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ABSTRACT 
 

Urban growth is a worldwide phenomenon. The rate of urbanisation in developing countries such as Algeria is 

speedy. Sub-watershed of Oued Fekan is included in the large watershed of Macta which is located in north-
western Algeria and is one of the most important sites of this country characterized by an abundant amount of 

biodiversity as well as a highly productive ecosystem. The valuable landscape undergoes a radical change in 

the form of a sub-watershed recently due to anthropogenic change on land use and land cover. The 
exponential increase in population and human activities are increasing the demand for land and soil resources 

for agriculture, urban and industrial uses. Anthropogenic factors, especially urban sprawl, have a significant 

role in controlling the temperature change. 
In this paper, four Landsat-8 OLI/TIRS images of 2018 have been used from different seasons to estimate 

land surface temperature (LST), Normalized Difference Built-up Index (NDBI) and Normalized Difference 

Vegetation Index (NDVI) in order to study the phenomenon of difference distribution temperature in urban 
with the surrounding rural areas. Analysis based on linear regression was used to generate relationships 

between LST with NDVI and NDBI. Our analysis indicates that for the four seasons, a strong linear 

relationship between NDBI and LST was marked compared with the relationship between NDVI and LST, 
which was less intense and varied by seasons. We suggest that NDBI is a visible indicator for studying surface 

Urban Heat Island phenomenon (UHI). Useful information that occurs as a consequence of land-use changes 

and urbanization are then provided for understanding the local climate and environmental changes of our 
study area. 
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1. INTRODUCTION 

 

Over the last three decades and all over the world, remote sensing data were and steeled the 

essential components of many applications. One of these essential applications areas is to 

determine and analyse changes in land use, land cover and urbanization. In Algeria, decision-

makers have provided farmers and landowners the opportunity to lease land for additional 

cultivation (individual/collective agricultural holding), while limiting urban growth and 

promoting local product ion. The program supported by superior authorities, encourages the 

return to agricultural areas which were deserted in the past, has allowed multiplying the number 

of new farms constructions. The growth of urban areas and industrial intensification, has 

contributed to a reduction in valuable agricultural lands and various environmental impacts, such 

as increased surface temperature. This phenomenon of conversion of vegetated land to impervious 

lands, including settlements was the reason for the conversion of pixels of cooling to a higher 

temperature surface [1]. Land surface temperature (LST) is crucial parameters in the physics of 

land surface processes at local to global scales. Availability of spatial data and the particular 

interest of the scientific community by developing retrieving algorithm and methodologies to 

measure LST from space shows the exponential importance of this index in different fields of 

research. Since its retrieval problem is ill-posed, retrieving LST remains a challenging task [2]. 

Air temperature between an urban and a rural site is different. Towns and cities are warmer at 

night compared to rural areas because of the absorption of the Sun's radiation in urban concrete 

and buildings. This phenomenon is called Urban Heat Island (UHI) [3]. According to Mascara 

census office, the population of our study area is exponentially increasing. The growth of urban 

areas and industrial intensification contributes to an augmentation in air temperatures, such as 

climatic change and global warming potential. Thus it has become a topical, and one of the 

significant issues for environmental researches. The surface heat flux controls LST and 

urbanization lead to exacerbating this phenomenon, the effect of UHI is caused by the spatial 

distribution of LST [4-5]. 

Consequently, obtaining LST is critical for the analysis of UHI [6]. Remote sensing 

technology keeps playing the leading role in the understanding of our environment. It has evolved 

into an integral research tool for the natural sciences with the increasing of its imagery resolution. 

It has become an essential approach to UHI research. The traditional method for analyzing UHI is 

based on LST data measured at local observation points. With the appearance of high-resolution 

earth monitoring satellites, it became possible and more practical to measure LST using remote 

sensing technology and to obtain also an additional UHI primary data [6-7]. The traditional 

method of meteorological observation may not be sufficient to cover the entire region understudy 

because of uneven distribution and the limited conditions of data collected from local 

meteorological observations points. New techniques of remote sensing have the favour of the high 

spatial resolution, which enables large-scale research of UHI [6]. Several pieces of research have 

been carried out on the use of remote sensing tools and GIS for multiple subjects such as 

monitoring biodiversity, creating LST and change detection maps. 

Previous works are mentioned here: Several studies revealed UHI spatial patterns counting 

the relationship between UHI and land use/cover types [8-9-10]. Many authors have worked on 

several remote sensing datasets used in UHI studies and have emphasized different cognitive 

issues. Balling and Brazel used Advanced Very High-Resolution Radiometer AVHRR thermal 

bands for estimating LST over Phoenix in Arizona and obtained reliable results of LST variations 

across the metropolitan area [11]. Therefore, Sobrino developed a split-window equation after 

simulations of satellite measurements of LST using the atmospheric transmittance-radiance model 

LOWTRAN-7 for NOAA-11 AVHRR Channels 4 and 5 [12]. Streutker showed that satellite 

radiance data could be used to characterize both the magnitude and spatial extent of an urban heat 

island (UHI) after his work in Houston, Texas. One year after, in the same study area, he proved 

the growth of the surface temperature using the split-window infrared channels of the AVHRR 
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[13-14]. Weng focused on the rela tionship between LST and vegetation abundance for UHI 

studies in the city of Indianapolis, USA. LST was derived from the corrected Landsat ETM+ TIR 

band in this research [15]. Recently, based only on Landsat imagery, Fu and Weng devised an 

algorithm to generate spatially and temporally sustained LSTs at Landsat spatial resolution to 

overcome limitations of Landsat TIR sensor, which do not allow generating LSTs at any desired 

date with consistent accuracy and corrections [16]. Hu and Brunsell studied the impact of 

temporal aggregation on LST and UHI from 2000 to 2010. They quantified this impact focusing 

on Houston, Texas and its surroundings using MODIS LST products, using the generalized split-

window LST algorithm [17]. In our study area, studies were conducted mainly for monitoring 

evapotranspiration and surface energy fluxes estimation; Nehal used Thermal (band 6) of 

Landsat-7 ETM+ Image to estimate LST. The present study aims to retrieve LST from Landsat 8 

OLI-TIRS Imagery, using Mono-window algorithm, and to compare NDBI and NDVI as 

indicators of UHI by looking for the best correlation between each one of the two indices and the 

LST [18]. 

A recent study compares NDBI and NDVI as indicators of SUHI effects using MODIS 

imagery, the result suggests NDBI as an accurate indicator of SUHI effects and can be used as a 

complementary metric to the traditionally applied NDVI for analyzing LST quantitatively during 

the year for SUHI studies [19]. Different scholars in different time periods attempted to draw a 

correlation between LST in UHIs and some LU/LC indices applied in several countries. The 

majority used thermal remote sensing data to estimate the indices [20-21-22-23-24]. In the aim to 

classify different LU/LC types using NDVI and NDBI threshold values, LST with both indices 

were estimated using Landsat 8 data, this analytical study was applied to investigate the UHI 

intensity effect for Florence and Naples cities in Italy, and to interpret the dynamic relationship 

between LST with NDVI and NDBI [25]. 

 

2. MATERIAL AND METHODS 

 

2.1. Study area 

 

The study area is located in Mascara city, mainly, in sub-watershed of Oued Fekan(fig.1.b), 

located in north-western of Algeria between latitude 35° 7'N to 35° 31' N and longitude 0° 25' W 

to 0° 4.143' E, thereby covering a total geographical area of approximately 1195 km². It includes 

the Ghriss plain which covers an agricultural area of more than 72000 hectares. It is limited from 

the north by the Beni-Chougrane Mountains, from the south by the Saida Mountains, from the 

west by Bouhanifia Mountains and in the east, we find the trays of Tighennif.  
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Figure 1. Location map of study area (a) Sub-watersheds of the Macta, (b) sub-watershed of 

Oued Fekan. 

 

2.1.1. Topography 

 

The plain corresponds to a flat stretch with an average altitude of 450 m, overhanging by high 

edge ridges that exceed the 1000 m of altitude in the south (Nesmoth Mountain). Non-permanent 

watercourses drain this topographic catchment area which is upstream in the mountains of Beni-

Chougrane and Nesmoth, while its downstream is located in the western part.  The western part is 

the outlet which feeds the Bouhanifia dam. 
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Figure 2. Digital Elevation Model of Oued Fekan. 

 

2.1.2. Climatic and rainfall context 

 

This region is characterized by a semi-arid climate where the annual average of precipitations 

is around 313 mm/year for the period of 1976-2001 [26]. For the same period, the actual 

evapotranspiration was estimated at 289 mm/year while the average annual temperature is 16.5 

°C. The accumulated rainfall between December and February corresponds on average to 37% of 

the total annual rainfall. The spring and autumn rains correspond respectively to 30% and 28% of 

this total, while the summer rains, which are stormy and torrential, represent only 5% of the total. 

The area has no significant spatial rainfall variability although the landforms are more watered 

than the central plain. Very high temperatures are measured during the period from June to 

August with maximum values exceeding 40 °C during the day. It favours the evaporation of the 

waters of the superficial aquifer. The wadis of the plain have non-perennial flows with very low 

or null annual average flows. 

 

 
 

Figure 3. Evolution of rainfall in Mascara, Matemoure, Tizi, Ghriss and Froha meteorological 

station. 
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2.1.3. Soil representation 

 

The study of pedology is essential to understand the nature and types of the soils that exist in 

Oued Fekan region. This part has been permanently taken from works made at the ANRH 

(National Agency of Hydraulic Resources) level where the plain has been the subject of many soil 

surveys. Lands which outcropping the plain are from the sedimentary formation with variable 

texture, composed predominately of recent and older alluvium. Generally, soils are of 

calcimagnesic type, but occasionally we meet isohumic and poorly evolved soils [18]. All these 

types of soil in the study area are favourable to the infiltration of precipitation water for 

recharging plio-quaternary groundwater and represent the nourishing ground, naturally fertile. Its 

significant agricultural potential characterizes the plain since more than 90% of its total area is 

currently used for agricultural activity. 

 

2.2. Data sources 

 

Our study area is fully included in the Landsat 8, Path/Row 197/36. As shown on the table 1, 

the images used in this analysis were acquired in 2018, respectively in February, May, August 

and November so that it covers four different seasons. Images of Landsat 8 OLI-TIRS 

(Operational Land Imager Thermal Infrared Sensor) are downloaded from the Earth Explorer US 

Geological Survey image database (Landsat Imagery Archive). 

 

Table 1. Specification of the used satellites images. 
 

Satellite Sensor Path/Row Year Month Time Resolution (m) Wavelength µm 

Landsat 8 

OLI (Operational 

Land Imager) 

and TIRS 

(Thermal 

Infrared Sensor) 

197/36 2018   

February 

May 

August 

November 

10:32 

 

30 

(For TIRS bands  resolution 

is 100 m) 

(For band 8 resolution is 15 

m) 

Band 1: 0.435-0.451 

Band 2: 0.452–0.512 

Band 3: 0.533–0.590 

Band 4: 0.636–0.673 
Band 5: 0.851–0.879 

Band 6: 1.566–1.651 

Band 7: 2.107–2.294 

Band 8: 0.50–0.68 

Band 9: 1.363–1.384 

Band 10: 10.60–11.19 

(Thermal band) 
Band 11: 11.50–12.51 

(Thermal band) 

 

2.2.1. Preprocessing of OLI Data 

 

The USGS EROS Center provides standard Landsat 8 data products. It consists of quantized 

and calibrated scaled Digital Numbers (DN) representing multispectral image data acquired by 

both the Thermal Infrared Sensor (TIRS) and Operational Land Imager (OLI). The products are 

delivered in 16-bits; we rescaled them to the Top of Atmosphere (TOA) radiance using 

radiometric rescaling coefficients provided in the product metadata file (MTL file). 
 

𝐿λ =  𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿                                                                                                                   (1) 
 

Where Lλ is TOA spectral radiance (Watts/ (m2 * srad * μm)), ML is Band-specific 

multiplicative rescaling factor from the metadata (RADIANCE_MULT_BAND_x, where x is the 

band number), AL is Band-specific additive rescaling factor from the metadata 

M. Chrair, A. Khaldi, M.A. Hamadouche, M. Alkan, et.al.,     / Sigma J Eng & Nat Sci 38 (2), 907-926, 2020 



913 

 

 

(RADIANCE_ADD_BAND_x, where x is the band number), Qcal is Quantized and calibrated 

standard product pixel values (DN). 

The spectral radiance in the optical range is converted into reflectance after correction for 

atmospheric effects using commercially-available MODTRAN Software radiative transfer code 

[27]. These reflectances are subsequently exploited to calculate the normalized difference 

vegetation index (NDVI) and the normalized difference built-up index (NDBI).NDVI optimize 

contrasts between the infrared and the visible bands. This index makes it possible to visualize, on 

a single channel, the dynamic responses related to the density of vegetative cover. NDVI is 

included between -1 and +1.When the area corresponding to the soil has a strong chlorophyllin 

activity; it marks a high value [28]. NDVI is then calculated as the combination between near 

infrared and red band: 
 

𝑁𝐷𝑉𝐼 =  
(𝑅𝑁𝐼𝑅−𝑅𝑅𝐸𝐷)

(𝑅𝑁𝐼𝑅+ 𝑅𝑅𝐸𝐷)
                                                                                                                    (2) 

 

NDBI based on the analysis of the unique spectral responses of built-up areas in seven 

Landsat TM bands. The original NDBI approach developed by Zha is implemented based on 

Landsat OLI bands covering NIR and SWIR wavelength [29], using the following equations: 
 

𝑁𝐷𝐵𝐼 =  
(𝑅𝑆𝑊𝐼𝑅−𝑅𝑁𝐼𝑅)

(𝑅𝑆𝑊𝐼𝑅+ 𝑅𝑁𝐼𝑅)
                                                                                                                   (3) 

 

2.2.2. Pre-processing of TIRS Data 

 

The following relationship express the spectral space-reaching radiance (Lsat(λ)) measured 

by the sensor in the thermal infrared: 
 

𝐿𝑠𝑎𝑡(λ) =  [𝜀0𝐿λ(T0)  + (1 − ε0)L↓atm(λ)] ∗ τλ +  L↑atm(λ)]                                             (4) 
 

Where: 
 

Lλ(T0) is the radiance of a blackbody target of kinetic temperature T0. 

λ  is atmospheric transmission. 

Latm(λ) is the down welling or sky radiance. 

Latm(λ) is the upwelling or atmospheric path radiance. 
 

Both atmospheric parameters (λ ,L
atm(λ) , Latm(λ)) are estimated, by the web atmospheric 

correction parameters calculator, at time of satellite overpass  [30]. 

0  is the surface emissivity which is estimated from the vegetation index (NDVI) [31]: 
 

𝜀0 = 1.0094 + 0.047 × ln(𝑁𝐷𝑉𝐼)                                                                                                (5) 
 

Spectral radiances Lλ(T0) reflected from the Earth surface can be deducted by inversion of 

Equation 4. After converting TIRS band data from DN to spectral radiance, we convert them to 

the top of atmosphere brightness temperature using the thermal constants provided in the 

metadata file: 
 

𝑇 =
𝐾2

𝐿𝑛(1+
𝐾1
𝐿λ

)
                                                                                                                                (6) 

 

Where:        
        

T  Top of atmosphere brightness temperature (K) 

Lλ TOA spectral radiance (Watts/( m2 * srad * μm)) 

K1 Band-specific thermal conversion constant from the metadata (K1_CONSTANT_BAND_x, 

where x is the thermal band number 10 or 11) 

K2 Band-specific thermal conversion was constant from the metadata 

(K2_CONSTANT_BAND_x, where x is the thermal band number 10 or 11). 
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Table 2. Band-specific thermal conversion constant from the metadata K1 and K2 values. 
 

Thermal constant Band 10 Band 11 

K1 774.8853 480.8883 

K2 1321.0789 1201.1442 

 

TIRS bands were designed to allow the calculating surface temperature. For our analysis and 

calculation of LST, we used only bands 10 from the Thermal Infrared Sensor (TIRS) of the 

Landsat 8 satellite. According to Wang, since TIRS band 11 data from the Landsat 8 have 

considerable uncertainty, he also recommended using only TIRS band 10 data as a single spectral 

band for any LST estimation [32]. Finally, the land surface temperature is calculated as follows: 
 

𝐿𝑆𝑇 =
Tb

1+(λ∗
𝑇𝑏
ρ

)𝐿𝑛ε
                                                                                                                    (7)  

 

Where: 
 

Tb = At-satellite brightness temperature (in Kelvin) 

ε = emissivity 

λ =.wavelength of emitted radiance (11.5 μm) 

ρ = h × c/σ (1,438 × 10-2 m K) 

σ = Boltzmann constant (1,38 × 10-23 J K-1) 

h = Planck's constant (6,626 × 10-34Js)   

c = Velocity of light (2,998 × 108 m sec-1) 
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Figure 4. Flowchart of retrieving LST values from Landsat 8 image. 

 

3. RESULTS AND DISCUSSION 

 

Urbanization is one of the most influential forces that drive and affect climate warming. LST 

Maps created in this study have shown clearly the spatiotemporal changes in LST values over the 

sub-watershed of Oued Fekan area. The study aims to compare NDBI and NDVI as indicators of 

surface urban heat island by looking for the best correlation between both indicators with LST 

using Landsat 8 Imagery. 

Table 3 summarizes the LST, NDVI and NDBI statistical data for the different four seasons. 

The results obtained from the study of Mean for LST, NDVI and NDBI profiles in section 2 

indicate that both temperature and NDBI values change proportionally (see Fig. 5). Low values 

are recorded during February (respectively 18,524 °C and -0,017 for LST and NDBI values), 

while the high values appear in May and August (respectively 43,07 °C and 0,059 for LST and 

NDBI values). Otherwise, low values of NDVI are recorded for November and August (due to the 

low chlorophyllin activity) while the high values concern the month of February (0.321 of NDVI 

value), which decreases progressively until May.  

Land cover types have different behaviour towards LST as well as NDVI and NDBI indices. 

Water bodies and vegetation show lower LST, whereas built up and bare soil region shows higher 

LST during daytime [33]. Despite only one land use unit such as vegetation, water body or 

impervious land, also create differences in LST (see sections 3.3 and 3.4 for more details) so that 
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urban areas, because of their impermeability land properties, are characterized by both high 

temperature and NDBI values.  A low surface temperature often characterises contradictory, 

agricultural areas (non-urban areas). 

 

Table 3. LST, NDVI and NDBI statistical data for four seasons. 
 

Date 
Minimum Maximum Mean Standard Deviation 

LST NDVI NDBI LST NDVI NDBI LST NDVI NDBI LST NDVI NDBI 

November 18th 2018 -1,8 -0,31 -0,41 26,66 0,83 0,38 20,122 0,169 0,014 2,091 0,088 0,059 

February, 20th 2018 6,93 -0,27 -0,41 33,74 0,91 0,21 18,524 0,321 -0,017 3,246 0,127 0,083 

May, 26th 2018 24,29 -0,21 -0,46 50,46 0,84 0,37 41,157 0,265 0,025 3,187 0,079 0,06 

August 14th 2018 25,67 -0,17 -0,33 51,21 0,69 0,29 43,07 0,196 0,059 2,738 0,053 0,041 

 

 
 

Figure 5. Mean representation for LST, NDVI and NDBI. 

 

3.1. Spatiotemporal variation of LST 

 

In order to study the behaviour of LST in our study area, the LST image was generated, as 

shown in figure 6. The area under study is characterized by recurrent drought, where the semi-arid 

climate is predominant. Two significant periods describe this area, dark and rainy period from 

November to March and another hot and dry, from April to October [18]. Winter (from December 

to February) is usually cold enough as the absolute minimum of the air temperature descends to -2 

°C. Summer (from June to August) is usually hot and dry since the absolute maximum of the air 

temperature is equal to +50 °C. A hot drying wind from the South called "sirocco" accentuate the 

thermal maxima.  

The remote sensing approach allowed measuring the LST of the entire study area, the 

interpretation of the spatial distribution of LST with the type of land use becomes possible. As it 

can be seen from Figure 6, especially fig 6.a, boundaries in south-eastern part are the coldest; on 

the other hand, the northwest part is warmer. It represents the Bouhanifia Mountains, an area 

known for its wealth of thermal water. It is found that the warmer area was also marked in the 

centre of the plain. Particularly where areas were filed agricultural and now marked as built-up 

areas. Temperature map shows that LST marks important values mainly at the built-up area and 

urban fallow land, which is going to be built up. During the winter season, the minimum and 

maximum of land surface temperature are 6.93 and 33.74 °C, respectively; for the summer 

season, the most basic marked value of LST is 25.67 °C while the maximum value is 51.21 °C. 
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An average of 43.06 °C during the hot summer season against an average of 18.524 °C during the 

cold winter, which clearly explains why this study area is classified as semi-arid in its type of 

climate. 

The absence of a strong relationship between LST and UHI during the four seasons; 

especially in summer where bare land is predominant; returns to urban sprawl type exerted on the 

non-compact plain (except for major cities that are not metropolitan); otherwise it is 

discontinuous, scattered or diffuse and generally linear along the roads. This type of urban sprawl 

explains the homogeneity of LST marked in almost all the plain. Despite being an agricultural 

area, marked values are essential. 

 

 
 

Figure 6. Spatial distribution of LST for four seasons in degrees Celsius (°C). 

 

Validation of the spatial distribution of surface temperature and its relation to the type of land 

occupation, including UHI effects, is made as it can be seen in figure 7. The resulting LST class 

was located on the imagery. It was observed that Oued Fergoug show very low LST, also parcels 

with a high density of vegetation. The urban areas of Mascara city show LST higher than the 

vegetated areas and water-body but lower than the bare soil. 

Urban areas of Mascara, Tighenif and Ghriss cities have marked a difference in the surface 

temperature higher than adjacent agricultural parcels of the plain about 2 to 3 °C in winter. This 

difference in LST changed along with the variation of season; these results involve studying the 

relationship between Normalized Difference Built Index and Land Surface Temperature and 

analyzing implications of urban growth on thermal characteristics. 
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Figure 7. Visual interpretation of LST distribution using Reference Maplink 

 

3.2. Spatiotemporal variation of NDVI and NDBI 

 

Spatial representation of NDVI and NDBI distribution over the four seasons are shown 

respectively in figure 8 and figure 9. Firstly, relationships between NDVI and NDBI was 

analysed; a weak and negative correlation was marked between the two variables. An inverse 

relationship between NDVI and NDBI was marked. Height values of NDVI indicate vegetated 

areas; while height values of NDBI indicate built-up areas and barren land. Both indices were 

used to differentiate the land use/cover types of our study area. The most significant correlation 

occurred in summer. It suggests that NDVI can respond to NDBI change and reflect the evolution 

of the urban construction land (Figure 10). 

 

 
 

Figure 8. Spatial distribution of NDVI for four seasons 
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Figure 9. Spatial distribution of NDBI for four seasons 

 

 
 

Figure 10. Scatter plots of NDVI (x-axes) and NDBI (y-axes) for four seasons 
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3.3. Relationships between the LST and NDVI 

 

In order to study the relation of LST with the respective indices, scatter plots were obtained 

for LST/NDVI, LST/NDBI, as shown in Figure 11 – 12, respectively. Areas with high 

temperature generally tend to have lower NDVI values. This aspect has mainly corroborated from 

the analysis of the relationship between LST and NDVI. As shown in the LST images, the LST 

values of non-vegetated areas (dried river beds, barren land, built-up) are higher than those 

marked for areas of water bodies and vegetation, including agricultural land. The results obtained 

from the correlation between LST and NDVI showed non-linear behaviour between them. In 

urban regions, NDVI cannot explain LST due to more significant heterogeneity in land cover, 

especially in urban areas that include soil, buildings, vegetation and water. NDVI cannot well 

describe the LST of the study area since the trend of LST and NDVI relationship during seasons 

is different. Affected by the seasons, the relationship between NDVI and LST cannot achieve a 

stable level which indicates that the correlation between the two indices is influenced by season. 

 

 
 

Figure 11. Scatter plots of LST (x-axes) and NDVI (y-axis) for four seasons 

 

As shown by Figure 12, higher LST values are usually found in the areas of higher NDBI 

values because of the predominance of high-density urban areas, including commercial, 

industrial, and residential developments. In contrast, analysis of the above data shows that LST 

correlates closely with NDBI. There is a strong positive correlation between the values of both 

indices, indicating a direct relationship between them. As NDBI values increase LST values also 
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increase; generally in the same areas. Instead NDVI, NDBI can be used to study LST in the 

region containing different land covers. 

 

 
 

Figure 12. Scatter plots of LST (x-axes) and NDBI (y-axis) for four seasons. 

 

3.5. A further investigation between LST, NDBI and NDVI 

 

A deeper interpretation between the mean of LST, NDBI and NDVI was applied over all the 

heterogeneous area that encompasses the three cities of Mascara, Maoussa and Tighennif. Thus a 

large area of agricultural land showed a very strong positive relationship between the mean of 

LST and NDBI for all seasons (r2> 0.86). The supported method to set the pace of NDBI/NDVI is 

explained in the following relation: 
 

PaceNDBI= (MAXNDBI-MINNDBI)/n 
 

PaceNDVI= (MAXNDVI-MINNDVI)/n 
 

Where: 
 

n = number of points retained; (Mostly we fixed n at 50 points). 
 

The obtained results are presented in Fig. 13 and Fig. 14: 

Contrariwise, the relationship between the mean of LST and NDVI was not accurate, in all 

graphs (Figure 13), we note that there is a stabilisation indicating a strong negative correlation 

between NDVI and LST(r2 of NDVI vs. LST ranges from 0.001 to 0.049). These inverse linear 

correlations begin when NDVI>0.2 for spring and summer. This same negative correlation starts 
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instead of when NDVI reaches the value of 0.18 for February and November. Results obtained 

show a negative correlation which varies by season; for values lower than the one mentioned 

before (NDVI<0.2 for May and August, NDVI<0.18 for February and November) including 

negative values which represent mainly non-vegetated area, urban surfaces and bare soil, no 

stable trend was identified. NDVI has an evident seasonal change which implies using this index 

is complicated to understand UHI. 

 

 
 

Figure 13. Relationship between NDVI and the mean of LST. 

 

 
  

Figure 14. Relationship between NDBI and the mean of LST. 
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Conversely, as shown in figure 14, the co-linear correlation between NDBI and the mean of 

LST (r2 of NDBI vs. LST ranges from 0.861 to 0.925) was marked. LST is almost co-linear with 

air temperature as indicated by significant correlation value (0.861 for February, 0.915 for May, 

0.925 for August and 0.91 for November 2018) at 0.02 level of significance. Its less variation 

with the season (not subject to seasonal effects) makes it an apparent index for future analysis of 

spatiotemporal UHI effects. The relationship between NDBI and LST was more stable comparing 

to NDVI and LST. NDBI can adequately describe the LST since they were positively correlated 

in four seasons (without seasonal effects.). The full index can be used as a supplemental indicator 

to the traditionally applied NDVI for further analysing seasonal changes in UHI effects. 

 

3.6. Spatial dependence and correlation among NDBI, NDVI and LST from two profiles 

 

To study a deeper Spatio-temporal distribution of LST, NDBI and NDVI, which is profiles of 

each index are drawn in two different areas. The first, located in Mascara city, covers buildings, 

roads, settlement and vegetation. While the second, located in the western part, covers water of 

Bouhanifia dam, sparse settlement and grassland that around it. Horizontal and vertical profiles 

have been made across the study area to represent the LULC wise LST (Figure 15). Profiles lines 

are shown in high-resolution Google Earth images acquired in 05/04/2018. 

 

 
 

Figure 15. Selected LST, NDBI and NDVI Profiles. 

 

By analysing obtained maps and profiles, it is identified that built-up areas like buildings, 

roads are warmer than vegetation-covered areas and grassland, but water bodies remain coolest of 

all. The urbanization process in sub-watershed of Oued Fekan had a significant impact on its 

thermal characteristics since the mean temperatures were higher in urban areas than in the 

surrounding suburban/rural areas. Heavily industrialized districts and built-up land, densely 

populated, are closely associated with high-temperature anomalies. Except in wetlands and waters 

where the NDVI profile shows a better correlation, both profiles of LST and NDBI varies in 

parallel with a strong correlation. All three indices (LST, NDBI and NDVI) used in our study, can 

Evaluation of the Effects of Land Cover Changes  …        /   Sigma J Eng & Nat Sci 38 (2), 907-926, 2020 



924 

 

 

describe, in a qualitative manner, the spatial distribution and temporal variation in the plain 

thermal environment. 

Extracting LST from thermal remote sensing data is useful for studying other subjects such as 

evapotranspiration. Results obtained showed that industrialized districts and built-up land, 

densely populated, are closely associated with high-temperature anomalies. We recommend 

controlling the urbanization exercised in Ghriss plain, avoiding compacted urban sprawl, with 

thoughtful planning of the distribution of industry, which will mitigate the UHI effect for a 

healthy urban environment and sustainable development.  

 

4. CONCLUSION 

 

Analysing the spatial distribution of LST is a factor key in the different studies such as urban 

heat island studies, climate change studies and also evapotranspiration studies. This paper focused 

on the investigation of the relationship among the LST, NDVI and NDBI in the sub-watershed of 

Oued Fekan of approximately 1190 km2 surrounding Mascara city in the north-west of Algeria. 

The relationship equations have been derived between LST and NDBI values for four different 

seasons represented, respectively by October, February, May and August. Then, analyses were 

based on the interpretation of remote sensing data of Landsat-8 OLI-TIRS imagery. Results 

indicate that different types of land use/cover and urban sprawl exerted in the plain have an 

essential impact on land surface temperature. However, the strong linear relationship between the 

LST and NDBI for all seasons suggests that urban areas have the most impact on LST 

distributions, i.e. urban areas of Mascara, Tighenif and Ghriss have marked a higher difference in 

the surface temperature than near agricultural parcels of about 2 to 3 °C in winter, while it differs 

from one season to another. 

Detailed analysis shows that this variation in the distribution of LST can be better accounted 

for by NDBI than by the commonly used NDVI since the correlation of LST with NDBI was 

found better than NDVI, which implies that NDBI is an accurate indicator of surface heat island 

effects. This finding suggests that some measures (e.g., increasing forest and garden lands, 

controlling the population density in Ghriss plain, thoughtful planning of the distribution of 

industry), could be taken to mitigate the UHI effect for a healthy urban environment and 

sustainable development. Availability of remote sensing data covering the overall North-west of 

Algeria allows in further studies to project the contemporary approach on the metropolitan coastal 

town of Oran with different climatic conditions and different land use/cover types. 
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