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ABSTRACT 

 

The purpose of the study is to present some new criteria for the asymptotic behavior of nonlinear fractional 

differential equations. 
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1. INTRODUCTION 

 

Recently, it has been realized that the fractional calculus has numerous applications in signal 

processing, geology, dynamics of earthquakes, economics and finance, probability and statistics, 

chemical engineering, physics, thermodynamics and neural networks and so forth; see [1–3] and 

the references therein. Due to their widespread applications in the field of engineering, the 

investigations of fractional differential equations have attracted many researchers during the last 

decades. A lot of study about the oscillatory behavior for integer order differential equations 

including the existence of oscillatory and nonoscillatory solutions are presented, see [4–13]. 

Recently, many articles have discussed the oscillation of fractional differential equations [14–23]. 

However, we notice that very little attention is paid to asymptotic behavior of nonoscillatory 

solutions of fractional differential equations. In [14], the authors established some oscillation 

criteria for the following fractional differential equation  
 

           1

0 0 0,D y t p t D y t q t f G t 

      

 

where 
0 0t t   and  0,1 .   In [15], the authors considered the oscillation of the 

following fractional damped differential equation 
 

                 0 0 , 0,r t x t D y t p t x t D y t F t G t  


     

 

for  
0 0t t   and  0,1 .   
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Motivated by the  idea in the above research papers, in this study, we consider the asymptotic 

behavior of solutions of following equations 
 

                0 0 00,   0.r t G t D y t p t D y t q t f G t t t 


                                 (1) 

 

where
0D


denotes the th   Riemann-Liouville fractional derivative,  0,1 ,   

  0 , ,Rr C t   ;  R,RC  ;   0, , ,Rp q C t  ;      0

t
G t t s y s ds


  ;

 1 R,Rf C  and   0xf x    for  0.x    

 

2. PRELIMINARIES 

  

Definition 2.1. [3,14] The Riemann-Liouville fractional integral of order 0   of a function 

 : 0, Ry    is defined by  
 

  
 

   
1

0
0

1
: ,

t

I y t t s y s ds






  
   

 

 provided the right-hand side is pointwise defined on  0, , where  is the gamma function.  
 

Definition 2.2. [3,14] The Riemann-Liouville fractional derivative of order 0  of a function

 : 0, Ry    is defined by  
 

     0 0: ,
n

n

n

d
D y t I y t

dt

 

   

 

 provided the right-hand side is pointwise defined on  0, , where 1n n    and 

1n   is an integer.  
              

Lemma 2.1. [14] Let  y t be a solution of (1), and 
 

       
0

:  for 0,1 , 0.
t

G t t s y s ds t





     

 

Then 
 

     01 .G t D y t 
     

 

3. MAIN RESULTS  

              

Theorem 3.1. Let   0,p t  and suppose that   
 

 
 

 
0 and 0,  for 0,

f x
t x

x





                                                                                           (2) 

 

 0

,
t

ds

r s



                                                                                                                                   (3) 
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,

1

u
du

f u







 
                                                                                                            (4) 

 

 
 

0 0

1
limsup .

t s

t tt
q d ds

r s
 


                                                                                             (5) 

 

Then for every nonoscillatory solution y of (1), we have  lim inf 0.t y t     

 

Proof. Let  y t be a nonoscillatory solution of (1), we may assume that   0y t   for 
0.t t

Define 
 

 
      

  
0r t G t D y t

t
f G t





 . 

 

Then  is well defined and satisfies 
 

 
                      

  

 
    
    

 

0 0

2

2
1

.

r t G t D y t f G t r t G t D y t f G t G t
t

f G t

f G t
q t t

r t G t

  









 
 

 

 
  

 

 

Using (2), we have       
     

   .t q t                                                                                                                                (6) 
 

Integrating (6) from 
0t to t , we get 

 

      

  
   

0

0

0 ,
t

t

r t G t D y t
t q s ds

f G t





    

 

i.e. 
 

      

    
   

0
0 .

1

t

t

r t G t G t
t q s ds

f G t







 

                                                                                  (7) 

 

Dividing (7) by  r t and then integrating from 
0t to t  we obtain 

 

 

   

   
 

   
 

0 0 0 0
0

1
.

1

G t t t s

G t t t t

u ds
du t q d ds

f u r s r s


  


 

    
 

 

From (3) and (5), we get 
 

 

   

   0

liminf .
1

G t

G tt

u
du

f u




 

 
                                                                                            (8) 

 

If  lim inf 0t y t  , then there exist 
1c  and 

2c  positive constants such that   1y t c  and 

  2G t c  for all 
0t t . Consequently, by (4) 
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   0 2

,
1 1

G t G t

G t c

u u
du du

f u f u

 

 
  

      

 

which contradicts (8). Thus we must have  lim inf 0t y t  . The proof for the case  

 lim inf 0t y t   for 
0t t  is similar and hence is omitted. 

               

Theorem 3.2. Let (4) holds and 
 

 
 

 
0 and 0 for 0.

f x
x c k x

x





                                                                                   (9) 

 

If there exists a positive differentiable function   on  0 ,t  such that   
 

    00 for t p t t t                                                                                                                 (10) 
 

and 
 

   
,

ds

r s s



                                                                                                                        (11) 

 

and 
 

   
   

   

 

 

 

 

 0 0

2

1
limsup

4 1

t s

t tt

r p
q d ds

r s s k cr

     
   

    

  
     
     

                  (12) 

 

then for every solution y of (1), we have  lim inf 0.t y t    

 

Proof.  Let  y t be a nonoscillatory solution of (1), we may assume that   0y t   for 
0.t t  Let  

 

   
      

  
0

.
r t G t D y t

t t
f G t


 


                                                                                        (13) 

 

Differentiating (13), we have 
 

     
 

 

 

    
 

    
      

 

   
   

 

 
 

 

     
  
  

    
      

 

 
 

 

     
    
      

2

2

2

1

1

4 1

1
.

2

t p t

t r t G t

f G t

G t

t p t

t r t G t

f G t

r t t G t

f G tt p t
t q t t t t

t r t G t r t t G t

r t t
q t t

f G t
t

r t t G t



 





 



 


   

   









 







 

   
      

 
 


  

 

 
  

  
 
 

 

 

Using (9) and (10), we get 
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2

.
4 1

r t t t p t
t q t t

k t cr t

 
 

 

 
         

                                                           (14) 

 

Integrating (14) from
0t to ,t we obtain 

 

 
      

  
 

   
   

 

 

 

 

 0

0

0

2

.
4 1

t

t

r t G t D y t
t t

f G t

r s s s p s
q s s ds

k s cr s


 

 


 




  
         



     (15) 

 

Dividing (15) by    t r t  and then integrating from 
0t to ,t  we get 

 

 

   

   
 

   

   
   

   

 

 

 

 

 

0 0

0 0

0

2

1

1
.

4 1

G t t

G t t

t s

t t

u ds
du t

f u s r s

r p
q d ds

s r s k cr




 

     
   

    


 

  
         

 

 

 

By (11) and (12), we obtain 
 

 

   

   0

liminf .
1

G t

G tt

u
du

f u




 

   

 

The rest of the proof is similar to that of Theorem 3.1., hence is omitted 

If we choose   1t   in Theorem 3.2., then we obtain the following result. 
                

Corollary 3.1.  Let (4) holds and suppose that   
 

 
 

 
0 and 0 for 0,

f x
x c k x

x





                                                                                 (16) 

 

 
,

ds

r s



                                                                                                                                (17) 

 

 
 

   

 0 0

2

1
limsup .

4

t s

t tt

r p
q d ds

r s k cr

 
 



  
        

                                                  (18) 

 

Then for every solution y of (1), we have  lim inf 0.t y t    

 

4. APPLICATIONS 

 

Example 1. Consider the fractional differential equation for 1,t     
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2 4

2

0
0 0

0,
t t

t te t s y s ds D y t e t s y s ds
 



 



 
    

 
                        (19) 

 

with 1/ 2.   This corresponds to (1) with   ,tr t e   2 ,x x    2tq t e and 

  4.f x x  All conditions  of  Theorem 3.1 are satisfied. Then for every nonoscillatory solutions 

y  of  (19), we have  lim inf 0.t y t    

 

Example 2. Consider the fractional differential equation for 0t   
 

              3 3/2

0 0
0 0

exp exp 2 0,
t t

t t s y s ds D y t D y t t t s y s ds
  


 

         (20) 

 

with  0,1 .   This corresponds to (1) with   3,r t t   ,xx e    1,p t    3/2q t t  

and   2 .xf x e  All conditions of Corollary 3.1 are satisfied. Then for every solutions  y t of  

(20), we have  lim inf 0.t y t    
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