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ABSTRACT 

 

In this study, the behavior of the logistic difference model is investigated under random conditions using 
discrete probability distributions. The logistic difference model consists of parameters that depend on the 

population models to be used. For the study of random difference equation population models, the parameters 
are treated as random variables which constitutes the basis of the study. Random models were created using 

Uniform, Bernouilli, Binom, Negative Binomial (or Pascal), Geometric, Hypergeometric, Poisson 

distributions and their numerical characteristics are obtained through their simulations. Then, the results 
showing random numerical characteristics such as expected value, variance, standard deviation, coefficient of 

variation and confidence intervals were obtained with MATLAB package program. Analysis of random 

logistic difference model is given with the help of graphics and tables.  
Keywords: Logistic difference equation, probability distributions, expected value, variance. 

 

 

1. INTRODUCTION 

 

While random dynamical systems are expressed as an equation mathematically, the events 

observed in nature also represent the dynamic process. These systems are systems that change 

depending on time. Difference equations arise in discretization methods of differential equations. 

This theory is also used in the mathematical expression of discrete events based on time. 

Difference equations have many applications in various fields of mathematics and science, such 

as economics, biology, signal processing, computer engineering, genetics, health sciences, 

ecology (environmental science) and fixed point theory. Mathematical modeling of population 

dynamics has an important place in the field of difference equations, and Thomas Malthus 

developed the first model in 1798. Thomas Malthus in his work ” An Essay on the Principle of 

Population " stated that while food sources are growing linearly, the human population shows 

exponential growth and finally competition for food will emerge, poverty and war will be 

inevitable if the population is not taken into account such events as war, disease and famine. 

Considering that the obstacles mentioned by Thomas Malthus are proportional to the square of the 

population growth rate, some kind of "resistance" occurs and the population does not grow 

geometrically for a long time. Later in 1838, Verhulst developed the population growth model in 

which population size, known as the logistic equation, was limited by carrying capacity. 

                                                 
* Corresponding Author: e-mail: mmerdan@gumushane.edu.tr, tel: (456) 233 10 00 / 1919 

 

Sigma Journal of Engineering and Natural Sciences 

Sigma Mühendislik ve Fen Bilimleri Dergisi 

 



1270 

 

To describe the population briefly, it is a community of the same species living in the same 

place and at the same time[33]. Population dynamics, on the other hand, are one or more 

population sizes, den sity, time dependent numerical changes of age distribution and an ecology 

branch that studies them [31]. 

According to the population dynamic models, discrete time models (n = 0,1,2,…) and 

continuous time models (n∈R) are divided into two. While creating the population model, the 

equations of the population model are obtained by first defining the behaviors of individuals and 

making use of them [30]. Difference equation of this population model 
 

𝑋(𝑛 + 1) =  𝑋(𝑛) +  𝑟𝑋(𝑛) (1 −
𝑋(𝑛)

𝐾
)                                                                                         (1) 

 

If white noise is added to this equation, we obtain 
 

𝑋(𝑛 + 1) =  𝑋(𝑛) +  𝑟𝑋(𝑛) (1 −
𝑋(𝑛)

𝐾
) + 𝑛𝑜𝑖𝑠𝑒(𝑟𝑎𝑛𝑑 − 0.5)2  

 

it is obtained and r refers to the birth rate per capita as K carrying capacity. It is studied using 

random effect terms with some probability distributions for the study of the population model. 

Numerical characteristics of the model randomized using discrete uniform distribution, Bernouilli 

distribution, Binom distribution, Negative binomial (or Pascal) distribution, Geometric 

Distribution, Hypergeometric distribution and Poisson distribution will be obtained to compare 

the random behaviors of these distributions.[26] 

While modeling the population dynamics has been used for a long time, its effect on 

randomness models has been studied very little. “ Stochastic analogues of deterministic single-

species population models”, one of the major articles by Brännström and Sumpter, is the study 

[29]. This study shows that noise in the population process depends on whether it is 

environmental or demographic. If the noise is demographic, it is proportional to the variance 

around expectation, and when it is environmental, the variation is not trivial but somehow 

depends on how the variation enters the model parameter, but if the environmental population 

affects the product multiplied, the variance is said to be proportional to the square of the 

expectation. They examined the suitability of the models by making various comparisons such as 

parameter estimation and variance analysis using the maximum likelihood method of various 

models of the term added noise. Here, the demographic model is much better than the 

environmental model in locating the noise created by population processes where noise is 

predominantly demographic. [23] 

In this study, random difference equations are used to obtain the solution of the logistic 

population model and they are randomized using random effect terms with various probability 

distributions. The approximate solutions obtained are given with the expected value, variance, 

standard deviation, coefficient of variation and confidence interval graphs and tables for results. 

In Chapters 2 and 3, introductory information about random difference equations and discrete 

probability distributions are given. In Chapter 4, the numerical characteristics of these models are 

shown on uniform, binomial, geometric, hypergeometric and Poisson distributions through 

logistic model simulations. 

 

2. DIFFERENCE EQUATIONS 

 

Definition: Let 𝑛 ∈ ℕ = {0,1, … } be an independent variable, then the function with unknown 𝑥 

such that 
 

                    𝐺(𝑛, 𝑥(𝑛), 𝑥(𝑛 + 1), … , 𝑥(𝑛 + 𝑘)) = 0 
 

is called a difference equation. This equation is also called the non-autonomous difference 

equation. If the equation is given as 𝐺(𝑥(𝑛), 𝑥(𝑛 + 1), . . . , 𝑥(𝑛 + 𝑘)), then it is called an 

autonomous equation [20-27]. 
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2.1. Random Difference Equations 

 

Basically, using the deterministic difference equations, random difference equations can be 

obtained in the following three ways. 
 

Definition: Let 𝐼 be any sub-interval of real numbers and 𝑓: 𝐼 ×  𝐼 →  𝐼 be a function that can be 

continuously differentiated. For each 𝑥−𝑘 , 𝑥−(𝑘−1), … , 𝑥0 ∈ 𝐼 initial conditions 
 

                           𝑥𝑛+1 = 𝑓(𝑥𝑛 , 𝑥𝑛−1, … , 𝑥𝑛−𝑘),   𝑛 = 0,1, …  
 

shapes a n-th order difference equation. Using this difference equation, a random difference 

equation can be constructed 
 

i. With random initial values 
 

       𝑥𝑛+1 = 𝑓(𝑥𝑛, 𝑥𝑛−1, … , 𝑥𝑛−𝑘 , 𝑛); 𝑛 = 0,1, … ; 𝑥−𝑘 , 𝑥−(𝑘−1), … , 𝑥0 ∈ 𝐼  
 

Here 𝑥−𝑘 , 𝑥−(𝑘−1), … , 𝑥0 are random variables. 
 

ii. With random non-homogeneous term 
 

𝑥𝑛+1 = 𝑓(𝑥𝑛 , 𝑥𝑛−1, … , 𝑥𝑛−𝑘 , 𝑛) + 𝑌(𝑛); 𝑛 = 0,1, … ; 𝑥−𝑘 , 𝑥−(𝑘−1), … , 𝑥0 ∈ 𝐼  
 

using a random 𝑌(𝑡) process and 
 

iii. With random coefficients 
 

𝑥𝑛+1 = 𝐴(𝑛)𝑓(𝑥𝑛 , 𝑥𝑛−1, … , 𝑥𝑛−𝑘 , 𝑛) + 𝑌(𝑛); 𝑛 = 0,1, … ; 𝑥−𝑘 , 𝑥−(𝑘−1), … , 𝑥0 ∈ 𝐼.  
 

Hence, we can make a random difference equation using a random process 𝐴(𝑛) [10-19]. 

 

 2.2. Random Stochastic Difference Equations 

 

Consider the first order difference equation 
 

𝑥𝑛+1 = 𝐹(𝑛, 𝑥𝑛), 𝑛 ∈ 𝑁                                                                                                                  (2) 
 

It can be used to describe facts that develop in a separate time, where the size of each 

generation is a function of the previous one. However, real life problems cannot usually be 

expressed with such a proper mathematical model. Unpredictable effects are included in the 

model as random variables {𝜉𝑛} resulting in a stochastic difference equation. 
 

𝑥𝑛+1 = 𝐹(𝑛, 𝑥𝑛) + 𝐺(𝑥, 𝑥𝑛)𝜉𝑛+1, 𝑛 ∈ 𝑁                                                                                       (3) 
 

The solution of (3) is the discrete time stochastic process of {𝜉𝑛} compatible with natural 

filters. Although stochastic difference equations also occur as discretization of stochastic 

differential equations, analysis of asymptotic properties may be more difficult. Here, both the 

modeling developed in discrete time and the numerical method analysis for stochastic differential 

equations has effects [13]. Stochastic difference equations appear in numerical analysis because 

they are the final product of discretization of stochastic differential equations  
 

𝑑𝑋𝑛 = 𝑓(𝑋(𝑛))𝑑𝑛 + 𝑔(𝑋(𝑛))𝑑𝑊𝑛                                                                                               (4) 
 

where 𝑊𝑛 is a standard Brownian motion. The (4) equation can be discretized by the one-step 

Euler-Maruyama numerical order. This stochastic difference equation 
 

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑓(𝑥𝑛) + √ℎ𝑔(𝑥𝑛)𝜉𝑛+1, 𝑛 = 0,1, …                                                                        (5) 
 

where {𝜉𝑛} is the standard normal sequence of random variables, while ℎ is the network 

dimension [3-9]. 

 

3. DISCRETE TIME PROBABILITY DISTRIBUTIONS 

 

In this section, definitions related to some probability concepts used are given. 
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3.1. Discrete Uniform Distribution 

 

Definition. Let 𝑘 be a positive bit integer. A random variable 𝑋 with probability function 
 

                         𝑃(𝑥, 𝑘) = {
1 𝑘⁄ , 𝑥 = 1,2,3, … , 𝑘

0, 𝑜𝑡ℎ𝑒𝑟
  

 

is called a discrete uniform chance variable [1-2]. 
 

Theorem. If 𝑋 has a discrete uniform distribution, then 
 

a. 𝐸(𝑋) =
𝑘+1

2
, 

b. 𝑉(𝑋) =
𝑘2−1

12
, 

c. 𝑀𝑥(𝑡) =
1

𝑘
∑ 𝑒𝑡𝑥𝑘

𝑥=1  

 

3.2. Bernoulli Distribution 

 

Definition. If there are only two results for an 𝑋 random variable, 𝑋 is called a Bernoulli random 

variable [15]. Bernoulli variables are obtained with the probability function 
 

                                      𝑓(𝑥, 𝑝) = 𝑝𝑥(1 − 𝑝)1−𝑥  𝑥 = 0,1  
 

Theorem. If 𝑋 has a Bernoulli distribution, 
 

a. 𝐸(𝑋) = 𝑝, 
b. 𝑉(𝑋) = 𝑝(1 − 𝑝), 
c. 𝑀𝑥(𝑡) = 𝑒𝑡𝑝 + (1 − 𝑝). 

 

3.3. Binomial Distribution 

 

Definition. Let the total number of those who succeeded in 𝑛 independent Bernoulli trials be the 

random variable 𝑋. For a single experiment, the probability of success is denoted by 𝑝, and the 

probability of failure is (1 − 𝑝). The binomial random variable 𝑋 has the following probability 

function 
 

                   𝑓(𝑥; 𝑛, 𝑝) = (𝑛
𝑥

)𝑝𝑥(1 − 𝑝)𝑛−𝑥; 𝑥 = 0,1,2, … , 𝑛.  
 

Calculation of consecutive binomial probabilities, 
 

        𝑓(𝑥 + 1; 𝑛, 𝑝) =
(𝑛−𝑥)𝑝

(𝑥+1)(1−𝑝)
𝑓(𝑥; 𝑛, 𝑝); 𝑥 = 0,1, … , 𝑛 − 1.  

 

Theorem. If 𝑋 has a binomial distribution, 
 

a. 𝐸(𝑋) = 𝑛𝑝, 
b. 𝑉(𝑋) = 𝑛𝑝(1 − 𝑝), 
c. 𝑀𝑥(𝑡) = [𝑒𝑡𝑝 + (1 − 𝑝)]𝑛. 

 

3.4. Negative Binomial (Pascal) Distribution 

 

Definition. Let 𝑋 be the random variable of the number of trials required to achieve success 

𝐾 ≥ 1, with the probability of success 𝑝 in each experiment for independent Bernoulli trials. In 

this case, 𝑋 is called a negative binomial random variable and its probability function [1-2]: 
 

                         𝑓(𝑥) = (𝑥−1
𝐾−1

)𝑝𝐾(1 − 𝑝)𝑥−𝐾; 𝑥 = 𝐾, 𝐾 + 1, …  

 

 

 
 

M. Merdan, Ş. Şişman     / Sigma J Eng & Nat Sci 38 (3), 1269-1298, 2020 



1273 

 

Theorem. If 𝑋 has a negative binomial distribution, 
 

a. 𝐸(𝑋) =
𝑘

𝑝
, 

b. 𝑉(𝑋) =
𝑘(1−𝑝)

𝑝2
, 

c. 𝑀𝑥(𝑡) =
𝑝𝑘𝑒𝑡𝑘

(1−𝑒𝑡𝑞)𝑘
 

 

3.5. Geometric Distribution 

 

Definition. The number of experiments done to obtain the first desired result (success or 

unsuccessful) in a Bernoulli experiment repeated 𝑛 times in succession is called a geometric 

random variable 𝑋. The distribution of this variable is called the geometric distribution and the 

probability function of the geometric random variable 𝑋, with probability of unsuccessfulness 

𝑞 = 1 − 𝑝 and probability of success 𝑝 in a single experiment [1-2]; 
 

                               𝑓(𝑥) = 𝑃(𝑋 = 𝑥) = 𝑞𝑥−1𝑝; 𝑥 = 1,2,3, …  
 

Theorem. If 𝑋 has a geometric distribution, 
 

a. 𝐸(𝑋) =
1

𝑝
, 

b. 𝑉(𝑋) =
(1−𝑝)

𝑝2
, 

c. 𝑀𝑥(𝑡) = 𝑝𝑒𝑡 1

1−[𝑒𝑡(1−𝑝)]
. 

 

3.6. Hypergeometric Distribution 

 

Definition. Let 𝑎 be the number of elements of a given Type 𝐴 in a mass consisting of a finite 

number of 𝑁 elements. Let 𝑋 be the number of elements of its type in a sample of  𝑛 units that are 

randomly drawn without replacing them again. 𝑋 is a random hypergeometric variable and the 

hypergeometric probability mass function is given as [1-2]; 
 

𝑓(𝑥; 𝑁, 𝑀, 𝑛) =
(𝑀

𝑋
)(𝑁−𝑀

𝑛−𝑥
)

(𝑁
𝑛)

; 𝑥 = 0,1, … , 𝑛.  
 

Theorem. If 𝑋 has a hypergeometric distribution, 
 

a. 𝐸(𝑋) =
𝑛𝑀

𝑁
, 

b. 𝑉(𝑋) =
𝑀(𝑀−1)𝑛(𝑛−1)

𝑁(𝑁−1)
+ 𝑀

𝑛

𝑁
, 

c. 
𝑁−𝑛

𝑁−1
𝑛

𝑀

𝑁
(1 −

𝑀

𝑁
) 

 

3.7. Poisson Distribution 

 

Definition. 𝑓(𝑥) = 𝑃(𝑋 = 𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
; 𝑥 = 0,1,2, … , 𝜆 > 0. The Taylor expansion of the 

function 𝑒𝑦 and the probability function gives (𝑒𝑦 = ∑
𝑦𝑖

𝑖!

∞
𝑖=0 ): 

 

                               ∑ 𝑓(𝑋 = 𝑥; 𝜆) = 𝑒−𝜆 ∑
𝜆𝑥

𝑥!
∞
𝑥=0

∞
𝑥=0 = 𝑒−𝜆𝑒𝜆 = 1.  

 

Theorem. If 𝑋 has a Poisson distribution, 
 

a. 𝐸(𝑋) = 𝜆, 
b. 𝑉(𝑋) = 𝜆, 

c. 𝑀𝑥 = 𝑒𝜆(𝑒𝑡−1). 
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4. NUMERICAL EXAMPLES 

 

In this section, the population model is introduced. After giving information about this model, 

random models will be established and examined. 

 

4.1. Discrete Time Probability Distribution 

 

4.1.1. Uniform Distribution 

 

In the random logistic difference equation defined as 
 

                          𝑋(𝑛 + 1) =  𝑋(𝑛) +  𝑟 ∗ 𝑋(𝑛) ∗ (1 −
𝑋(𝑛)

𝐾
),  

 

if 𝑟 is a random variable with a parameterized uniform distribution, K=1000 and 𝑁 = 50, 

then the probability characteristics obtained from 105 simulations are given below. 

 

 
 

Figure 1. Expected value of random model 

 

In the logistics model process (𝑡 ∈ [0,50]), it is observed that the variability increases in the 

beginning and then remains stable. The extreme values are shown in the Table (Table 1 and Fig 

1). 

 

Table 1. Expected value, extreme values and times in random model 
 

Variable Minimum Time Maximum Time 

𝐸(𝑥(𝑡)) 100 0 999.834 50 

 

It appears that the expected population reached its highest level at the time of 𝑡 = 50. 

Therefore, the results obtained from the deterministic model are more likely to be observed 

differently in an experiment that takes place randomly at these moments. In addition, 

𝐸 (𝑥(50)) = 999.834 was obtained for the expected value at the end of the process (𝑡 = 50). 
Similarly, variations of variances for the model (1) are also seen below (Figure 2). 
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Figure 2. Variance of random model 

 

In the logistics model process (𝑡 ∈ [0,50]), it is observed that variability increases first and 

decreases later. The extreme values are shown in the Table (Table 2 ). 

 

Table 2. Extreme values and times of variance in random model 
 

Variable Minimum Time Maximum Time 

𝑉𝑎𝑟(𝑥(𝑡)) 0 0 88.38 15 

 

It is observed that the population has reached its highest level of deviation from the average at 

the time of 𝑡 =  15. Therefore, the results obtained from the deterministic model are more likely 

to be observed differently in an experiment that takes place randomly at these moments. In 

addition, at the end of the process, 𝑉𝑎𝑟 (𝑥(15)) = 88.38 was obtained for variance, (𝑡 = 15). 

Similar to variance, variations in the standard deviation for the (1) model are also seen below 

(Figure 3). 

 

 
 

Figure 3. Standard deviation of the random model 
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As the standard deviation is the square root of the variance, the result is that these two 

numerical characteristics are expected to exhibit similar behavior. The extreme values for 

standard deviations are shown below (Table 3). 

 

Table 3. Extreme values and times of standard deviation in random model 
 

Variable Minimum Time Maximum Time 

𝑆𝑡𝑑(𝑥(𝑡)) 0 0 9.40106 15 

 

It is observed that the population has reached its highest level of deviation from the average at 

the time of 𝑡 =  15. Therefore, the results obtained from the deterministic model are more likely 

to be observed differently in an experiment that takes place randomly at these moments. In 

addition, 𝑆𝑡𝑑 (𝑥(15)) = 9.40106 was obtained for variance (𝑡 = 15) at the end of the process. 

Using the results obtained for the standard deviations and expected values, the variation 

coefficients for the variables 𝑥 (𝑡) in the random model (1) were also calculated as follows 

(Figure 4). 

 

 
 

Figure 4. Variation coefficient of the random model 

 

Coefficient of Variation (CV) is calculated by definition as 100 ×  𝑠𝑡𝑑 (𝑥 (𝑡)) / 𝐸 (𝑥 (𝑡)) 

and random r parameters for the installation of model (1) are defined to have %5 coefficient of 

variation. However, as a result of examining the model, it is seen that the coefficient of variation 

of 𝑥 (𝑡) variables increased to higher rates. The extreme values of the variation coefficients are 

given in the table below (Table 4). 

 

Table 4. Extreme values and times of the coefficient of variation in the random model 
 

Variable Minimum Time Maximum Time 

𝐶𝑉(𝑥(𝑡)) 0 0 1.54683 11 

 

Despite the %5 coefficient of variation in the parameters, it is observed that the variation rate 

of 𝑥 (𝑡) is constantly increasing and reaches %1.5 at 𝑡 =  11. Therefore, it can be interpreted that 

the variability in random results increases as logistic model and then decreases. 

The results obtained for the expected values of the model (1) are given below (Figure 5). 
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The confidence intervals given in the figure are calculated as 𝐶𝐼 =  (𝐸 (𝑥 (𝑡))  −
 3. 𝑠𝑡𝑑 (𝑥 (𝑡)), 𝐸 (𝑥 (𝑡))  +  3. 𝑠𝑡𝑑 (𝑥 (𝑡))) and three gives the range of variation within the 

standard deviation. This range includes about %99 of the random variable's values for uniform 

distribution. Therefore, the extreme values obtained for the expected values in these ranges are 

given below (Table 5). 

 

Table 5. Extreme values and times of confidence in the random model 
 

Variable Minimum Time Maximum Time 

𝐸(𝑥(𝑡)) 100 0 999.92 50 

 

 
 

At the end of the process, three standard deviation intervals for 𝑥(𝑡) variables are obtained as 

follows: 𝐸 (𝑥(50)) ∈ (971.63082,1028.03718). 
Model (1) states that the expectation for this value is 𝐸 (𝑥 (50))  =  999.92, that is, 

approximately %9.9992, and the expected approximate population is in the range of %99 

probability (971.63082,1028.03718) at time 𝑡 = 50. 

 

4.1.2. Binomial Distribution 

 

In the random logistic difference equation defined as 
 

                         𝑋(𝑛 + 1) =  𝑋(𝑛) +  𝑟 ∗ 𝑋(𝑛) ∗ (1 −
𝑋(𝑛)

𝐾
),  

 

if 𝑟 is a random variable with a parameterized binomial distribution (𝑛 = 6) and 𝑁 = 50, then 

the probability characteristics obtained from 105 simulations are given below. 
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Figure 6. Expected value of random model 

 

In the logistics model process (𝑡 ∈ [0,50]), it is observed that the variability increases first 

and then remains stable. The extreme values are shown in the Table (Table 6 and Fig 6). 

 

Table 6. Expected value, extreme values and times in random model 
 

Variable Minimum Time Maximum Time 

𝐸(𝑥(𝑡)) 100 0 999.862 50 

 

It appears that the expected population reached its highest level at the time of 𝑡 = 50. 

Therefore, the results obtained from the deterministic model are more likely to be observed 

differently in an experiment that takes place randomly at these moments. In addition, 

𝐸 (𝑥(50)) = 999.862 was obtained for the expected value at the end of the process (𝑡 = 50). 

Similarly, variations of variances for the model (1) are also seen below (Figure 7). 

 

 
 

Figure 7. Variance of random model 
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In the logistics model process (𝑡 ∈ [0,50]), it is observed that variability increases first and 

decreases later. The extreme values are shown in the Table (Table 7). 

 

Table 7. Extreme values and times of variance in random model 
 

Variable Minimum Time Maximum Time 

𝑉𝑎𝑟(𝑥(𝑡)) 0 0 800.313 15 

 

It is observed that the population has reached its highest level of deviation from the average at 

the time of 𝑡 =  15. Therefore, the results obtained from the deterministic model are more likely 

to be observed differently in an experiment that takes place randomly at these moments. In 

addition, at the end of the process, 𝑉𝑎𝑟 (𝑥(15)) = 800.313 was obtained for variance (𝑡 = 15). 

Similar to variance, variations in the standard deviation for the model (1) are also seen below 

(Figure 8). 

As the standard deviation is the square root of the variance, the result is that these two 

numerical characteristics are expected to exhibit similar behavior. The extreme values for 

standard deviations are shown below (Table 8). 

 

 
 

Figure 8. Standard deviation of the random model 

 

Table 8. Extreme values and times of standard deviation in random model 
 

Variable Minimum Time Maximum Time 

𝑆𝑡𝑑(𝑥(𝑡)) 0 0 28.2898 15 

 

It is observed that the population has reached its highest level of deviation from the average at 

the time of 𝑡 =  15. Therefore, the results obtained from the deterministic model are more likely 

to be observed differently in an experiment that takes place randomly at these moments. In 

addition, 𝑆𝑡𝑑 (𝑥(15)) = 28.2898 was obtained for variance (𝑡 = 15) at the end of the process. 

Using the results obtained for the standard deviations and expected values, the variation 

coefficients for the variables 𝑥 (𝑡) in the random model (1) were also calculated as follows 

(Figure 9). 
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Figure 9. Variation coefficient of the random model 
 

Coefficient of Variation (CV) is calculated by definition as 100 ×  𝑠𝑡𝑑 (𝑥 (𝑡)) / 𝐸 (𝑥 (𝑡)) 

and random 𝑟 parameters for the installation of model (1) are defined to have %5 coefficient of 

variation. However, as a result of examining the model, it is seen that the coefficient of variation 

of 𝑥 (𝑡) variables increased to higher rates. The extreme values of the variation coefficients are 

given in the table below (Table 9). 
 

Table 9. Extreme values and times of the coefficient of variation in the random model 
 

Variable Minimum Time Maximum Time 

𝐶𝑉(𝑥(𝑡)) 0 0 4.74339 11 

 

Despite the %5 coefficient of variation in the parameters, it is observed that the variation rate 

of 𝑥 (𝑡) is constantly increasing and reaches %0.0474 at 𝑡 =  11. Therefore, it can be interpreted 

that the variability in random results increases as logistic and then decreases. 

The results obtained for the expected values of the model (1) are given below (Figure 10). 
 

 
 

Figure 10. Confidence interval of the expected values of the random model 
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The confidence intervals given in the figure are calculated as 𝐶𝐼 =  (𝐸 (𝑥 (𝑡))  −
 3. 𝑠𝑡𝑑 (𝑥 (𝑡)), 𝐸 (𝑥 (𝑡))  +  3. 𝑠𝑡𝑑 (𝑥 (𝑡))) and three gives the range of variation within the 

standard deviation. This range includes about %99 of the random variable's values for binom 

distribution. Therefore, the extreme values obtained for the expected values in these ranges are 

given below (Table 10). 

 

Table 10. Extreme values and times of confidence in the random model 
 

Variable Minimum Time Maximum Time 

𝐸(𝑥(𝑡)) 100 0 1000.18 39 

 

At the end of the process, three standard deviation intervals for 𝑥(𝑡) variables are obtained as 

follows: 𝐸 (𝑥(39)) ∈ (914.9926,1084.7314). 
Model (1) states that the expectation for this value is 𝐸 (𝑥 (39))  = 1000.18, that is, 

approximately %10.0018, and the expected approximate population is in the range of %99 

probability (914.9926,1084.7314) at time 𝑡 =  39. 

 

4.1.3. Geometric Distribution 

 

In the random logistic difference equation defined as 
 

𝑋(𝑛 + 1) =  𝑋(𝑛) +  𝑟 ∗ 𝑋(𝑛) ∗ (1 −
𝑋(𝑛)

𝐾
),  

 

if 𝑟 is a random variable with a parameterized geometric distribution and 𝑁 = 50, then the 

probability characteristics obtained from 105 simulations are given below. 

 

 
 

Figure 11. Expected value of random model 

 

In the logistics model process (𝑡 ∈ [0,50]), it is observed that the variability increases first 

and then remains stable. The extreme values are shown in the Table (Table 11 and Fig 11). 

 

Table 11. Expected value, extreme values and times in random model 
 

Variable Minimum Time Maximum Time 

𝐸(𝑥(𝑡)) 100 0 999.956 50 
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It appears that the expected population reached its highest level at the time of 𝑡 = 50. 

Therefore, the results obtained from the deterministic model are more likely to be observed 

differently in an experiment that takes place randomly at these moments. In addition, 

𝐸 (𝑥(50)) = 999.956 was obtained for the expected value at the end of the process(𝑡 = 50). 

Similarly, variations of variances for the model (1) are also seen below (Figure 12). 

In the logistics model process (𝑡 ∈ [0,50]), it is observed that variability increases first and 

decreases later. The extreme values are shown in the Table (Table 12 ). 

 

Table 12. Extreme values and times of variance in random model 
 

Variable Minimum Time Maximum Time 

𝑉𝑎𝑟(𝑥(𝑡)) 0 0 25561.9 10 

 

It is observed that the population has reached its highest level of deviation from the average at 

the time of 𝑡 =  10. Therefore, the results obtained from the deterministic model are more likely 

to be observed differently in an experiment that takes place randomly at these moments. In 

addition, at the end of the process, 𝑉𝑎𝑟 (𝑥(10)) = 25561.9 was obtained for variance (𝑡 = 10).  

Similar to variance, variations in the standard deviation for the model (1) are also seen below 

(Figure 13). 

 

 
 

Figure 12. Variance of random model 
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Figure 13. Standard deviation of the random model 

 

As the standard deviation is the square root of the variance, the result is that these two 

numerical characteristics are expected to exhibit similar behavior. The extreme values for 

standard deviations are shown below (table 13). 

 

Table 13. Extreme values and times of standard deviation in random model 
 

Variable Minimum Time Maximum Time 

𝑆𝑡𝑑(𝑥(𝑡)) 0 0 159.881 10 

 

It is observed that the population has reached its highest level of deviation from the average at 

the time of 𝑡 =  10. Therefore, the results obtained from the deterministic model are more likely 

to be observed differently in an experiment that takes place randomly at these moments. In 

addition, 𝑆𝑡𝑑 (𝑥(10)) = 159.881 was obtained for variance (𝑡 = 10) at the end of the process. 

Using the results obtained for the standard deviations and expected values, the variation 

coefficients for the variables 𝑥 (𝑡) in the random model (1) were also calculated as follows 

(Figure 19). 

Coefficient of Variation (CV) is calculated by definition as 100 ×  𝑠𝑡𝑑 (𝑥 (𝑡)) / 𝐸 (𝑥 (𝑡)) 

and random r parameters for the installation of model (1) are defined to have %5 coefficient of 

variation. However, as a result of examining the model, it is seen that the coefficient of variation 

of 𝑥 (𝑡) variables increased to higher rates. The extreme values of the variation coefficients are 

given in the table below (Table 14). 
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Figure 14. Variation coefficient of the random model 
 

Table 14. Extreme values and times of the coefficient of variation in the random model 
 

Variable Minimum Time Maximum Time 

𝐶𝑉(𝑥(𝑡)) 0 0 32.7527 6 

 

Despite the %5 coefficient of variation in the parameters, it is observed that the variation rate 

of 𝑥 (𝑡) is constantly increasing and reaches %0.32 at 𝑡 =  6. Therefore, it can be interpreted that 

the variability in random results increases as logistic model and then decreases. 

The results obtained for the expected values of the model (1) are given below (Figure 15). 

The confidence intervals given in the figure are calculated as 𝐶𝐼 =  (𝐸 (𝑥 (𝑡))  −
 3. 𝑠𝑡𝑑 (𝑥 (𝑡)), 𝐸 (𝑥 (𝑡))  +  3. 𝑠𝑡𝑑 (𝑥 (𝑡))) and three gives the range of variation within the 

standard deviation. This range includes about %99 of the random variable's values for geometric 

distribution. Therefore, the extreme values obtained for the expected values in these ranges are 

given below (Table 15). 

 

 
 

Figure 15. Confidence interval of the expected values of the random model 
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Table 15. Extreme values and times of confidence in the random model 
 

Variable Minimum Time Maximum Time 

𝐸(𝑥(𝑡)) 100 0 1172.62 14 

 

At the end of the process, three standard deviation intervals for 𝑥(𝑡) variables are obtained as 

follows: 𝐸 (𝑥(14)) ∈ (520.313,1479.599). 
Model (1) states that the expectation for this value is 𝐸 (𝑥 (14))  = 1172.62 that is, 

approximately %11.7262, and the expected approximate population is in the range of %99 

probability (520.313,1479.599) at time 𝑡 = 14. 

 

4.1.4. Hypergeometric Distribution 

 

In the random logistic difference equation defined as 
 

                           𝑋(𝑛 + 1) =  𝑋(𝑛) +  𝑟 ∗ 𝑋(𝑛) ∗ (1 −
𝑋(𝑛)

𝐾
),  

 

if 𝑟 is a random variable with a parameterized hypergeometric distribution and 𝑁 = 50, then 

the probability characteristics obtained from 105 simulations are given below. 

In the logistics model process (𝑡 ∈ [0,50]), it is observed that the variability increases first 

and then remains stable. The end values are shown in the Table (Table 16 and Fig 16). 

 

Table 16. Expected value, end values and times in random model 
 

Variable Minimum Time Maximum Time 

𝐸(𝑥(𝑡)) 100 0 999.913 50 

 

 
 

Figure 16. Expected value of random model 
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Therefore, the results obtained from the deterministic model are more likely to be observed 

differently in an experiment that takes place randomly at these moments. In addition, 

𝐸 (𝑥(50)) = 999.913 was obtained for the expected value at the end of the process(𝑡 = 50). 

Similarly, variations of variances for the model (1) are also seen below (Figure 17). 
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Figure 17. variance of random model 

 

In the logistics model process (𝑡 ∈ [0,50]), it is observed that variability increases first and 

decreases later. The extreme values are shown in the Table (Table 17 ). 

 

Table 17. Extreme values and times of variance in random model 
 

Variable Minimum Time Maximum Time 

𝑉𝑎𝑟(𝑥(𝑡)) 0 0 1593.05 14 

 

It is observed that the population has reached its highest level of deviation from the average at 

the time of 𝑡 =  14. Therefore, the results obtained from the deterministic model are more likely 

to be observed differently in an experiment that takes place randomly at these moments. In 

addition, at the end of the process, 𝑉𝑎𝑟 (𝑥(14)) = 1593.05 was obtained for variance (𝑡 =
14).Similar to variance, variations in the standard deviation for the model (1) are also seen below 

(Figure 18). 
 

 
 

Figure 18. Standard deviation of the random model 
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As the standard deviation is the square root of the variance, the result is that these two 

numerical characteristics are expected to exhibit similar behavior. The end values for standard 

deviations are shown below (table 18). 

 

Table 18. Extreme values and times of standard deviation in random model 
 

Variable Minimum Time Maximum Time 

𝑆𝑡𝑑(𝑥(𝑡)) 0 0 39.913 14 

 

It is observed that the population has reached its highest level of deviation from the average at 

the time of 𝑡 =  14. Therefore, the results obtained from the deterministic model are more likely 

to be observed differently in an experiment that takes place randomly at these moments. In 

addition, 𝑆𝑡𝑑 (𝑥(14)) = 39.913 was obtained for variance (𝑡 = 14) at the end of the process. 

Using the results obtained for the standard deviations and expected values, the variation 

coefficients for the variables 𝑥 (𝑡) in the random model (1) were also calculated as follows 

(Figure 19). 

Coefficient of Variation (CV) is calculated by definition as 100 ×  𝑠𝑡𝑑 (𝑥 (𝑡)) / 𝐸 (𝑥 (𝑡)) 

and random r parameters for the installation of model (1) are defined to have %5 coefficient of 

variation. However, as a result of examining the model, it is seen that the coefficient of variation 

of 𝑥 (𝑡) variables increased to higher rates. The extreme values of the variation coefficients are 

given in the table below (Table 19). 

 

 
 

Figure 19. Variation coefficient of the random model 

 

Table 19. Extreme values and times of the coefficient of variation in the random model 
 

Variable Minimum Time Maximum Time 

𝐶𝑉(𝑥(𝑡)) 0 0 6.67337 10 

 

Despite the %5 coefficient of variation in the parameters, it is observed that the variation rate 

of 𝑥 (𝑡) is constantly increasing and reaches %0.0667 at 𝑡 =  10. Therefore, it can be interpreted 

that the variability in random results increases as logistic model and then decreases. 

The results obtained for the expected values of the model (1) are given below (Figure 20). 
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Figure 20. Confidence interval of the expected values of the random model 

 

The confidence intervals given in the figure are calculated as 𝐶𝐼 =  (𝐸 (𝑥 (𝑡))  −
 3. 𝑠𝑡𝑑 (𝑥 (𝑡)), 𝐸 (𝑥 (𝑡))  +  3. 𝑠𝑡𝑑 (𝑥 (𝑡))) and three gives the range of variation within the 

standard deviation. This range includes about %99 of the random variable's values for uniform 

distribution. Therefore, the extreme values obtained for the expected values in these ranges are 

given below (Table 20). 

 

Table 20. Extreme values and times of confidence in the random model 
 

Variable Minimum Time Maximum Time 

𝐸(𝑥(𝑡)) 100 0 1002.82 29 

 

At the end of the process, three standard deviation intervals for 𝑥(𝑡) variables are obtained as 

follows: 𝐸 (𝑥(29)) ∈ (880.174,1119.652). 
Model (1) states that the expectation for this value is 𝐸 (𝑥 (29))  = 1002.82 that is, 

approximately %10.0282, 𝑎𝑛𝑑 the expected approximate population is in the range of %99 

probability (880.174,1119.652) at time 𝑡 = 29. 

 

4.1.5. Poisson distribution 

 

In the random logistic difference equation defined as 
 

                           𝑋(𝑛 + 1) =  𝑋(𝑛) +  𝑟 ∗ 𝑋(𝑛) ∗ (1 −
𝑋(𝑛)

𝐾
),  

 

if 𝑟 is a random variable with a parameterized Poisson distribution and 𝑁 = 50, then the 

probability characteristics obtained from 105 simulations are given below. 
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Figure 21. Expected value of random model 

 

In the logistics model process (𝑡 ∈ [0,50]), it is observed that the variability increases first 

and then remains stable. The extreme values are shown in the Table (Table 21 and Fig 21). 

 

Table 21. Expected value, end values and times in random model 
 

Variable Minimum Time Maximum Time 

𝐸(𝑥(𝑡)) 100 0 999.911 50 

 

It appears that the expected population reached its highest level at the time of 𝑡 = 50. 

Therefore, the results obtained from the deterministic model are more likely to be observed 

differently in an experiment that takes place randomly at these moments. In addition, 

𝐸 (𝑥(50)) = 999.911 was obtained for the expected value at the end of the process(𝑡 = 50). 

Similarly, variations of variances for the model (1) are also seen below (Figure 22). 
 

 
 

Figure 22. Variance of random model 
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In the logistics model process (𝑡 ∈ [0,50]), it is observed that variability increases first and 

decreases later. The extreme values are shown in the Table (Table 22 ). 

 

Table 22. Extreme values and times of variance in random model 
 

Variable Minimum Time Maximum Time 

𝑉𝑎𝑟(𝑥(𝑡)) 0 0 1757.5 14 

 

It is observed that the population has reached its highest level of deviation from the average at 

the time of 𝑡 =  14. Therefore, the results obtained from the deterministic model are more likely 

to be observed differently in an experiment that takes place randomly at these moments. In 

addition, at the end of the process, 𝑉𝑎𝑟 (𝑥(14)) = 1757.5 was obtained for variance     (𝑡 = 14). 

Similar to variance, variations in the standard deviation for the model (1) are also seen below 

(Figure 23). 

As the standard deviation is the square root of the variance, the result is that these two 

numerical characteristics are expected to exhibit similar behavior. The end values for standard 

deviations are shown below (Table 23). 

 

Table 23. Extreme values and times of standard deviation in random model 
 

Variable Minimum Time Maximum Time 

𝑆𝑡𝑑(𝑥(𝑡)) 0 0 41.9225 14 

 

 
 

Figure 23. standard deviation of the random model 

 

It is observed that the population has reached its highest level of deviation from the average at 

the time of 𝑡 =  14. Therefore, the results obtained from the deterministic model are more likely 

to be observed differently in an experiment that takes place randomly at these moments. In 

addition, 𝑆𝑡𝑑 (𝑥(14)) = 41.9225 was obtained for variance (𝑡 = 14) at the end of the process. 

Using the results obtained for the standard deviations and expected values, the variation 

coefficients for the variables 𝑥 (𝑡) in the random model (1) were also calculated as follows 

(Figure 24). 

Coefficient of Variation (CV) is calculated by definition as 100 ×  𝑠𝑡𝑑 (𝑥 (𝑡)) / 𝐸 (𝑥 (𝑡)) 

and random r parameters for the installation of model (1) are defined to have %5 coefficient of 
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variation. However, as a result of examining the model, it is seen that the coefficient of variation 

of 𝑥 (𝑡) variables increased to higher rates. The extreme values of the variation coefficients are 

given in the table below (Table 24). 
 

 
 

Figure 24. Variation coefficient of the random model 

 

Table 24. Extreme values and times of the coefficient of variation in the random model 
 

Variable Minimum Time Maximum Time 

𝐶𝑉(𝑥(𝑡)) 0 0 7.04612 10 

 

Despite the %5 coefficient of variation in the parameters, it is observed that the variation rate 

of 𝑥 (𝑡) is constantly increasing and reaches %0.07 at 𝑡 =  10. Therefore, it can be interpreted 

that the variability in random results increases as logistic model and then decreases. 

The results obtained for the expected values of the model are (1) given below (Figure 25). 
 

 
 

Figure 25. Confidence interval of the expected values of the random model 
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The confidence intervals given in the figure are calculated as 𝐶𝐼 =  (𝐸 (𝑥 (𝑡))  −
 3. 𝑠𝑡𝑑 (𝑥 (𝑡)), 𝐸 (𝑥 (𝑡))  +  3. 𝑠𝑡𝑑 (𝑥 (𝑡))) and three gives the range of variation within the 

standard deviation. This range includes about %99 of the random variable's values for poisson 

distribution. Therefore, the extreme values obtained for the expected values in these ranges are 

given below (Table 25). 

 

Table 25. Extreme values and times of confidence in the random model 
 

Variable Minimum Time Maximum Time 

𝐸(𝑥(𝑡)) 100 0 1003.41 28 

 

At the end of the process, three standard deviation intervals for 𝑥(𝑡) variables are obtained as 

follows: 𝐸 (𝑥(28)) ∈ (874.1435,1125.6785). 
Model (1) states that the expectation for this value is 𝐸 (𝑥 (28))  = 1003.41 that is, 

approximately %10.0341, 𝑎𝑛𝑑 the expected approximate population is in the range of %99 

probability (874.1435,1125.6785) at time 𝑡 = 28. 

 

 4.2. White Noise 

 

In the random logistic difference equation defined as 
 

𝑋(𝑛 + 1)  =  𝑋(𝑛)  +  𝑟 ∗ 𝑋(𝑛) ∗ (1 −
𝑋(𝑛)

𝐾
) + 𝑛𝑜𝑖𝑠𝑒 ∗ (𝑟𝑎𝑛𝑑 − 0.5) ∗ 2;  

 

if 𝑟 is a random variable with a parameterized uniform distribution (𝑛𝑜𝑖𝑠𝑒 = 1) and 𝑁 = 50, 

then the probability characteristics obtained from 105 simulations are given below. 

 

 
 

Figure 26. Expected value of random model 

 

In the logistics model process (𝑡 ∈ [0,50]), it is observed that the variability increases first 

and then remains stable. The extreme values are shown in the Table (Table 26 and Fig 26). 

 

Table 26. Expected value, end values and times in random model 
 

Variable Minimum Time Maximum Time 

𝐸(𝑥(𝑡)) 100 0 999.774 50 
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It appears that the expected population reached its highest level at the time of 𝑡 = 50. 

Therefore, the results obtained from the deterministic model are more likely to be observed 

differently in an experiment that takes place randomly at these moments. In addition, 

𝐸 (𝑥(50)) = 999.774 was obtained for the expected value at the end of the process (𝑡 = 50). 

Similarly, variations of variances for the model (1) are also seen below (Figure 27). 

In the logistics model process (𝑡 ∈ [0,50]), it is observed that variability increases first and 

decreases later. The extreme values are shown in the Table (Table 27). 

 

Table 27. Extreme values and times of variance in random model 
 

Variable Minimum Time Maximum Time 

𝑉𝑎𝑟(𝑥(𝑡)) 0 0 10.0728 13 

 

 
 

Figure 27. Variance of random model 

 

It is observed that the population has reached its highest level of deviation from the average at 

the time of 𝑡 =  13. Therefore, the results obtained from the deterministic model are more likely 

to be observed differently in an experiment that takes place randomly at these moments. In 

addition, at the end of the process, 𝑉𝑎𝑟 (𝑥(13)) = 10.0728 was obtained for variance       (𝑡 =
13). 

Similar to variance, variations in the standard deviation for the (1) model are also seen below 

(Figure 28).                          
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Figure 28. Standard deviation of the random model 

 

As the standard deviation is the square root of the variance, the result is that these two 

numerical characteristics are expected to exhibit similar behavior. The extreme values for 

standard deviations are shown below (Table 28). 

 

Table 28. Extreme values and times of standard deviation in random model 
 

Variable Minimum Time Maximum Time 

𝑆𝑡𝑑(𝑥(𝑡)) 0 0 3.17376 13 

 

It is observed that the population has reached its highest level of deviation from the average at 

the time of 𝑡 =  13. Therefore, the results obtained from the deterministic model are more likely 

to be observed differently in an experiment that takes place randomly at these moments. In 

addition, 𝑆𝑡𝑑 (𝑥(13)) = 3.17376 was obtained for variance (𝑡 = 13) at the end of the process. 

Using the results obtained for the standard deviations and expected values, the variation 

coefficients for the variables 𝑥 (𝑡) in the random model (1) were also calculated as follows 

(Figure 29). 

Coefficient of Variation (CV) is calculated by definition as 100 ×  𝑠𝑡𝑑 (𝑥 (𝑡)) / 𝐸 (𝑥 (𝑡)) 

and random r parameters for the installation of model (1) are defined to have %5 coefficient of 

variation. However, as a result of examining the model, it is seen that the coefficient of variation 

of 𝑥 (𝑡) variables increased to higher rates. The extreme values of the variation coefficients are 

given in the table below (Table 29). 
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Figure 29.  Variation coefficient of the random model 

 

Table 29. Extreme values and times of the coefficient of variation in the random model 
 

Variable Minimum Time Maximum Time 

𝐶𝑉(𝑥(𝑡)) 0 0 0.780106 6 

 

Despite the %5 coefficient of variation in the parameters, it is observed that the variation rate 

of 𝑥 (𝑡) is constantly increasing and reaches %0.0078 at 𝑡 =  6. Therefore, it can be interpreted 

that the variability in random results increases as logistic model and then decreases. 

The results obtained for the expected values of the model (1) are given below (Figure 30). 

 

 
 

Figure 30. Confidence interval of the expected values of the random model 

 

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

V
K

(X
)

Coefficient of Variation 

 

 

VK(X)

0 5 10 15 20 25 30 35 40 45 50
100

200

300

400

500

600

700

800

900

1000

1100
Confidence interval 

1002.65 max deger

Analysis of Random Discrete Time Logistic  …      /   Sigma J Eng & Nat Sci 38 (3), 1269-1298, 2020 



1296 

 

The confidence intervals given in the figure are calculated as 𝐶𝐼 =  (𝐸 (𝑥 (𝑡))  −
 3. 𝑠𝑡𝑑 (𝑥 (𝑡)), 𝐸 (𝑥 (𝑡))  +  3. 𝑠𝑡𝑑 (𝑥 (𝑡))) and three gives the range of variation within the 

standard deviation. This range includes about %99 of the random variable's values for normal 

distribution. Therefore, the extreme values obtained for the expected values in these ranges are 

given below (Table 30). 

 

Table 30. Extreme values and times of confidence in the random model 
 

Variable Minimum Time Maximum Time 

𝐸(𝑥(𝑡)) 100 0 1002.65 50 

 

At the end of the process, three standard deviation intervals for 𝑥(𝑡) variables are obtained as 

follows: 𝐸 (𝑥(50)) ∈ (990.45272,1009.49528). 

Model (1) states that the expectation for this value is 𝐸(𝑥(50)) = 1002.67 that is, 

approximately %10.0265, and the expected approximate population is in the range of %99 

probability (990.45272,1009.49528) at time 𝑡 = 50. 

 

5. CONCLUSION 

 

In this study, the model was randomized by adding random effects to the Logistics difference 

model. A random model has been established for Logistic difference model with random 

parameters with uniform distribution. With this difference model, expected value, variance, 

standard deviation, coefficient of variation and confidence intervals for population changes are 

calculated. The calculations were obtained using simulations of the random model. 

The binomial distribution, which has parameters of the deterministic model, has been 

randomly rendered and the random model has been simulated. Using the obtained results, the 

expected value, variance, standard deviation, coefficient of variation and confidence intervals for 

the model were calculated. 

Similarly, the parameters of the model were made random with geometric distribution and the 

random model was simulated. Using the obtained results, the expected value, variance, standard 

deviation, coefficient of variation and confidence intervals for the model were calculated. 

In addition, the parameters of the deterministic difference model within the hypergeomteric 

and poisson distributions were randomized with these distributions, and the expected value, 

variance, standard deviation, coefficient of variation and confidence intervals of the model were 

calculated using the results of the model obtained. 

The variation coefficients for the five distributions are compared and defined to have a 

variation coefficient of %5 for the parameter 𝑋(𝑡) for each distribution. Although a %5 deviation 

rate was used for random parameters, the simulation results showed variability in the proportion 

of the population. Analysis of random logistic difference model is given with the help of graphics 

and tables. 
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