑋. The set 𝐾 is called proximal if for 

each 𝑥 ∈ 𝑋, there exists an element 𝑦 ∈ 𝐾 such that  
 

𝑑(𝑥, 𝑦) = 𝑑(𝑥, 𝐾):= inf{𝑑(𝑥, 𝑧): 𝑧 ∈ 𝐾}. 
 

It is well known that each weakly compact subset of a Banach space and each closed convex 

subset of a uniformly convex Banach space are proximal. Let 𝐶𝐵(𝑋) be the collection of all 
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nonempty closed and bounded subsets and 𝑃(𝑋) be the collection of all nonempty proximal 

bounded and closed subsets of 𝑋. The Hausdorff distance on 𝐶𝐵(𝑋) is defined by  
 

𝐻(𝐴, 𝐵) = max {sup
𝑥∈𝐴

𝑑(𝑥, 𝐵), sup
𝑦∈𝐵

𝑑(𝑦, 𝐴)},    ∀ 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋).  

 

 Note that for all 𝑎 ∈ 𝐴, 𝑑(𝑎, 𝐵) ≤ 𝐻(𝐴, 𝐵). 
A multivalued mapping 𝑇: 𝑋 → 𝐶𝐵(𝑋) is said to be nonexpansive if  

 

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦)    ∀ 𝑥, 𝑦 ∈ 𝑋.  
 

A point 𝑥 ∈ 𝑋 is called a fixed point of 𝑇 if 𝑥 ∈ 𝑇𝑥. We denote the set of fixed points of 𝑇 by 

𝐹(𝑇) and 𝑃𝑇(𝑥) = {𝑦 ∈ 𝑇𝑥: 𝑑(𝑥, 𝑦) = 𝑑(𝑥, 𝑇𝑥)}. If 𝐹(𝑇) ≠ ∅, then 𝑇 is said to be quasi 

nonexpansive if  
 

𝐻(𝑇𝑥, 𝑝) ≤ 𝑑(𝑥, 𝑝)    ∀ 𝑥 ∈ 𝑋, 𝑝 ∈ 𝐹(𝑇).  
 

The theory of multivalued mapping is more difficult than the corresponding theory of single-

valued. Shimizo and Takahashi [35] showed the existence of fixed points for a multivalued 

nonexpansive mapping in a convex metric space. Since then, many authors have studied the 

approximation of fixed points of multivalued nonexpansive mappings using different iterative 

schemes (see, [1, 25, 15, 17, 29, 32, 36, 37, 38]). 

Beside the nonlinear mappings involved in the study of fixed point theory, the role played by 

the ambient spaces involved in a fixed point problem is also very important. It is well known that 

the Banach spaces with convex structures have been studied to a great extent in this regard. This 

is mainly because the Banach spaces are vector space and so it is easier to introduce a convex 

structure in them. However, the metric space does not naturally enjoy such structure. Hence, there 

is need to introduce convex structure in the metric space. The notion of convex metric spaces was 

first coined and introduced by Takahashi [41] for studying fixed point theory for nonexpansive 

mappings in convex metric space. Several other attempts have been made to introduce different 

convex structure on metric spaces. The hyperbolic space is an example of a metric space with 

convex structure. In fact, different convex structures have been introduce to the hyperbolic space 

which results in different definitions of hyperbolic space (see [8, 20, 31]). 

We note that although, the class of hyperbolic spaces introduced by Kohlenbach [20] is 

slightly restrictive than the class of hyperbolic spaces defined in [8], it is however, more general 

than the class of hyperbolic spaces introduced in [31]. More so, the Banach space and CAT(0) 

spaces are examples of hyperbolic spaces introduced in [20]. More examples of this class of 

hyperbolic space includes Hadamard manifolds, Hilbert ball with hyperbolic metric, Cartesian 

products of Hilbert balls and ℝ-trees. For more examples and details on hyperbolic spaces, the 

reader can see (for instance) [8, 9, 20, 31]. 

Throughout this paper, we consider the hyperbolic space which is defined by Kohlenbach [20] 

as follows: 
 

Definition 1.1  A hyperbolic space (𝑋, 𝑑,𝑊) is a metric space (𝑋, 𝑑) together with a convexity 

mapping 𝑊:𝑋2 × [0,1] → 𝑋 satisfying 
 

(i) 𝑑(𝑢,𝑊(𝑥, 𝑦, 𝛼)) ≤ 𝛼𝑑(𝑢, 𝑥) + (1 − 𝛼)𝑑(𝑢, 𝑦); 
(ii) 𝑑(𝑊(𝑥, 𝑦, 𝛼),𝑊(𝑥, 𝑦, 𝛽)) = |𝛼 − 𝛽|𝑑(𝑥, 𝑦); 
(iii) 𝑊(𝑥, 𝑦, 𝛼) = 𝑊(𝑦, 𝑥, 1 − 𝛼); 
(iv) 𝑑(𝑊(𝑥, 𝑧, 𝛼),𝑊(𝑦, 𝑤, 𝛼) ≤ (1 − 𝛼)𝑑(𝑥, 𝑦) + 𝛼𝑑(𝑧, 𝑤), 

 

for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋 and 𝛼, 𝛽 ∈ [0,1].  In the sequel, we shall use the term hyperbolic space 

instead of Kohlenbach hyperbolic space for the sake of simplicity.  

The normal Mann iteration scheme [23] have played a very helpful role in approximating the 

fixed point of a nonexpansive mapping in a Banach space. In 1974, Ishikawa [14] introduced a 

new iterative process which performs better than the Mann iteration for approximating the fixed 

points of nonexpansive mapping as follows:  
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{

𝑥0 ∈ 𝐾,
𝑦𝑛 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛)𝑇𝑥𝑛,
𝑥𝑛+1 = 𝛼𝑛𝑥𝑛 + (1 − 𝛼𝑛)𝑇𝑦𝑛 ,    𝑛 ≥ 0,

                                                                                 (1.1) 

 

where {𝛼𝑛} and {𝛽𝑛} are sequences in [0,1], and 𝐾 is a nonempty closed and convex subset of 

a real Hilbert space. Sastry and Babu [32] further developed an analogue of the Ishikawa iteration 

for multivalued nonexpansive mappings in Hilbert space as follows:  
  

{

𝑥0 ∈ 𝐾,
𝑦𝑛 = (1 − 𝛽𝑛)𝑥𝑛 + 𝛽𝑛𝑧𝑛,

𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑧𝑛
′ ,    𝑛 ≥ 0,

  

 

where 𝛼, 𝛽 ∈ 0,1], 𝑧𝑛 ∈ 𝑇𝑥𝑛 such that ||𝑧𝑛 − 𝑝|| = 𝑑(𝑝, 𝑇𝑥𝑛) and 𝑧𝑛
′ ∈ 𝑇𝑦𝑛 such that 

||𝑧𝑛
′ − 𝑝|| = 𝑑(𝑝, 𝑇𝑦𝑛), 𝐾 is a nonempty closed and convex subset of a Hilbert space. 

Phuengrattana and Suntai [30] also introduced the following algorithm called SP-iteration as a 

generalization of the Mann, Ishikawa and Noor [27] iterations for approximating the fixed points 

of a nonexpansive mapping 𝑇:𝐾 → 𝐾 in a uniformly convex Banach space:  
  

{

𝑥0 ∈ 𝐾,
𝑥𝑛+1 = (1 − 𝛼𝑛)𝑣𝑛 + 𝛼𝑛𝑇𝑣𝑛,

𝑦𝑛 = (1 − 𝛽𝑛)𝑤𝑛 + 𝛽𝑛𝑇𝑤𝑛 ,
𝑤𝑛 = (1 − 𝛾𝑛)𝑥𝑛 + 𝛾𝑛𝑇𝑥𝑛,

                                                                                              (1.2) 

 

{𝛼𝑛}, {𝛽𝑛}, {𝛾} are real sequences in [0,1]. They also showed that the SP-iteration converges 

faster than the Mann, Ishikawa and Noor iterations for the class of continuous and non-decreasing 

function. 

The following iteration process is a translation of the SP-iteration scheme from Banach space 

to hyperbolic space (see [30]): For a given 𝑥0 ∈ 𝐾, {𝑥𝑛} is defined by  
 

{

𝑧𝑛 = 𝑊(𝑥𝑛 , 𝑇𝑥𝑛, 𝛾𝑛),

𝑦𝑛 = 𝑊(𝑧𝑛 , 𝑇𝑧𝑛 , 𝛽𝑛),
𝑥𝑛+1 = 𝑊(𝑦𝑛, 𝑇𝑦𝑛, 𝛼𝑛),

 

 

where 𝐾 is a nonempty, closed and convex subset of a complete uniformly convex hyperbolic 

space 𝑋 with monotone modulus of uniform convexity, 𝑇 is a self mapping and {𝛼𝑛}, {𝛽𝑛} and 

{𝛾𝑛} are sequences in (0,1). 
Recently, Gunduz and Karahan [12] modified the SP-iteration for approximating the common 

fixed points of three multivalued nonexpansive mappings in hyperbolic space:  
  

{

𝑥𝑛+1 = 𝑊(𝑢𝑛, 𝑦𝑛, 𝛼𝑛),

𝑦𝑛 = 𝑊(𝑣𝑛, 𝑧𝑛, 𝛽𝑛),
𝑧𝑛 = 𝑊(𝑤𝑛 , 𝑥𝑛, 𝛾𝑛),

                                                                                                          (1.3) 

 

where 𝑢𝑛 ∈ 𝑃𝑇(𝑦𝑛), 𝑣𝑛 ∈ 𝑃𝑆(𝑧𝑛), 𝑤𝑛 ∈ 𝑃𝑅(𝑥𝑛) and {𝛼𝑛}, {𝛽𝑛}, {𝛾𝑛} are real sequences in 

(0,1). It is well known that an iterative process that approximates the fixed points of nonlinear 

mappings using fewer number of iteration is preferable to iterative process with more number of 

iterations. The three steps iteration was shown by Glowonski and Le Tallec [7] to yield better 

numerical results than the one or two steps iterations. Glowonski and Le Tallec [7] employed 

three steps iterative process to approximate the solutions of the elastoviscoplasticity problem in 

liquid crystal theory and eigenvalues computations. Haubruge et al. [13] further applied the 

Glowinski and Le Tallec [7] iteration scheme to obtain a new splitting type algorithms for solving 

variational inequalities, separable convex programming and minimizing the sum of convex 

functions. They also showed that three steps iteration process lead to highly parallel iterations 

under certain conditions. All these show the importance of studying three steps iteration process 

for approximating solutions of real life problems. 
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In this paper, we introduce a new three steps iteration for approximating the common fixed 

point of three multivalued mappings in hyperbolic spaces. Our algorithm is defined as follows: 

Let 𝐾 be a nonempty convex subset of a hyperbolic space 𝑋. Let 𝑅, 𝑆, 𝑇: 𝐾 → 𝑃(𝐾) be three 

multivalued mappings. Choose 𝑥0 ∈ 𝐾 and define {𝑥𝑛} as follow:  
 

{
 
 

 
 𝑥𝑛+1 = 𝑊 (𝑢𝑛,𝑊 (𝑥𝑛 , 𝑣𝑛,

𝛽𝑛

1−𝛼𝑛
) , 𝛼𝑛) ,

𝑦𝑛 = 𝑊(𝑣𝑛,𝑊 (𝑤𝑛 , 𝑥𝑛,
𝑐𝑛

1−𝑏𝑛
) , 𝑏𝑛) ,

𝑧𝑛 = 𝑊(𝑥𝑛, 𝑤𝑛 , 𝑎𝑛),

                                                                                 (1.4) 

 

where 𝑢𝑛 ∈ 𝑃𝑅(𝑦𝑛), 𝑣𝑛 ∈ 𝑃𝑆(𝑧𝑛), 𝑤𝑛 ∈ 𝑃𝑇(𝑥𝑛) and 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝛼𝑛, 𝛽𝑛 ∈ (0,1) such that 

0 < 𝛼𝑛 + 𝛽𝑛 < 1 and 0 < 𝑏𝑛 + 𝑐𝑛 < 1. 
It is easy to prove that algorithm (1.4) is well defined. Using algorithm (1.4), we study the 

approximation of common fixed points of three generalized 𝛼-nonexpansive mappings. The 

generalized 𝛼-nonexpansive mapping was recently introduced by Pant and Shukla [28] for single-

valued mapping in Banach space. Pant and Shukla [28] showed that the class of generalized 𝛼-

nonexpansive mappings is more general than the class of nonexpansive mappings, Suzuki’s 

generalized nonexpansive mappings and 𝛼-nonexpansive mappings. It is worth mentioning that as 

far as we know, no work has been done on generalized 𝛼-nonexpansive mapping in hyperbolic 

space. Hence, it is necessary to extend the results on generalized 𝛼-nonexpansive mapping from 

uniformly convex Banach spaces to hyperbolic space. 

In this article, we introduce the notion of multivalued generalized 𝛼-nonexpansive mapping in 

hyperbolic spaces. We also give some properties of the fixed points and demiclosedness principle 

of such mapping. Further, using algorithm (1.4), we prove some strong and Δ- convergences for 

approximating the common fixed points of the class of such maps. Hence, our results in this paper 

improve and unify the corresponding results of Pant and Shukla [28], Gunduz and Karahan [12], 

Suanoom et al [39], Mebawondu et al. [25], Khan et al. [15, 16, 17] and many other results in this 

direction. 

 

2.  PRELIMINARIES 

 

In this section, we give some preliminaries, definitions and results which will be used in the 

sequel. 

A hyperbolic space (𝑋, 𝑑,𝑊) is said to be uniformly convex if for any 𝜎 > 0 and 𝜖 ∈ (0,2], 
there exists 𝛿 ∈ (0,1] such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋  
  

𝑑(𝑊(𝑥, 𝑦,
1

2
), 𝑧) ≤ (1 − 𝛿)𝜎, 

 

provided that 𝑑(𝑥, 𝑧) ≤ 𝜎, 𝑑(𝑦, 𝑧) ≤ 𝜎 and 𝑑(𝑥, 𝑦) ≥ 𝜖𝜎. The mapping 𝜂: (0,∞) × (0,2] →
(0,1] which provides such a 𝛿 = 𝜂(𝜎, 𝜖) for given 𝜎 > 0 and 𝜖 ∈ (0,2] is called modulus of 

uniform convexity. We call 𝜂 monotone if it decreases with 𝜎 (for a fixed 𝜖). Also, a subset 𝐾 of a 

hyperbolic space 𝑋 is convex if 𝑊(𝑥, 𝑦, 𝛼) ∈ 𝐾 for all 𝑥, 𝑦 ∈ 𝐾 and 𝛼 ∈ [0,1]. 
 

Definition 2.1 [39] Let 𝐾 be a nonempty subset of a metric space 𝑋 and {𝑥𝑛} be any bounded 

sequence in 𝐾. For 𝑥 ∈ 𝑋, define a continuous functional 𝑟(⋅, {𝑥𝑛}): 𝑋 → [0,∞) by  
 

𝑟(𝑥, {𝑥𝑛}) = limsup
𝑛→∞

𝑑(𝑥, 𝑥𝑛). 
 

The asymptotic radius 𝑟(𝐾, {𝑥𝑛}) of {𝑥𝑛} with respect to 𝐾 is given by  
 

𝑟(𝐾, {𝑥𝑛}) = inf{𝑟(𝑥, {𝑥𝑛}): 𝑥 ∈ 𝑋}. 
 

A point 𝑥 ∈ 𝐾 is said to be an asymptotic center of the sequence {𝑥𝑛} with respect to a subset 

𝐾 ⊆ 𝑋 if  
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𝑟(𝑥, {𝑥𝑛}) = inf{𝑟(𝑦, {𝑥𝑛}): 𝑦 ∈ 𝐾}. 
 

The set of all asymptotic center of {𝑥𝑛} is denoted by 𝐴(𝐾, {𝑥𝑛}). If the asymptotic radius and 

the asymptotic center are taken with respect to 𝑋, then we simply denote them by 𝑟({𝑥𝑛}) and 

𝐴({𝑥𝑛}) respectively. 
 

Definition 2.2 [19] A sequence {𝑥𝑛} in 𝑋 is said to be 𝛥-convergence to 𝑥 ∈ 𝑋 if 𝑥 is the unique 

asymptotic center of {𝑥𝑛𝑘} for every subsequence {𝑥𝑛𝑘} of {𝑥𝑛}.  
 

It is well known that Δ-convergence coincides with weak convergence in Banach spaces with 

Opial’s property (see [21]). We denote the strong convergence of {𝑥𝑛} to 𝑥 ∈ 𝑋 by 𝑥𝑛 → 𝑥.  
The following lemmas will be used in the sequel. 

 

Lemma 2.3 [22] Let (𝑋, 𝑑,𝑊) be a complete uniformly convex hyperbolic space with monotone 

modulus of uniformly convexity 𝜂. Then every bounded sequence {𝑥𝑛} in 𝑋 has a unique 

asymptotic center with respect to any nonempty closed convex subset 𝐾 of 𝑋.  
 

Lemma 2.4 [6] Let 𝑋 be a complete uniformly convex hyperbolic space with monotone modulus 

of uniform convexity 𝜂 and let {𝑥𝑛} be a bounded sequence in 𝑋 with 𝐴({𝑥𝑛}) = {𝑥}. Suppose that 

{𝑥𝑛𝑘} is any subsequence of {𝑥𝑛} with 𝐴({𝑥𝑛𝑘}) = {𝑥1} and {𝑑(𝑥𝑛, 𝑥1)} converges. Then 𝑥 = 𝑥1.  
 

Lemma 2.5 [16] Let (𝑋, 𝑑,𝑊) be a uniformly convex hyperbolic space with monotone modulus 

of uniform convexity 𝜂. Let 𝑥 ∈ 𝑋 and {𝛼𝑛} be a sequence in [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0,1). If {𝑥𝑛} 
and {𝑦𝑛} are sequence in 𝑋 such that 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞𝑑(𝑥𝑛 , 𝑥) ≤ 𝑐, 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞𝑑(𝑦𝑛 , 𝑥) ≤ 𝑐 and 

𝑙𝑖𝑚𝑛→∞𝑑(𝑊(𝑥𝑛 , 𝑦𝑛, 𝛼𝑛), 𝑥) = 𝑐 for some 𝑐 ≥ 0, then 𝑙𝑖𝑚𝑛→∞𝑑(𝑥𝑛, 𝑦𝑛) = 0.  
 

Definition 2.6  Let 𝐾 be a nonempty subset of a hyperbolic space 𝑋 and {𝑥𝑛} be a sequence in 𝑋. 

Then {𝑥𝑛} is called a Fejér monotone sequence with respect to 𝐾 if for all 𝑥 ∈ 𝐾 and 𝑛 ∈ ℕ  
 

𝑑(𝑥𝑛+1, 𝑥) ≤ 𝑑(𝑥𝑛, 𝑥).   

Lemma 2.7 [3] Let 𝐾 be a nonempty closed subset of a complete metric space 𝑋 and {𝑥𝑛} be a 

Féjer monotone sequence with respect to 𝐾. Then {𝑥𝑛} converges to some 𝑥∗ ∈ 𝐾 if and only if 

𝑙𝑖𝑚𝑛→∞𝑑(𝑥𝑛, 𝐾) = 0.  
 

Lemma 2.8 [3] Let {𝑥𝑛} be a sequence in 𝑋 and 𝐾 be a nonempty subset of 𝑋. Suppose 𝑇:𝐾 → 𝐾 

is any nonlinear mapping and the sequence {𝑥𝑛} is Fejér monotone with respect to 𝐾, then we 

have the following: (i) {𝑥𝑛} is bounded, (ii) The sequence {𝑑(𝑥𝑛 , 𝑥
∗)} is decreasing and 

converges for all 𝑥∗ ∈ 𝐹(𝑇), (iii) 𝑙𝑖𝑚𝑛→∞𝑑(𝑥𝑛, 𝐹(𝑇)) exists.  
 

Definition 2.9 A nonlinear mapping 𝑇:𝐾 → 𝐾 is said to be 
  

(i) Suzuki’s generalized nonexpansive (or satisfied condition C) [40] if for all 𝑥, 𝑦 ∈ 𝐾  
 

1

2
𝑑(𝑥, 𝑇𝑥) ≤ 𝑑(𝑥, 𝑦) ⇒ 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦),                                                                           (2.1) 

 

(ii) 𝛼-nonexpansive mapping [2] if for all 𝑥, 𝑦 ∈ 𝐾, 𝛼 ∈ (0,1) and  
 

𝑑(𝑇𝑥, 𝑇𝑦)2 ≤ 𝛼𝑑(𝑇𝑥, 𝑦)2 + 𝛼𝑑(𝑇𝑦, 𝑥)2 + (1 − 2𝛼)𝑑(𝑥, 𝑦)2,                                                 (2.2) 
 

(iii) generalized 𝛼-nonexpansive mapping [28] if for all 𝑥, 𝑦 ∈ 𝐾, 𝛼 ∈ (0,1) and  
 

1

2
𝑑(𝑥, 𝑇𝑥) ≤ 𝑑(𝑥, 𝑦) ⇒ 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑(𝑇𝑥, 𝑦) + 𝛼𝑑(𝑇𝑦, 𝑥) + (1 − 2𝛼)𝑑(𝑥, 𝑦). 

  

Remark 2.10 It is worth mentioning that when 𝛼 = 0, the class of generalized 𝛼-nonexpansive 

mapping reduces to the class of mapping satisfying condition C. Pant and Shukla [28] gave the 

following example of mapping which is generalized 𝛼-nonexpansive but not 𝛼-nonexpansive nor 

satisfies condition C.  
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Example 2.11 [28] Let 𝑋 = {(0,0), (2,0), (0,4), (4,0), (4,5), (5,4)} be a subset of ℝ2. Define a 

norm ∥⋅∥ on 𝑋 by ∥ (𝑥1, 𝑥2) ∥= |𝑥1| + |𝑥2|. Then (𝑋, ∥⋅∥) is a Banach space. Define a mapping 

𝑇: 𝑋 → 𝑋 by  
 

𝑇: (
(0,0), (2,0), (0,4), (4,0), (4,5), (5,4)
(0,0), (0,0), (0,0), (2,0), (4,0), (0,4)

),                                                                                 (2.3) 
 

For 𝛼 =
1

5
,  

 

||𝑇𝑥 − 𝑇𝑦|| ≤ 𝛼||𝑇𝑥 − 𝑦|| + 𝛼||𝑇𝑦 − 𝑥|| + (1 − 2𝛼)||𝑥 − 𝑦||  
 

if (𝑥, 𝑦) ≠ ((4,5), (5,4)). In the case 𝑥 = (4,5) and 𝑦 = (5,4), we have  
 

1

2
||𝑥 − 𝑇𝑥|| =

1

2
||𝑦 − 𝑇𝑦|| =

5

2
> 2 = ||𝑥 − 𝑦||.  

 

Therefore 𝑇 is generalized 𝛼-nonexpansive mapping. 

However, for 𝑥 = (4,5) and 𝑦 = (5,4)  
 

||𝑇𝑥 − 𝑇𝑦||2 = 64 > 42𝛼 + 4  

= 25𝛼 + 25𝛼 + (1 − 2𝛼) ⋅ 4  

= 𝛼||𝑇𝑥 − 𝑦||2 + 𝛼||𝑇𝑦 − 𝑥||2 + (1 − 2𝛼)||𝑥 − 𝑦||2.  
 

This shows that 𝑇 is not an 𝛼-nonexpansive mapping for any 𝛼 < 1. Further, for 𝑥 = (4,0) 
and 𝑦 = (5,4)  

 

1

2
||𝑥 − 𝑇𝑥|| = 1 < 5 = ||𝑥 − 𝑦||,  

 

but  
 

||𝑇𝑥 − 𝑇𝑦|| = 6 > 5 = ||𝑥 − 𝑦||.  
 

So, 𝑇 is not a Suzuki’s generalized nonexpansive mapping.  

Now, we give the definition of generalized alpha-nonexpansive mappings for the multivalued 

mappings in hyperbolic spaces. 
 

Definition 2.12 A multivalued mapping 𝑇:𝐾 → 𝐶𝐵(𝐾) is said to be generalized 𝛼-nonexpansive 

mapping if for all 𝑥, 𝑦 ∈ 𝐾, and 𝛼 ∈ (0,1)  
 

1

2
𝑑(𝑥, 𝑇𝑥) ≤ 𝑑(𝑥, 𝑦) ⇒  

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛼𝑑(𝑥, 𝑇𝑦) + 𝛼𝑑(𝑦, 𝑇𝑥) + (1 − 2𝛼)𝑑(𝑥, 𝑦).                                                        (2.4) 
  

Remark 2.13  Let 𝑇:𝐾 → 𝐶𝐵(𝐾) be a multivalued mapping. If 𝑇 is a nonexpansive mapping, 

then it is clear that 𝑇 is Suzuki’s generalized nonexpansive and thus, 𝑇 is generalized 𝛼-

nonexpansive.  
 

The following example shows that the converse of Remark 2.13 does not hold. 
 

Example 2.14 Let 𝑇: [0,3] → 𝐶𝐵([0,3]) be a mapping defined by  
 

𝑇𝑥 = {
[1,

3

2
],    if    𝑥 = 3,

{0},    if    𝑥 ≠ 3.
  

 

If 𝑥 = 3 and 𝑦 = 2, then  
 

1

2
𝑑(3, 𝑇3) =

3

4
< 1 = |3 − 2|,  
 

and  
 

𝐻(𝑇3, 𝑇2) =
3

2
> 1 = |3 − 2|.  

 

Then 𝑇 is neither nonexpansive nor Suzuki’s generalized nonexpansive. However 𝑇 is 

generalized 𝛼-nonexpansive for 𝛼 =
1

3
.  
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The following Lemma is useful for our results. It gives some properties of the 𝑃𝑇 mapping in 

metric (hence hyperbolic) spaces (see [26, 36]). 
 

Lemma 2.15 Let 𝑇: 𝐾 → 𝑃(𝐾) be a multivalued mapping and 𝑃𝑇𝑥 = {𝑢 ∈ 𝑇𝑥: 𝑑(𝑥, 𝑢) =
𝑑(𝑥, 𝑇𝑥)}. Then the following are equivalent: 
 

(i) 𝐹(𝑇) = 𝐹(𝑃𝑇), 
(ii) 𝑃𝑇𝑝 = {𝑝} for each 𝑝 ∈ 𝐹(𝑇), 
(iii) For each 𝑥 ∈ 𝐾, 𝑃𝑇𝑥 is a closed subset of 𝑇𝑥 and so it is compact, 

(iv) 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝑥, 𝑃𝑇𝑥) for each 𝑥 ∈ 𝐾, 
(v) 𝑃𝑇 is a multivalued mapping 𝐾 to 𝑃(𝐾). 

 

3. MAIN RESULTS 

 

  In this section, we present our main results in this paper. First we give some properties of the 

fixed points set of generalized 𝛼-nonexpansive mappings in a convex hyperbolic space. 

 

3.1.  Some fixed point properties of generalized 𝜶-nonexpansive mapping 

 

Lemma 3.1 Let 𝐾 be a nonempty closed and convex subset of a hyperbolic space 𝑋 with 

monotone modulus of convexity 𝜂 and 𝑇: 𝐾 → 𝐶𝐵(𝑋) be a generalized 𝛼-nonexpansive mapping 

such that 𝐹(𝑇) ≠ ∅ and 𝑇𝑝 = {𝑝} for each 𝑝 ∈ 𝐹(𝑇). Then 𝐹(𝑇) is closed and convex.  
 

Proof. Let {𝑥𝑛} be a sequence in 𝐹(𝑇) which converges to some 𝑧 ∈ 𝐾. We will show that 

𝑧 ∈ 𝐹(𝑇). Since 𝑇𝑝 = {𝑝} for each 𝑝 ∈ 𝐹(𝑇), we have  
 

1

2
𝑑(𝑥𝑛, 𝑇𝑥𝑛) = 0 < 𝑑(𝑥𝑛, 𝑧),  

 

and  
 

𝑑(𝑥𝑛, 𝑇𝑧) ≤ 𝐻(𝑇𝑥𝑛, 𝑇𝑧) ≤ 𝛼𝑑(𝑧, 𝑥𝑛) + 𝛼𝑑(𝑥𝑛 , 𝑇𝑧) + (1 − 2𝛼)𝑑(𝑧, 𝑥𝑛)  
= 𝛼𝑑(𝑥𝑛, 𝑇𝑧) + (1 − 𝛼)𝑑(𝑧, 𝑥𝑛).  

 

Hence  
 

𝑑(𝑥𝑛, 𝑇𝑧) ≤ 𝑑(𝑧, 𝑥𝑛)                                                                                                                (3.1) 
 

Taking limit as 𝑛 → ∞, we have that  
  

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑇𝑧) ≤ lim
𝑛→∞

𝑑(𝑥𝑛, 𝑧) = 0. 
 

Hence, by the uniqueness of the limit, we have that 𝑧 ∈ 𝑇𝑧. 
Next, we show that 𝐹(𝑇) is convex. Let 𝑥, 𝑦 ∈ 𝐹(𝑇) and 𝑧 ∈ 𝐾, then by the definition of 

generalized 𝛼-nonexpansive mapping, we have  
 

𝑑(𝑥, 𝑇𝑧) ≤ 𝑑(𝑥, 𝑧)                                                                                                                       (3.2) 
 

and  
 

𝑑(𝑦, 𝑇𝑧) ≤ 𝑑(𝑦, 𝑧).                                                                                                                       (3.3) 
 

For 𝑧 = 𝑊(𝑥, 𝑦, 𝜆), from (3.2) and (3.3), we have  
 

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑇𝑧) + 𝑑(𝑇𝑧, 𝑦)  
≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) 

= 𝑑(𝑥,𝑊(𝑥, 𝑦, 𝜆)) + 𝑑(𝑊(𝑥, 𝑦, 𝜆), 𝑦) 
≤ 𝜆𝑑(𝑥, 𝑥) + (1 − 𝜆)𝑑(𝑥, 𝑦) + 𝜆𝑑(𝑥, 𝑦) + (1 − 𝜆)𝑑(𝑦, 𝑦) 

= 𝑑(𝑥, 𝑦). 
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Thus 𝑑(𝑥, 𝑇𝑧) = 𝑑(𝑥, 𝑧) and 𝑑(𝑇𝑧, 𝑦) = 𝑑(𝑧, 𝑦) because, if 𝑑(𝑥, 𝑇𝑧) < 𝑑(𝑥, 𝑧) or 

𝑑(𝑇𝑧, 𝑦) < 𝑑(𝑧, 𝑦), then we will have a contradiction that 𝑑(𝑥, 𝑦) < 𝑑(𝑥, 𝑦). So 𝑧 ∈ 𝑇𝑧. Thus, 

𝑊(𝑥, 𝑦, 𝜆) ∈ 𝐹(𝑇). This implies that 𝐹(𝑇) is convex.  
 

Lemma 3.2  Let 𝐾 be a nonempty closed and convex subset of a hyperbolic space 𝑋 and 𝑇: 𝐾 →
𝑃(𝐾) be a generalized 𝛼-nonexpansive mapping such that 𝐹(𝑇) ≠ ∅ and 𝑇𝑝 = {𝑝} for each 

𝑝 ∈ 𝐹(𝑇). Then 𝑇 is quasi nonexpansive.  
 

Proof. Let 𝑝 ∈ 𝐹(𝑇) and 𝑥 ∈ 𝐾. Note that  
 

1

2
𝑑(𝑝, 𝑇𝑝) = 0 ≤ 𝑑(𝑥, 𝑝).  

 

Then  
 

𝑑(𝑝, 𝑇𝑥) ≤ 𝐻(𝑇𝑝, 𝑇𝑥) 
≤ 𝛼𝑑(𝑝, 𝑇𝑥) + 𝛼𝑑(𝑥, 𝑇𝑝) + (1 − 2𝛼)𝑑(𝑥, 𝑝).  

 

This implies that  
 

(1 − 𝛼)𝑑(𝑇𝑥, 𝑝) ≤ (1 − 𝛼)𝑑(𝑥, 𝑝).                                                                                       (3.4) 
 

Since (1 − 𝛼) > 0, then we have 𝐻(𝑇𝑥, 𝑇𝑝) ≤ 𝑑(𝑥, 𝑝) for all 𝑥 ∈ 𝐾 and 𝑝 ∈ 𝐹(𝑇). 
Therefore, 𝑇 is quasi nonexpansive.  

We now establish the demiclosedness principle for multivalued generalized 𝛼-nonexpansive 

mapping. 
 

Lemma 3.3  Let 𝑋 be a complete uniformly convex hyperbolic space with monotone modules of 

uniform convexity 𝜂. Let 𝐾 be a nonempty closed and convex subset of 𝑋 and 𝑇:𝐾 → 𝑃(𝐾) be a 

generalized 𝛼-nonexpansive mapping such that 𝐹(𝑇) ≠ ∅ and 𝑇𝑝 = {𝑝} for each 𝑝 ∈ 𝐹(𝑇). If 

{𝑥𝑛} is a bounded sequence in 𝐾 such that 𝛥-𝑙𝑖𝑚𝑛→∞𝑥𝑛 = 𝑥
∗ and 𝑙𝑖𝑚𝑛→∞𝑑(𝑥𝑛, 𝑇𝑥𝑛) = 0, then 

𝑥∗ ∈ 𝐹(𝑇).  
 

Proof. Since {𝑥𝑛} is a bounded sequence in 𝑋, we have from Lemma 2.3 that {𝑥𝑛} has a unique 

asymptotic center in 𝐾. Also, since Δ-lim𝑛→∞𝑥𝑛 = 𝑥
∗, we have that 𝐴({𝑥𝑛}) = {𝑥

∗}. Now note 

that  
 

𝑑(𝑥𝑛, 𝑇𝑥
∗) ≤ 𝑑(𝑥𝑛, 𝑇𝑥𝑛) + 𝐻(𝑇𝑥𝑛 , 𝑇𝑥

∗) 
≤ 𝑑(𝑥𝑛, 𝑇𝑥𝑛) + 𝛼𝑑(𝑥𝑛, 𝑇𝑥

∗) + 𝛼𝑑(𝑥∗, 𝑇𝑥𝑛) + (1 − 2𝛼)𝑑(𝑥𝑛, 𝑥
∗) 

≤ 𝑑(𝑥𝑛, 𝑇𝑥𝑛) + 𝛼𝑑(𝑥𝑛 , 𝑇𝑥
∗) + 𝛼𝑑(𝑥∗, 𝑥𝑛) + 𝛼𝑑(𝑥𝑛, 𝑇𝑥𝑛) + (1 − 2𝛼)𝑑(𝑥𝑛, 𝑥

∗).  
 

This implies that  
 

𝑑(𝑥𝑛, 𝑇𝑥
∗) ≤

1+𝛼

1−𝛼
𝑑(𝑥𝑛, 𝑇𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑥

∗).  
 

Taking limsup𝑛→∞ from both sides, we have  

𝑟(𝑇𝑥∗, {𝑥𝑛}) = limsup
𝑛→∞

𝑑(𝑥𝑛 , 𝑇𝑥
∗) ≤

1+𝛼

1−𝛼
limsup
𝑛→∞

𝑑(𝑥𝑛 , 𝑇𝑥𝑛) + limsup
𝑛→∞

𝑑(𝑥𝑛, 𝑥
∗) ≤

limsup
𝑛→∞

𝑑(𝑥𝑛, 𝑥
∗) = 𝑟(𝑥∗, {𝑥𝑛}). By the uniqueness of the asymptotic center of {𝑥𝑛}, we have 

𝑥∗ ∈ 𝑇𝑥∗ and hence, 𝑥∗ ∈ 𝐹(𝑇).  
 

3.2. Strong and 𝚫- convergence theorems for generalized 𝜶-onexpansive mapping. 

 

We state and prove the following lemmas which will be needed in the proof of our main 

theorems. 
 

Lemma 3.4  Let 𝐾 be a nonempty closed convex subset of a complete uniformly convex 

hyperbolic space 𝑋. Let 𝑅, 𝑆, 𝑇: 𝐾 → 𝑃(𝐾) be three multivalued mappings such that 𝑃𝑅, 𝑃𝑆 and 𝑃𝑇 

are generalized 𝛼-nonexpansive mappings and 𝐹:= 𝐹(𝑅) ∩ 𝐹(𝑆) ∩ 𝐹(𝑇) ≠ ∅. For arbitrary 
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𝑥0 ∈ 𝐾, let {𝑥𝑛} be the sequence define by algorithm (1.4). Then {𝑥𝑛} is bounded and the limit 

𝑙𝑖𝑚𝑛→∞𝑑(𝑥𝑛, 𝑥
∗) exists for each 𝑥∗ ∈ 𝐹.  

 

Proof. Let 𝑥∗ ∈ 𝐹, using Lemma 3.2, we have  
 

𝑑(𝑦𝑛 , 𝑥
∗) = 𝑑 (𝑊(𝑣𝑛,𝑊 (𝑤𝑛 , 𝑥𝑛 ,

𝑐𝑛
1 − 𝑏𝑛

) , 𝑏𝑛), 𝑥
∗) 

                   ≤ 𝑏𝑛𝑑(𝑣𝑛, 𝑥
∗) + (1 − 𝑏𝑛)𝑑 (𝑊 (𝑤𝑛 , 𝑥𝑛,

𝑐𝑛

1−𝑏𝑛
) , 𝑥∗) 

                   ≤ 𝑏𝑛𝑑(𝑣𝑛, 𝑃𝑆(𝑥
∗)) + (1 − 𝑏𝑛) [

𝑐𝑛

1−𝑏𝑛
𝑑(𝑤𝑛 , 𝑥

∗) + (1 −
𝑐𝑛

1−𝑏𝑛
) 𝑑(𝑥𝑛 , 𝑥

∗)] 

                   ≤ 𝑏𝑛𝐻(𝑃𝑆(𝑧𝑛), 𝑃𝑆(𝑥
∗)) + 𝑐𝑛𝑑(𝑤𝑛 , 𝑥

∗) + (1 − 𝑏𝑛 − 𝑐𝑛)𝑑(𝑥𝑛, 𝑥
∗) 

                   ≤ 𝑏𝑛𝑑(𝑧𝑛 , 𝑥
∗) + 𝑐𝑛𝑑(𝑤𝑛 , 𝑃𝑇(𝑥

∗)) + (1 − 𝑏𝑛 − 𝑐𝑛)𝑑(𝑥𝑛, 𝑥
∗) 

                   ≤ 𝑏𝑛𝑑(𝑊(𝑥𝑛 , 𝑤𝑛 , 𝑎𝑛), 𝑥
∗) + 𝑐𝑛𝐻(𝑃𝑇(𝑥𝑛), 𝑃𝑇(𝑥

∗)) + (1 − 𝑏𝑛 − 𝑐𝑛)𝑑(𝑥𝑛 , 𝑥
∗) 

                   ≤ 𝑏𝑛[𝑎𝑛𝑑(𝑥𝑛 , 𝑥
∗) + (1 − 𝑎𝑛)𝑑(𝑤𝑛 , 𝑥

∗)] + 𝑐𝑛𝑑(𝑥𝑛, 𝑥
∗) + (1 − 𝑏𝑛 − 𝑐𝑛)𝑑(𝑥𝑛, 𝑥

∗) 
                   ≤ 𝑏𝑛[𝑎𝑛𝑑(𝑥𝑛 , 𝑥

∗) + (1 − 𝑎𝑛)𝑑(𝑤𝑛 , 𝑃𝑇(𝑥
∗))] + (1 − 𝑏𝑛)𝑑(𝑥𝑛, 𝑥

∗) 
                   ≤ 𝑏𝑛[𝑎𝑛𝑑(𝑥𝑛 , 𝑥

∗) + (1 − 𝑎𝑛)𝐻(𝑃𝑇(𝑥𝑛), 𝑃𝑇(𝑥
∗))] + (1 − 𝑏𝑛)𝑑(𝑥𝑛, 𝑥

∗) 
                   ≤ 𝑏𝑛[𝑎𝑛𝑑(𝑥𝑛 , 𝑥

∗) + (1 − 𝑎𝑛)𝑑(𝑥𝑛 , 𝑥
∗)] + (1 − 𝑏𝑛)𝑑(𝑥𝑛, 𝑥

∗) 
                   = 𝑑(𝑥𝑛 , 𝑥

∗).                                                                                                          (3.5) 
 

Also  
 

𝑑(𝑥𝑛+1, 𝑥
∗) = 𝑑 (𝑊 (𝑢𝑛,𝑊 (𝑥𝑛, 𝑣𝑛,

𝛽𝑛
1 − 𝛼𝑛

) , 𝛼𝑛) , 𝑥
∗) 

                        ≤ 𝛼𝑛𝑑(𝑢𝑛 , 𝑥
∗) + (1 − 𝛼𝑛)𝑑 (𝑊 (𝑥𝑛 , 𝑣𝑛,

𝛽𝑛

1−𝛼𝑛
) , 𝑥∗)                                     (3.6) 

                        ≤ 𝛼𝑛𝑑(𝑢𝑛 , 𝑃𝑅(𝑥
∗)) + (1 − 𝛼𝑛) [

𝛽𝑛

1−𝛼𝑛
𝑑(𝑥𝑛, 𝑥

∗) + (1 −
𝛽𝑛

1−𝛼𝑛
) 𝑑(𝑣𝑛, 𝑥

∗)] 

                        ≤ 𝛼𝑛𝐻(𝑃𝑅(𝑦𝑛), 𝑃𝑅(𝑥
∗)) + 𝛽𝑛𝑑(𝑥𝑛, 𝑥

∗) + (1 − 𝛼𝑛 − 𝛽𝑛)𝑑(𝑣𝑛, 𝑥
∗) 

                        ≤ 𝛼𝑛𝑑(𝑦𝑛 , 𝑥
∗) + 𝛽𝑛𝑑(𝑥𝑛, 𝑥

∗) + (1 − 𝛼𝑛 − 𝛽𝑛)𝑑(𝑣𝑛, 𝑃𝑆𝑥
∗) 

                        ≤ 𝛼𝑛𝑑(𝑥𝑛 , 𝑥
∗) + 𝛽𝑛𝑑(𝑥𝑛 , 𝑥

∗) + (1 − 𝛼𝑛 − 𝛽𝑛)𝐻(𝑃𝑆(𝑧𝑛), 𝑃𝑆(𝑥
∗)) 

                        ≤ (𝛼𝑛 + 𝛽𝑛)𝑑(𝑥𝑛, 𝑥
∗) + (1 − 𝛼𝑛 − 𝛽𝑛)𝑑(𝑧𝑛, 𝑥

∗) 
                        = (𝛼𝑛 + 𝛽𝑛)𝑑(𝑥𝑛, 𝑥

∗) + (1 − 𝛼𝑛 − 𝛽𝑛)𝑑(𝑊(𝑥𝑛, 𝑤𝑛 , 𝑎𝑛), 𝑥
∗) 

                        ≤ (𝛼𝑛 + 𝛽𝑛)𝑑(𝑥𝑛, 𝑥
∗) + (1 − 𝛼𝑛 − 𝛽𝑛)[𝑎𝑛𝑑(𝑥𝑛, 𝑥

∗) + (1 − 𝑎𝑛)𝑑(𝑤𝑛 , 𝑥
∗)] 

                       ≤ (𝛼𝑛 + 𝛽𝑛)𝑑(𝑥𝑛 , 𝑥
∗) + (1 − 𝛼𝑛 − 𝛽𝑛)[𝑎𝑛𝑑(𝑥𝑛 , 𝑥

∗) + (1 − 𝑎𝑛)𝑑(𝑤𝑛 , 𝑃𝑇𝑥
∗)] 

                       ≤ (𝛼𝑛 + 𝛽𝑛)𝑑(𝑥𝑛 , 𝑥
∗) + (1 − 𝛼𝑛 − 𝛽𝑛)[𝑎𝑛𝑑(𝑥𝑛 , 𝑥

∗) + (1 − 𝑎𝑛)𝐻(𝑃𝑇𝑥𝑛, 𝑃𝑇𝑥
∗)] 

                       ≤ (𝛼𝑛 + 𝛽𝑛)𝑑(𝑥𝑛 , 𝑥
∗) + (1 − 𝛼𝑛 − 𝛽𝑛)[𝑎𝑛𝑑(𝑥𝑛 , 𝑥

∗) + (1 − 𝑎𝑛)𝑑(𝑥𝑛 , 𝑥
∗)] 

                       = 𝑑(𝑥𝑛, 𝑥
∗). 

 

This shows that the sequence {𝑥𝑛} is a Fejér monotone sequence, and hence it is bounded. 

Consequently, lim𝑛→∞𝑑(𝑥𝑛 , 𝑥
∗) exists.  

 

Lemma 3.5  Let 𝐾 be a nonempty closed and convex subset of a complete uniformly convex 

hyperbolic space 𝑋. Let 𝑅, 𝑆, 𝑇: 𝐾 → 𝑃(𝐾) be three multivalued mappings such that 𝑃𝑅, 𝑃𝑆 and 𝑃𝑇 

are generalized 𝛼-nonexpansive mappings and 𝐹:= 𝐹(𝑅) ∩ 𝐹(𝑆) ∩ 𝐹(𝑇) ≠ ∅. Let {𝑥𝑛} be the 

sequence defined by (1.4), then we have  
 

lim
𝑛→∞

𝑑(𝑥𝑛 , 𝑃𝑇𝑥𝑛) = lim
𝑛→∞

𝑑(𝑥𝑛 , 𝑃𝑅𝑥𝑛) = lim
𝑛→∞

𝑑(𝑥𝑛 , 𝑃𝑆𝑥𝑛) = 0. 
 

Proof. By Lemma 3.4, lim𝑛→∞𝑑(𝑥𝑛 , 𝑥
∗) exists for each 𝑥∗ ∈ 𝐹. Assume that lim𝑛→∞𝑑(𝑥𝑛 , 𝑥

∗) =
𝑐 for some 𝑐 ≥ 0. If 𝑐 = 0, the results is trivial. So we suppose that 𝑐 > 0. Using Lemma 3.2, we 

have  
 

𝑑(𝑤𝑛 , 𝑥
∗) ≤ 𝑑(𝑤𝑛 , 𝑃𝑇𝑥

∗)  
≤ 𝐻(𝑃𝑇𝑥𝑛, 𝑃𝑇𝑥

∗) 
≤ 𝑑(𝑥𝑛, 𝑥

∗).  
 

Hence  
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limsup
𝑛→∞

𝑑(𝑤𝑛 , 𝑥
∗) ≤ 𝑐. 

 

Also we get  
 

𝑑(𝑣𝑛, 𝑥
∗) ≤ 𝑑(𝑣𝑛, 𝑃𝑆𝑥

∗) 
≤ 𝐻(𝑃𝑆𝑧𝑛, 𝑃𝑆𝑥

∗) 
≤ 𝑑(𝑧𝑛 , 𝑥

∗) 
= 𝑑(𝑊(𝑥𝑛 , 𝑤𝑛 , 𝑎𝑛), 𝑥

∗) 
≤ 𝑎𝑛𝑑(𝑥𝑛 , 𝑥

∗) + (1 − 𝑎𝑛)𝑑(𝑤𝑛 , 𝑥
∗) 

         ≤ 𝑎𝑛𝑑(𝑥𝑛, 𝑥
∗) + (1 − 𝑎𝑛)𝐻(𝑃𝑇𝑥𝑛, 𝑃𝑇𝑥

∗) 
≤ 𝑎𝑛𝑑(𝑥𝑛, 𝑥

∗) + (1 − 𝑎𝑛)𝑑(𝑥𝑛 , 𝑥
∗) 

                                                       ≤ 𝑑(𝑥𝑛 , 𝑥
∗).                                                                                 (3.7) 

 

Then, we deduce that  
 

limsup
𝑛→∞

𝑑(𝑣𝑛, 𝑥
∗) ≤ 𝑐.                                                                                                                (3.8) 

 

More so from (3.5), we get  
 

𝑑(𝑢𝑛, 𝑥
∗) = 𝑑(𝑢𝑛, 𝑅𝑥

∗)  
≤ 𝐻(𝑅𝑦𝑛 , 𝑅𝑥

∗)  
≤ 𝑑(𝑦𝑛 , 𝑥

∗)  
≤ 𝑑(𝑥𝑛, 𝑥

∗),  
hence 

limsup
𝑛→∞

𝑑(𝑢𝑛, 𝑝) ≤ 𝑐.  
 

On the other hand, it follows from (3.6) that  
 

 𝑑 (𝑊 (𝑥𝑛, 𝑣𝑛,
𝛽𝑛

1−𝛼𝑛
) , 𝑥∗) ≤

𝛽𝑛

1−𝛼𝑛
𝑑(𝑥𝑛 , 𝑥

∗) + (1 −
𝛽𝑛

1−𝛼𝑛
) 𝑑(𝑣𝑛, 𝑥

∗) 

                                                ≤
𝛽𝑛

1−𝛼𝑛
𝑑(𝑥𝑛, 𝑥

∗) + (1 −
𝛽𝑛

1−𝛼𝑛
) 𝑑(𝑣𝑛, 𝑆𝑥

∗) 

                                                ≤
𝛽𝑛

1−𝛼𝑛
𝑑(𝑥𝑛, 𝑥

∗) + (1 −
𝛽𝑛

1−𝛼𝑛
)𝐻(𝑆𝑧𝑛 , 𝑆𝑥

∗) 

                                               ≤
𝛽𝑛

1−𝛼𝑛
𝑑(𝑥𝑛, 𝑥

∗) + (1 −
𝛽𝑛

1−𝛼𝑛
) 𝑑(𝑧𝑛, 𝑥

∗) 

                                               ≤
𝛽𝑛

1−𝛼𝑛
𝑑(𝑥𝑛, 𝑥

∗) + (1 −
𝛽𝑛

1−𝛼𝑛
) 𝑑(𝑥𝑛, 𝑥

∗) 

                                               = 𝑑(𝑥𝑛, 𝑥
∗). 

 

This implies that  
 

limsup
𝑛→∞

𝑑 (𝑊 (𝑥𝑛, 𝑣𝑛,
𝛽𝑛

1−𝛼𝑛
) , 𝑥∗) ≤ 𝑐.                                                                                       (3.9) 

 

Also we can rewrite (3.6) as  
 

(1 − 𝛼𝑛)𝑑(𝑥𝑛+1, 𝑥
∗) ≤ 𝛼𝑛𝑑(𝑢𝑛, 𝑥

∗) + (1 − 𝛼𝑛)𝑑 (𝑊 (𝑥𝑛, 𝑣𝑛,
𝛽𝑛

1−𝛼𝑛
) , 𝑥∗) − 𝛼𝑛𝑑(𝑥𝑛+1, 𝑥

∗)  

≤ (1 − 𝛼𝑛)𝑑 (𝑊 (𝑥𝑛, 𝑣𝑛,
𝛽𝑛

1−𝛼𝑛
) , 𝑥∗) + 𝛼𝑛[𝑑(𝑥𝑛 , 𝑥

∗) − 𝑑(𝑥𝑛+1, 𝑥
∗)].  

 

Thus  
 

𝑑(𝑥𝑛+1, 𝑥
∗) ≤ 𝑑 (𝑊 (𝑥𝑛, 𝑣𝑛,

𝛽𝑛

1−𝛼𝑛
) , 𝑥∗) +

𝛼𝑛

1−𝛼𝑛
[𝑑(𝑥𝑛, 𝑥

∗) − 𝑑(𝑥𝑛+1, 𝑥
∗)],  

 

and hence  
 

𝑐 ≤ liminf
𝑛→∞

𝑑 (𝑊 (𝑥𝑛 , 𝑣𝑛,
𝛽𝑛

1−𝛼𝑛
) , 𝑥∗).                                                                                     (3.10) 

 

Therefore from (3.9) and (3.10), we have  
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lim
𝑛→∞

𝑑 (𝑊 (𝑥𝑛, 𝑣𝑛,
𝛽𝑛

1−𝛼𝑛
) , 𝑥∗) = 𝑐.                                                                                           (3.11) 

 

Since limsup𝑛→∞𝑑(𝑣𝑛, 𝑥
∗) ≤ 𝑐, using Lemma 2.5, we have  

 

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑣𝑛) = 0.                                                                                                                     (3.12) 
 

Similarly, we can show that  
 

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑤𝑛) = 0,                                                                                                                     (3.13) 
 

that is  
 

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑃𝑇𝑥𝑛) = 0.  
 

Clearly  
 

𝑑(𝑧𝑛 , 𝑥𝑛) ≤ 𝛼𝑛𝑑(𝑥𝑛, 𝑥𝑛) + (1 − 𝛼𝑛)𝑑(𝑤𝑛, 𝑥𝑛),  
 

then from (3.13), we have  
 

lim
𝑛→∞

𝑑(𝑧𝑛, 𝑥𝑛) = 0.                                                                                                                     (3.14) 
 

Therefore  
 

lim
𝑛→∞

𝑑(𝑣𝑛, 𝑧𝑛) ≤ lim
𝑛→∞

[𝑑(𝑣𝑛, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑧𝑛)] = 0.  
 

This implies that  
 

lim
𝑛→∞

𝑑(𝑧𝑛, 𝑃𝑆𝑧𝑛) = 0,                                                                                                              (3.15) 
 

and  
 

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑃𝑆𝑧𝑛) ≤ lim
𝑛→∞

[𝑑(𝑥𝑛, 𝑧𝑛) + 𝑑(𝑧𝑛 , 𝑃𝑆𝑧𝑛)] = 0.                                                      (3.16) 
 

More so  
 

𝑑(𝑥𝑛, 𝑃𝑆𝑥𝑛) ≤ 𝑑(𝑥𝑛, 𝑧𝑛) + 𝑑(𝑧𝑛 , 𝑃𝑆𝑥𝑛) 
≤ 𝑑(𝑥𝑛, 𝑧𝑛) + 𝑑(𝑧𝑛 , 𝑃𝑆𝑧𝑛) + 𝐻(𝑃𝑆𝑧𝑛, 𝑃𝑆𝑥𝑛) 

≤ 𝑑(𝑥𝑛, 𝑧𝑛) + 𝑑(𝑧𝑛 , 𝑃𝑆𝑧𝑛) + 𝛼𝑑(𝑧𝑛 , 𝑃𝑆𝑥𝑛) + 𝛼𝑑(𝑥𝑛 , 𝑃𝑆𝑧𝑛) + (1 − 2𝛼)𝑑(𝑥𝑛, 𝑧𝑛) 
≤ 𝑑(𝑥𝑛 , 𝑧𝑛) + 𝑑(𝑧𝑛, 𝑃𝑆𝑧𝑛) + 𝛼𝑑(𝑧𝑛 , 𝑥𝑛) + 𝛼𝑑(𝑥𝑛 , 𝑃𝑆𝑥𝑛) 

+𝛼𝑑(𝑥𝑛, 𝑃𝑆𝑧𝑛) + (1 − 2𝛼)𝑑(𝑥𝑛, 𝑧𝑛).  
 

This implies that  
 

𝑑(𝑥𝑛, 𝑃𝑆𝑥𝑛) ≤
(2−𝛼)

1−𝛼
𝑑(𝑥𝑛, 𝑧𝑛) +

1

1−𝛼
𝑑(𝑧𝑛 , 𝑃𝑆𝑧𝑛) +

𝛼

1−𝛼
𝑑(𝑥𝑛 , 𝑃𝑆𝑧𝑛).                                   (3.17) 

 

Since 𝛼 ∈ (0,1), it follows from (3.14), (3.15), (3.16) and (3.17) that  
 

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑃𝑆𝑥𝑛) = 0.  
 

Also observe that limsup𝑛→∞𝑑(𝑦𝑛, 𝑥
∗) ≤ 𝑐. From (3.6), we have  

 

𝑐 = lim
𝑛→∞

𝑑(𝑥𝑛+1, 𝑥
∗) ≤ lim

𝑛→∞
[𝛼𝑛𝑑(𝑢𝑛, 𝑥

∗) + (1 − 𝛼𝑛)𝑑 (𝑊 (𝑥𝑛, 𝑣𝑛,
𝛽𝑛

1−𝛼𝑛
) , 𝑥∗)]  

≤ lim
𝑛→∞

[𝛼𝑛𝑑(𝑦𝑛, 𝑥
∗) + (1 − 𝛼𝑛)𝑑 (𝑊 (𝑥𝑛, 𝑣𝑛,

𝛽𝑛

1−𝛼𝑛
) , 𝑥∗)].  

 

It follows from (3.11) that 𝑐 ≤ liminf𝑛→∞𝑑(𝑦𝑛, 𝑥
∗), hence lim𝑛→∞𝑑(𝑦𝑛, 𝑥

∗) = 𝑐. 

Now, let 𝑧𝑛
′ = 𝑊(𝑥𝑛 , 𝑤𝑛

𝑐𝑛

1−𝑏𝑛
), then, 𝑦𝑛 = 𝑊(𝑣𝑛, 𝑧𝑛

′ , 𝑏𝑛). Clearly  
 

𝑑(𝑧𝑛
′∗) ≤ 𝑑(𝑥𝑛 , 𝑥

∗),  
 

then limsup𝑛→∞𝑑(𝑧𝑛
′∗) ≤ 𝑐. Since limsup𝑛→∞𝑑(𝑣𝑛, 𝑥

∗) ≤ 𝑐, using Lemma 2.5, we have that  
 

lim
𝑛→∞

𝑑(𝑣𝑛, 𝑧𝑛
′ ) = 0.  
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Therefore  
 

lim
𝑛→∞

𝑑(𝑦𝑛, 𝑣𝑛) ≤ lim
𝑛→∞

[𝑏𝑛𝑑(𝑣𝑛, 𝑣𝑛) + (1 − 𝑏𝑛)𝑑(𝑧𝑛
′ , 𝑣𝑛)] = 0,  

 

and  
 

lim
𝑛→∞

𝑑(𝑦𝑛, 𝑥𝑛) ≤ lim
𝑛→∞

[𝑑(𝑦𝑛 , 𝑣𝑛) + 𝑑(𝑣𝑛, 𝑥𝑛)] = 0.                        (3.18) 
 

Also, let 𝑦𝑛
′ = 𝑊(𝑦𝑛, 𝑣𝑛,

𝛽𝑛

1−𝛼𝑛
), then 𝑥𝑛+1 = 𝑊(𝑢𝑛, 𝑦𝑛

′ , 𝛼𝑛). Since lim𝑛→∞𝑑(𝑥𝑛+1, 𝑝) = 𝑐, 

limsup𝑛→∞𝑑(𝑢𝑛, 𝑝) ≤ 𝑐 and from (3.9) limsup𝑛→∞𝑑(𝑦𝑛
′ , 𝑝) ≤ 𝑐, using Lemma 2.5, we have  

 

lim
𝑛→∞

𝑑(𝑢𝑛, 𝑦𝑛
′ ) = 0.                                                                                                                     (3.19) 

 

Also, since 0 < 𝛼𝑛 + 𝛽𝑛 < 1, we have  
 

𝑑(𝑦𝑛
′ , 𝑥𝑛) = 𝑑 (𝑊 (𝑥𝑛 , 𝑣𝑛,

𝛽𝑛

1−𝛼𝑛
) , 𝑥𝑛)  

                      ≤
𝛽𝑛

1−𝛼𝑛
𝑑(𝑥𝑛 , 𝑥𝑛) + (1 −

𝛽𝑛

1−𝛼𝑛
) 𝑑(𝑣𝑛, 𝑥𝑛).  

 

Hence, from (3.12), we have  
 

lim
𝑛→∞

𝑑(𝑦𝑛
′ , 𝑥𝑛) = 0.                                                                                                                     (3.20) 

 

Therefore, using (3.19) and (3.20), we get  
 

lim
𝑛→∞

𝑑(𝑢𝑛, 𝑥𝑛) ≤ lim
𝑛→∞

[𝑑(𝑢𝑛, 𝑦𝑛
′ ) + 𝑑(𝑦𝑛

′ , 𝑥𝑛)] = 0.  
 

and from (3.18), we have  
 

lim
𝑛→∞

𝑑(𝑢𝑛, 𝑦𝑛) ≤ lim
𝑛→∞

[𝑑(𝑢𝑛, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑦𝑛)] = 0. 
 

Therefore we obtain  
 

lim
𝑛→∞

𝑑(𝑦𝑛, 𝑃𝑅𝑦𝑛) = 0,                                                                                                              (3.21) 
 

and from (3.18), we get  
 

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑃𝑅𝑦𝑛) ≤ lim
𝑛→∞

[𝑑(𝑥𝑛, 𝑦𝑛) + 𝑑(𝑦𝑛 , 𝑃𝑅𝑦𝑛)] = 0.                                                      (3.22) 
 

Also  
 

 𝑑(𝑥𝑛 , 𝑃𝑅𝑥𝑛) ≤ 𝑑(𝑥𝑛, 𝑦𝑛) + 𝑑(𝑦𝑛 , 𝑃𝑅𝑥𝑛) 
                         ≤ 𝑑(𝑥𝑛, 𝑦𝑛) + 𝑑(𝑦𝑛 , 𝑃𝑅𝑦𝑛) + 𝐻(𝑃𝑅𝑦𝑛 , 𝑃𝑅𝑥𝑛) 
                         ≤ 𝑑(𝑥𝑛, 𝑦𝑛) + 𝑑(𝑦𝑛 , 𝑃𝑅𝑦𝑛) + 𝛼𝑑(𝑥𝑛 , 𝑃𝑅𝑦𝑛) + 𝛼𝑑(𝑦𝑛 , 𝑃𝑅𝑥𝑛) + (1 −
2𝛼)𝑑(𝑥𝑛, 𝑦𝑛) 
                         ≤ 𝑑(𝑥𝑛, 𝑦𝑛) + 𝑑(𝑦𝑛 , 𝑃𝑅𝑦𝑛) + 𝛼𝑑(𝑥𝑛 , 𝑃𝑅𝑦𝑛) + 𝛼𝑑(𝑦𝑛 , 𝑥𝑛) 
                        +𝛼𝑑(𝑥𝑛 , 𝑃𝑅𝑥𝑛) + (1 − 2𝛼)𝑑(𝑥𝑛, 𝑦𝑛). 
 

Hence  
 

𝑑(𝑥𝑛, 𝑃𝑅𝑥𝑛) ≤
2−𝛼

1−𝛼
𝑑(𝑥𝑛 , 𝑦𝑛) +

1

1−𝛼
𝑑(𝑦𝑛, 𝑃𝑅𝑦𝑛) +

𝛼

1−𝛼
𝑑(𝑥𝑛, 𝑃𝑅𝑦𝑛).                                   (3.23) 

 

Since 𝛼 ∈ (0,1), it follows from (3.18), (3.21), (3.22) and (3.23) that  
 

lim
𝑛→∞

𝑑(𝑥𝑛 , 𝑃𝑅𝑥𝑛) = 0. 
  

Theorem 3.6 Let 𝐾 be a nonempty closed and convex subset of a complete hyperbolic space 𝑋 

with a monotone modulus of uniform convexity 𝜂. Let 𝑅, 𝑆, 𝑇: 𝐾 → 𝑃(𝐾) be three multivalued 

mappings such that 𝑃𝑅, 𝑃𝑆 and 𝑃𝑇 are generalized 𝛼-nonexpansive mappings and 𝐹:= 𝐹(𝑅) ∩
𝐹(𝑆) ∩ 𝐹(𝑇) ≠ ∅. If {𝑥𝑛} is the sequence defined by (1.4), then {𝑥𝑛} 𝛥-converges to a point in 𝐹.  
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Proof. Let 𝑝 ∈ 𝐹. By Lemma 3.4, {𝑥𝑛} is bounded and lim𝑛→∞𝑑(𝑥𝑛 , 𝑝) exists. Thus {𝑥𝑛} has a 

unique asymptotic center, that is, 𝐴({𝑥𝑛}) = {𝑝}. Let {𝑥𝑛𝑘} be a subsequence of {𝑥𝑛} such that 

𝐴({𝑥𝑛𝑘}) = {𝑞}. From Lemma 3.5, we get lim𝑘→∞𝑑(𝑥𝑛𝑘 , 𝑇𝑥𝑛𝑘) = 0. We claim that 𝑞 ∈ 𝐹(𝑇). 

To prove this, we take another sequence {𝑣𝑚} in 𝑇(𝑞). Then  
 

𝑟(𝑣𝑚, {𝑥𝑛𝑘}) = limsup
𝑘→∞

𝑑(𝑣𝑚, 𝑥𝑛𝑘) 

≤ lim
𝑘→∞

[𝑑(𝑣𝑚, 𝑇𝑥𝑛𝑘) + 𝑑(𝑇𝑥𝑛𝑘 , 𝑥𝑛𝑘)] 

≤ lim
𝑘→∞

[𝐻(𝑇𝑞, 𝑇𝑥𝑛𝑘) + 𝑑(𝑇𝑥𝑛𝑘 , 𝑥𝑛𝑘)] 

≤ lim
𝑘→∞

[𝑑(𝑞, 𝑥𝑛𝑘) + 𝑑(𝑇𝑥𝑛𝑘 , 𝑥𝑛𝑘)] 

≤ limsup
𝑘→∞

𝑑(𝑞, 𝑥𝑛𝑘) 

= 𝑟(𝑝, {𝑥𝑛𝑘}).  
 

This implies that |𝑟(𝑣𝑚, {𝑥𝑛𝑘}) − 𝑟(𝑞, {𝑥𝑛𝑘})| → 0 for 𝑘 → ∞. By Lemma 2.4, we get 

lim𝑚→∞𝑣𝑚 = 𝑞. Hence 𝑇(𝑞) is either closed or bounded. Consequently, lim𝑚→∞𝑣𝑚 = 𝑞 ∈ 𝐹(𝑇). 
Similarly, we can show that 𝑞 ∈ 𝐹(𝑆) and 𝑞 ∈ 𝐹(𝑅). Hence 𝑞 ∈ 𝐹. From the uniqueness of the 

asymptotic center, we have  
 

limsup
𝑘→∞

𝑑(𝑥𝑛𝑘 , 𝑞) < limsup
𝑘→∞

𝑑(𝑥𝑛𝑘 , 𝑝) 

≤ limsup
𝑛→∞

𝑑(𝑥𝑛, 𝑝) 

< limsup
𝑛→∞

𝑑(𝑥𝑛, 𝑞) 

= limsup
𝑘→∞

𝑑(𝑥𝑛𝑘 , 𝑞). 
 

This is a contradiction, and hence, 𝑝 = 𝑞. Thus 𝐴({𝑥𝑛𝑘}) = {𝑞} for every subsequence {𝑥𝑛𝑘} 

of {𝑥𝑛}. This proves that {𝑥𝑛} Δ-converges to a common fixed point in 𝐹.  
 

Theorem 3.7  Let 𝐾 be a nonempty closed and convex subset of a complete hyperbolic space 𝑋 

with a monotone modulus of uniform convexity 𝜂. Let 𝑅, 𝑆, 𝑇: 𝐾 → 𝑃(𝐾) be three multivalued 

mappings such that 𝑃𝑅, 𝑃𝑆 and 𝑃𝑇 are generalized 𝛼-nonexpansive mappings and 𝐹:= 𝐹(𝑅) ∩
𝐹(𝑆) ∩ 𝐹(𝑇) ≠ ∅. Let {𝑥𝑛} be the sequence defined in (1.4), then {𝑥𝑛} converges strongly to a 

common fixed point 𝑝 ∈ 𝐹 if and only if 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞𝑑(𝑥𝑛 , 𝐹) = 0.  
 

Proof. Suppose that {𝑥𝑛} converges to a fixed point 𝑝 ∈ 𝐹. Then lim𝑛→∞𝑑(𝑥𝑛, 𝑝) = 0 and since 

0 ≤ 𝑑(𝑥𝑛 , 𝐹) ≤ 𝑑(𝑥𝑛 , 𝑝), it follows that liminf𝑛→∞𝑑(𝑥𝑛, 𝐹) = 0. Conversely, suppose that 

liminf𝑛→∞𝑑(𝑥𝑛, 𝐹) = 0. From Lemma 3.4 we have that  
 

𝑑(𝑥𝑛+1, 𝑝) ≤ 𝑑(𝑥𝑛, 𝐹),  
 

which implies that  
 

𝑑(𝑥𝑛+1, 𝐹) ≤ 𝑑(𝑥𝑛, 𝐹). 
 

This means lim𝑛→∞𝑑(𝑥𝑛, 𝐹) exists. Therefore by the hypothesis of our theorem, 

liminf𝑛→∞𝑑(𝑥𝑛, 𝐹) = 0. Thus, we have lim𝑛→∞𝑑(𝑥𝑛 , 𝐹) = 0. Now, we show that {𝑥𝑛} is a 

Cauchy sequence in 𝐾. Let 𝑚,𝑛 ∈ ℕ and suppose 𝑚 > 𝑛. Then, it follows that 𝑑(𝑥𝑚, 𝑝) ≤
𝑑(𝑥𝑛, 𝑝) for all 𝑝 ∈ 𝐹. Hence, we get  

 

𝑑(𝑥𝑚, 𝑥𝑛) ≤ 𝑑(𝑥𝑚, 𝑝) + 𝑑(𝑥𝑛, 𝑝) ≤ 2𝑑(𝑥𝑛 , 𝑝). 
 

Taking inf on the set 𝐹, we have 𝑑(𝑥𝑚, 𝑥𝑛) ≤ 𝑑(𝑥𝑛, 𝐹). On letting 𝑚, 𝑛 → ∞ in the inequality 

𝑑(𝑥𝑚, 𝑥𝑛) ≤ 𝑑(𝑥𝑛, 𝐹), we have that it converges to a point 𝑞 ∈ 𝐾. Next, we show that 𝑞 ∈ 𝐹. 

Clearly 𝑑(𝑥𝑛 , 𝐹(𝑇)) = inf𝑥∗∈𝐹(𝑇)𝑑(𝑥𝑛, 𝑥
∗). So for each 𝜖 > 0, there exists 𝑝𝑛

(𝜖)
∈ 𝐹(𝑇) such that  

  

𝑑(𝑥𝑛, 𝑝𝑛
(𝜖)
) < 𝑑(𝑥𝑛, 𝐹(𝑇)) +

𝜖

3
.  
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This implies that lim𝑛→∞𝑑(𝑥𝑛 , 𝑝𝑛
(𝜖)
) ≤

𝜖

3
. From 𝑑(𝑝𝑛

(𝜖)
, 𝑞) ≤ 𝑑(𝑥𝑛, 𝑝𝑛

(𝜖)
) + 𝑑(𝑥𝑛, 𝑞), it 

follows that  
 

limsup
𝑛→∞

𝑑(𝑝𝑛
(𝜖)
, 𝑞) ≤

𝜖

3
.  

 

Hence, we obtain  
 

𝑑(𝑇(𝑞), 𝑞) ≤ 𝑑(𝑞, 𝑝𝑛
(𝜖)
) + 𝑑(𝑝𝑛

(𝜖)
, 𝑇(𝑞)) 

≤ 𝑑(𝑞, 𝑝𝑛
(𝜖)
) + 𝐻(𝑇(𝑝𝑛

(𝜖)
), 𝑇(𝑞)) 

≤ 2𝑑(𝑝𝑛
(𝜖)
, 𝑞)  

 

which shows that 𝑑(𝑇(𝑞), 𝑞) < 𝜖. So 𝑑(𝑇(𝑞), 𝑞) = 0 since 𝜖 is arbitrary chosen. Similarly, 

we can show that 𝑑(𝑆(𝑞), 𝑞) = 0 and 𝑑(𝑅(𝑞), 𝑞) = 0. Since 𝐹 is closed, then 𝑞 ∈ 𝐹. This 

complete the proof.  

We now give the definition of condition (I) of Senter Dotson [33] for three mappings and also 

the definition of semi-compactness. 
 

Definition 3.8 The multivalued mappings 𝑆, 𝑅, 𝑇: 𝐾 → 𝑃(𝐾), where 𝐾 is a subset of 𝑋 are said to 

satisfy condition (I) if there exists a nondcreasing function 𝑓: [0,∞) → [0,∞) with 𝑓(0) = 0, 

𝑓(𝑟) > 0 for all 𝑟 ∈ (0,∞) such that  
 

1

3
[𝑑(𝑥, 𝑆𝑥) + 𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑥, 𝑅𝑥)] ≥ 𝑓(𝑑(𝑥, 𝐹))    forall    𝑥 ∈ 𝐾.  

  

Definition 3.9 A mapping 𝑇:𝐾 → 𝑃(𝐾) is called semi-compact if any bounded sequence {𝑥𝑛} 
satisfying 𝑑(𝑥𝑛 , 𝑇𝑥𝑛) → 0 as 𝑛 → ∞ has a convergent subsequence.  
 

We now state the following application of our above Theorem 3.7. 
 

Theorem 3.10 Let 𝐾 be a nonempty, closed convex subset of a complete uniformly convex 

hyperbolic space 𝑋 with monotone modulus of uniform convexity 𝜂 and let 𝑅, 𝑆, 𝑇, 𝑃𝑅, 𝑃𝑆, 𝑃𝑇 and 

𝐹 be as defined in Lemma 3.5. Suppose 𝑃𝑆, 𝑃𝑇 and 𝑃𝑅 satisfy condition (I), then the iterative 

process defined in (1.4) converges strongly to 𝑝 ∈ 𝐹.  
 

Proof. For all 𝑝 ∈ 𝐹, lim𝑛→∞𝑑(𝑥𝑛, 𝑝) exists. Let us put lim𝑛→∞𝑑(𝑥𝑛, 𝑝) = 𝑐 for some 𝑐 ≥ 0. 
If 𝑐 = 0, then the result follows directly. So suppose that 𝑐 > 0. Now 𝑑(𝑥𝑛+1, 𝑝) ≤ 𝑑(𝑥𝑛, 𝑝) 
gives that  

 

inf
𝑝∈𝐹(𝑇)

𝑑(𝑥𝑛+1, 𝑝) ≤ inf
𝑝∈𝐹(𝑇)

𝑑(𝑥𝑛, 𝑝),  
 

which means that 𝑑(𝑥𝑛+1, 𝐹) ≤ 𝑑(𝑥𝑛, 𝐹). Hence lim𝑛→∞𝑑(𝑥𝑛, 𝐹) exists. By using condition 

(I) and Lemma 3.5, we get  
 

lim
𝑛→∞

𝑓(𝑑(𝑥𝑛, 𝐹)) ≤ lim
𝑛→∞

1

3
[𝑑(𝑥𝑛 , 𝑃𝑆𝑥𝑛) + 𝑑(𝑥𝑛, 𝑃𝑇𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑃𝑅𝑥𝑛)] = 0.  

 

Thus  
 

lim
𝑛→∞

𝑓(𝑑(𝑥𝑛, 𝐹)) = 0.  
 

By the properties of 𝑓, we get that lim𝑛→∞𝑑(𝑥𝑛, 𝐹) = 0. Using Theorem 3.7, we obtain the 

desired result.  

The following can be obtain as corollaries of our result. 
 

Corollary 3.11 Let 𝐾 be a nonempty closed and convex subset of a complete hyperbolic space 𝑋 

with a monotone modulus of uniform convexity 𝜂. Let 𝑅, 𝑆, 𝑇: 𝐾 → 𝑃(𝐾) be three multivalued 

mappings such that 𝑃𝑅, 𝑃𝑆 and 𝑃𝑇 be multivalued mappings satisfying condition (C) and 𝐹:=
𝐹(𝑅) ∩ 𝐹(𝑆) ∩ 𝐹(𝑇) ≠ ∅. If {𝑥𝑛} is the sequence defined by (1.4), then {𝑥𝑛} 𝛥-converges to a 

point in 𝐹.  
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Corollary 3.12 Let 𝐾 be a nonempty closed and convex subset of a complete hyperbolic space 𝑋 

with a monotone modulus of uniform convexity 𝜂. Let 𝑅, 𝑆, 𝑇: 𝐾 → 𝑃(𝐾) be three multivalued 

mappings such that 𝑃𝑅, 𝑃𝑆 and 𝑃𝑇 are 𝛼-nonexpansive mappings and 𝐹:= 𝐹(𝑅) ∩ 𝐹(𝑆) ∩
𝐹(𝑇) ≠ ∅. If {𝑥𝑛} is the sequence defined by (1.4), then {𝑥𝑛} 𝛥-converges to a point in 𝐹.  
 

Corollary 3.13 Let 𝐾 be a nonempty closed and convex subset of a complete hyperbolic space 𝑋 

with a monotone modulus of uniform convexity 𝜂. Let 𝑇:𝐾 → 𝑃(𝐾) be a multivalued mapping 

such that 𝑃𝑇 is generalized 𝛼-nonexpansive mappings and 𝐹(𝑇) ≠ ∅. Let {𝑥𝑛} be defined as  
 

{
 
 

 
 𝑥𝑛+1 = 𝑊 (𝑢𝑛,𝑊 (𝑥𝑛 , 𝑣𝑛,

𝛽𝑛

1−𝛼𝑛
) , 𝛼𝑛) ,

𝑦𝑛 = 𝑊(𝑣𝑛,𝑊 (𝑤𝑛 , 𝑥𝑛,
𝑐𝑛

1−𝑏𝑛
) , 𝑏𝑛) ,

𝑧𝑛 = 𝑊(𝑥𝑛, 𝑤𝑛 , 𝑎𝑛),

                                                                               (3.24) 

 

where 𝑢𝑛 ∈ 𝑃𝑇(𝑦𝑛), 𝑣𝑛 ∈ 𝑃𝑇(𝑧𝑛), 𝑤𝑛 ∈ 𝑃𝑇(𝑥𝑛) and 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝛼𝑛, 𝛽𝑛 ∈ (0,1) such that 

0 < 𝛼𝑛 + 𝛽𝑛 < 1 and 0 < 𝑏𝑛 + 𝑐𝑛 < 1. then {𝑥𝑛} Δ-converges to a point in 𝐹(𝑇).  
 

4. NUMERICAL EXAMPLE 

 

In this section, we present a numerical example to show that our proposed algorithm (1.4) 

converges faster than Ishikawa Iteration and SP iteration. 

Let (𝑋, 𝑑) = ℝ with 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| and 𝐾 = [0,3]. Denote by  
 

𝑊(𝑥, 𝑦, 𝛼):= 𝛼𝑥 + (1 − 𝛼)𝑦,    ∀  𝑥, 𝑦 ∈ 𝑋    and    𝛼 ∈ [0,1],  
 

then (𝑋, 𝑑,𝑊) is a complete uniformly convex hyperbolic space with a monotone modulus of 

uniform convexity and 𝐾 is a nonempty closed and convex subset of 𝑋. Let 𝑅, 𝑆, 𝑇: 𝐾 → 𝐶𝐵(𝐾) 
be defined by  

 

𝑇𝑥 = {
[0,

𝑥

6
],    if    𝑥 ≠ 3,

{1},    if    𝑥 = 3,
  

𝑆𝑥 = {
[1,

3

2
],    if    𝑥 = 3,

{0},    if    𝑥 ≠ 3,
  

 

and  
 

𝑅𝑥 = {
[0,

𝑥

2
]    if    𝑥 ≠ 2,

{1},    if    𝑥 = 2.
  

 

It is easy to prove that 𝑅, 𝑆, 𝑇 are generalized 𝛼-nonexpansive for 𝛼 ∈ (0,1) and the convex 

value 0 ∈ 𝐾 which is the unique fixed point in 𝐾 and 𝐹(𝑇) ∩ 𝐹(𝑆) ∩ 𝐹(𝑅) = {0}. Let {𝑎𝑛} be a 

constant sequence such that 𝑎𝑛 =
1

2
 and 𝑏𝑛 =

3𝑛+1

4𝑛+5
, 𝑐𝑛 =

1

4𝑛+5
, 𝛼𝑛 =

1

2𝑛
 and 𝛽𝑛 =

1

4𝑛
 for all 𝑛 ≥

0. Then algorithm (1.4) becomes:  
 

{
 
 

 
 𝑧𝑛 =

1

2
(𝑥𝑛 +𝑤𝑛),

𝑦𝑛 =
3𝑛+1

4𝑛+5
𝑣𝑛 + (1 −

3𝑛+1

4𝑛+5
) (

𝑤𝑛

𝑛+4
+
𝑛+3

𝑛+4
𝑥𝑛) ,

𝑥𝑛+1 =
1

2𝑛
𝑢𝑛 +

1

2
(1 −

1

2𝑛
) (

𝑥𝑛

2𝑛−1
+
4𝑛−3

2𝑛−1
𝑣𝑛) .

  

 

We make different choices of 𝑥0 with stopping criterion 
||𝑥𝑛+1−𝑥𝑛||

||𝑥2−𝑥1||
< 10−4. Using Mathlab 

version 2016(b), we plot the graph of 𝑥𝑛+1 against the number of iteration for algorithm 1.4 and 

modified SP-iteration (1.3) using the following initial values. Case 1: Choose 𝑥0 = 0.5, Case 2: 

Choose 𝑥0 = 1, Case 3: Choose 𝑥0 = 2.25. Case 4: Choose 𝑥0 = 3. 
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See Figure 1, Figure 2, Figure 3 and Figure 4 for the graphs. We deduce from this example 

that algorithm 1.4 performs better than the modified SP-iteration (1.3) in terms of number of 

iterations and cpu time taken for computation. 

 

   
 

Figure 1. Case 1, 𝑥1 = 0.5 (cpu time: Algorithm (1.4): 0.0014 sec, Modified SP: 0.0028sec). 

 

İ. Karahan, L.O. Jolaoso     / Sigma J Eng & Nat Sci 38 (2), 1031-1050, 2020 



1047 

 

 

 
 

Figure 2.  Case 2, 𝑥1 = 1 (cpu time: Algorithm (1.4): 0.0035 sec, Modified SP: 0.0101sec). 

 

 
 

Figure 3.  Case 3, 𝑥1 = 2.25 (cpu time: Algorithm (1.4): 0.0015 sec, Modified SP: 0.0132sec). 
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Figure 4.  Case 4, 𝑥1 = 3 (cpu time: Algorithm (1.4): 0.0019 sec, Modified SP: 0.0111sec). 
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