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ABSTRACT 

 
In this study, we present a Galerkin-type method for obtaining approximate solutions of linear Volterra-

Fredholm delay integro-differential equations with a functional upper limit under mixed conditions. The 
method gives an approximate solution of the problem in power series form truncated after a certain term. 

Using an integer value N as the truncation point and making use of the matrix representations of a polynomial 

and its derivatives, we obtain the matrix form of the problem expressed in terms of the approximate solution 
polynomial. By applying inner product to these relations with monomials up to degree N and incorporating 

the mixed conditions, the problem is reduced to a system of linear algebraic equations. The approximate 

solution of the problem is then determined from this linear system. In addition, we discuss a way of improving 
an obtained approximate solution by means of its estimated error function. The presented scheme has the 

advantages of (1) being applicable to a wide range of problems including pantograph-type equations with or 

without Fredholm and Volterra integral terms, and (2) giving accurate results as demonstrated by applications 
to example problems taken from existing studies.  

Keywords: Volterra-Fredholm integro-differential equations, pantograph-type integro-differential equations, 

Galerkin type method, numerical solutions, error estimation, residual correction. 
 

 

1. INTRODUCTION 

 

When one desires to describe a phenomenon that encompasses both the rate of change of an 

unknown function and cummulative effects on that function expressed by an integral, integro-

differential equations come into picture [1, p. 196]. A general classification applies to these 

equations according to the upper limits of the integral term; namely, Fredholm integro-differential 

equations constitute the class with a constant upper limit in the integral term, while those with 

variable upper limit are known as Volterra integro-differential equations. 

Each type of integro-differential equations has its own resources and applications. For 

instance, neural networks [2] and signal processing [3] are among the well-known applications of 

Fredholm integro-differential equations, whereas Volterra integro-differential equations arise in 

the study of population dynamics [4] and heat transfer [5] among many other things. There are 

also model problems that require the incorporation of both types of integral terms, thus resulting 
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in Volterra-Fredholm integro-differential equations. The topics where these equations play a role 

include spread of an epidemic in both space and time [6] and contact mechanics [7]. 

In this paper, we will be interested in obtaining approximate solutions of the linear Volterra-

Fredholm delay integro-differential equation given by 
 

∑ ∑ 𝑃𝑗,𝑘

𝐽

𝑗=0

𝑚

𝑘=0

(𝑥)𝑦(𝑘)(𝜆𝑗𝑥 + 𝜇𝑗) = 𝑔(𝑥) + ∫ ∑ 𝐾𝑟
𝑚
𝑟=0

𝑏

𝑎
(𝑥, 𝑡)𝑦(𝑟)(𝑡)𝑑𝑡

+∫ ∑ 𝐿1,𝑟
𝑚

𝑟=0

𝑥

𝑎
(𝑥, 𝑡)𝑦(𝑟)(𝑡)𝑑𝑡 + ∫ ∑ 𝐿2,𝑟

𝑚

𝑟=0

ℎ(𝑥)

𝑎
(𝑥, 𝑡)𝑦(𝑟)(𝑡)𝑑𝑡

                             (1) 

 

under the following mixed conditions: 
 

∑ (𝑎𝑖,𝑗𝑦
(𝑗)(𝑎) + 𝑏𝑖,𝑗𝑦

(𝑗)(𝑏))
𝑚−1

𝑗=0
= 𝑙𝑖 , 𝑖 = 1,2, … ,𝑚.                                                                 (2) 

 

In the left-hand side of equation (1), the unknown function 𝑦 and its derivatives up to m-th 

order appear with linear delayed terms of 𝑥, where the equation is reduced to the standard 

Volterra-Fredholm integro-differential equation if 𝜆𝑗 = 1 and 𝜇𝑗 = 0 for all 𝑗 = 0,1,… , 𝐽. The 

given 𝑔 and 𝑃𝑗,𝑘 for all 𝑗 = 0,1,… , 𝐽 and 𝑘 = 0,1,… ,𝑚 are known continuous functions of one 

variable in the interval 𝑎 ≤ 𝑥 ≤ 𝑏. In addition, the known functions of two variables 𝐾𝑟 , 𝐿1,𝑟 and 

𝐿2,𝑟 for 𝑟 = 0,1,… ,𝑚 are continuous in the domain [𝑎, 𝑏] × [𝑎, 𝑏]. Equation (1) also contains an 

integral term having a known function ℎ(𝑥) ≠ 𝑥 as the upper limit. By “functional upper limit”, 

we are referring to the existence of such a term in the considered problem. Since the order of the 

equation is equal to m, there are a total of m initial and boundary conditions given by (2), which 

we refer to as mixed-type conditions in view of the fact that some of them may contain terms 

evaluated at both boundary points 𝑎 and 𝑏. Often we will refer to equation (1) and mixed 

conditions (2) together as problem (1)-(2). 

Integro-differential equations are difficult to solve in the general case, resulting in many 

researchers having applied a variety of numerical techniques to problems involving them. For 

instance, linear Volterra-Fredholm integro-differential equations have been solved by various 

collocation methods employing Taylor [8] and Bessel [9] polynomials in addition to an 

operational matrix method using the standard polynomial basis [10]. In addition, popular methods 

such as He’s variational iteration method and homotopy perturbation method have been applied to 

Volterra-Fredholm integro-differential equations containing nonlinearity to second degree in [11]. 

Pantograph-type Volterra integro-differential equations, which are special cases of equation (1) 

without a Fredholm term, were considered in [12], where Laguerre polynomial solutions were 

found by a suitable utilization of collocation points. A type of linear Volterra-Fredholm integral 

equation with a functional upper limit where there is also a functional term in the left-hand side 

was numerically solved by Taylor polynomials method in [13]. Next, collocation methods in 

conjunction with Chelyshkov and Dickson polynomials were applied to problems similar to (1)-

(2) in [14] and [15], respectively. Lastly, Saeedi et al. [16] have presented a numerical method by 

combining difference method with successive approximation method, natural cubic spline 

interpolation method and trapezoidal quadrature rule for solving integro-differential equations.  

The main interest of this study is to introduce a numerical scheme based on Galerkin method 

in order to obtain approximate polynomial solutions to problem (1)-(2). The details of this method 

will be explained in Section 2. In Section 3, we outline the residual correction technique, which 

exploits the linearity of equation (1) to estimate the error of any of its approximate solutions and 

constructs a hopefully more accurate solution using this estimation. Numerical simulations are 

presented in Section 4. Finally, the conclusions of the paper are summarized in Section 5. 
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2. METHOD OF SOLUTION  
 

We present the Galerkin-like method that will be used to solve problem (1)-(2) in this section. 

We emphasize that a Galerkin-like method has been used to solve Fredholm integro-differential 

equations [17], Fredholm integro-differential equations with weakly singular kernel functions [18] 

and delayed HIV Infection model of CD4+ T-cells [19]. In addition, Türkyılmazoğlu solved both 

nonlinear Lane-Emden-Fowler type differential equations [20] and nonlinear heat transfer 

problems in fins [21] using a generalized version of the method presented in this section. 

To begin with, we assume that the solution of problem (1)-(2) can be expressed as 
 

𝑦(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + ⋯ = ∑ 𝑎𝑛

∞

𝑛=0

𝑥𝑛. 

 

The proposed scheme is initiated with choosing an integer parameter 𝑁. Then, we truncate the 

above power series after the (𝑁 + 1)-st term, resulting in the following polynomial of degree 𝑁: 
 

𝑦𝑁(𝑥): = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑁𝑥𝑁 = ∑ 𝑎𝑛
𝑁
𝑛=0 𝑥𝑛.  

 

Thus, the approximate solution of problem (1)-(2) will be an 𝑁-th degree polynomial 𝑦𝑁 

whose coefficients are denoted by 𝑎0, 𝑎1, … , 𝑎𝑁 . The aim of the scheme is to compute these 

coefficients. Before proceeding with the details of this computation, let us define a few matrices 

that will make the succeeding discussion significantly easier. First, we note that 𝑦𝑁(𝑥) =
𝐗(𝑥)𝐀, where 

 

𝐗(𝑥) = [1 𝑥 𝑥2 … 𝑥𝑁], 𝐀 = [𝑎0 𝑎1 … 𝑎𝑁]𝑇 .  
 

Here, 𝐗(𝑥) is a row vector of length 𝑁 + 1 that contains the powers of the indeterminate 𝑥 up 

to order 𝑁, whereas the column vector 𝐀 of the same length consists of all the unknown 

coefficients in the approximate solution polynomial 𝑦𝑁. The derivatives of 𝑦𝑁 can also be written 

in terms of a matrix product with the help of an auxiliary (𝑁 + 1) × (𝑁 + 1) matrix defined by 
 

𝐁 =

[
 
 
 
 
0 1 0 … 0
0 0 2 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 𝑁
0 0 0 … 0]

 
 
 
 

.  

 

More formally, the entries of 𝐁 are given by 𝐁𝑖,𝑖+1 = 𝑖 for 𝑖 = 0,1,… , 𝑁 and 𝐁𝑖,𝑗 = 0 for all 

other entries. Then it can easily be verified that the identity 𝑦𝑁
(𝑛)(𝑥) = 𝑋(𝑥)𝐵𝑛𝐴 holds for the 𝑛-

th derivative of 𝑦𝑁. Next step is to substitute the approximate solution 𝑦𝑁(𝑥) into equation (1). 

Doing this and rearranging yields 
 

∑ ∑ 𝑃𝑗,𝑘

𝐽

𝑗=0

𝑚

𝑘=0

(𝑥)𝑦𝑁
(𝑘)

(𝜆𝑗𝑥 + 𝜇𝑗) − ∫ ∑ 𝐾𝑟
𝑚
𝑟=0

𝑏

𝑎
(𝑥, 𝑡)𝑦𝑁

(𝑟)(𝑡)𝑑𝑡

−∫ ∑ 𝐿1,𝑟
𝑚

𝑟=0

𝑥

𝑎
(𝑥, 𝑡)𝑦𝑁

(𝑟)
(𝑡)𝑑𝑡 − ∫ ∑ 𝐿2,𝑟

𝑚

𝑟=0

ℎ(𝑥)

𝑎
(𝑥, 𝑡)𝑦𝑁

(𝑟)
(𝑡)𝑑𝑡 = 𝑔(𝑥),

                                 (3) 

 

or in matrix form 
 

∑ ∑ 𝑃𝑗,𝑘

𝐽

𝑗=0

𝑚

𝑘=0

(𝑥)𝐗(𝜆𝑗𝑥 + 𝜇𝑗)𝐁
𝑘𝐀 − ∫ ∑ 𝐾𝑟

𝑚
𝑟=0

𝑏

𝑎
(𝑥, 𝑡)𝐗(𝑡)𝐁𝑟𝐀𝑑𝑡

−∫ ∑ 𝐿1,𝑟
𝑚

𝑟=0

𝑥

𝑎
(𝑥, 𝑡)𝐗(𝑡)𝐁𝑟𝐀𝑑𝑡 − ∫ ∑ 𝐿2,𝑟

𝑚

𝑟=0

ℎ(𝑥)

𝑎
(𝑥, 𝑡)𝐗(𝑡)𝐁𝑟𝐀𝑑𝑡 = 𝑔(𝑥).

                          (4) 

 

The terms 𝐗(𝜆𝑗𝑥 + 𝜇𝑗) containing delay can also be expressed by means of a matrix product 

as follows:  Let 𝐁(𝜆, 𝜇) be the (𝑁 + 1) × (𝑁 + 1) square matrix whose entries are defined by the 
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rules 𝐁𝑖,𝑗(𝜆, 𝜇) = (𝑗−1
𝑖−1

)𝜆𝑖−1𝜇𝑗−𝑖  for 𝑖 ≤ 𝑗 and 𝐁𝑖,𝑗(𝜆, 𝜇) = 0 for 𝑖 > 𝑗. More explicitly, we have  
 

𝐁(𝜆, 𝜇) =

[
 
 
 
 
 
1 𝜇 𝜇2 … 𝜇𝑁

0 𝜆 2𝜆𝜇 … 𝑁𝜆𝜇𝑁−1

0 0 𝜆2 …
𝑁(𝑁−1)

2
𝜆2𝜇𝑁−2

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 𝜆𝑁 ]

 
 
 
 
 

.   

 

Then, it is straightforward to check that 𝐗(𝜆𝑥 + 𝜇) = 𝐗(𝑥)𝐁(𝜆, 𝜇). Thus, we can rewrite (4) 

as 
 

∑ ∑ 𝑃𝑗,𝑘

𝐽

𝑗=0

𝑚

𝑘=0

(𝑥)𝐗(𝑥)𝐁(𝜆𝑗 , 𝜇𝑗)𝐁
𝑘𝐴 − ∫ ∑ 𝐾𝑟

𝑚
𝑟=0

𝑏

𝑎
(𝑥, 𝑡)𝐗(𝑡)𝐁𝑟𝐀𝑑𝑡

−∫ ∑ 𝐿1,𝑟
𝑚

𝑟=0

𝑥

𝑎
(𝑥, 𝑡)𝐗(𝑡)𝐁𝑟𝐀𝑑𝑡 − ∫ ∑ 𝐿2,𝑟

𝑚

𝑟=0

ℎ(𝑥)

𝑎
(𝑥, 𝑡)𝐗(𝑡)𝐁𝑟𝐀𝑑𝑡 = 𝑔(𝑥).

                           (5) 

 

At  this  point,  it  will  be  advantageous  to  introduce  some  extra   notation  for  the  terms  

on  the left-hand side.  Let us denote the first term, which is a sum of at most (𝑚 + 1)(𝐽 + 1) 

separate terms containing delay, by 𝐃(𝑥).  More explicitly, let us define 
 

𝐃(𝑥): = ∑ ∑ 𝑃𝑗,𝑘

𝐽

𝑗=0

𝑚

𝑘=0

(𝑥)𝐗(𝑥)𝐁(𝜆𝑗 , 𝜇𝑗)𝐁
𝑘𝐀.   

 

In a similar manner, for the integral terms we define 
 

𝐅(𝑥):= ∫ ∑ 𝐾𝑟
𝑚
𝑟=0

𝑏

𝑎
(𝑥, 𝑡)𝐗(𝑡)𝐁𝑟𝐀𝑑𝑡, 𝐕1(𝑥): = ∫ ∑ 𝐿1,𝑟

𝑚

𝑟=0

𝑥

𝑎
(𝑥, 𝑡)𝐗(𝑡)𝐁𝑟𝐀𝑑𝑡,

𝐕2(𝑥): = ∫ ∑ 𝐿2,𝑟
𝑚

𝑟=0

ℎ(𝑥)

𝑎
(𝑥, 𝑡)𝐗(𝑡)𝐁𝑟𝐴𝑑𝑡.

  

 

Using these newly defined notation, considering that the factor 𝐀 is common in all the terms 

on the left-hand side of (5) and making use of the linearity of the integral operator, we can write 
 

(𝐃(𝑥) − 𝐅(𝑥) − 𝐕1(𝑥) − 𝐕2(𝑥))𝐀 = 𝑔(𝑥).                                                                                  (6) 
 

Here, each term in the parantheses is a row vector of length 𝑁 + 1 having expressions 

containing 𝑥 as its entries. If we have 𝐕1(𝑥) = 𝐕2(𝑥) = 0, in other words, if the original equation 

(1) contains only the Fredholm integral, then the problem is a Fredholm delay integro-differential 

equation. Similarly, if 𝐅(𝑥) = 𝐕2(𝑥) = 0, then it is a Volterra delay integro-differential equation. 

Lastly, if only 𝐕2(𝑥) = 0, the problem is a Volterra-Fredholm delay integro-differential equation. 

Thus, the present numerical scheme covers all these types of equations. To make the notation 

more concise, let us denote the sum inside the parantheses in (6) by 𝐖(𝑥), thereby writing 
 

𝐖(𝑥)𝐀 = 𝑔(𝑥).                                                                                                                          (7) 
 

Now, we apply the main idea of our numerical scheme. Namely, we apply inner product to 

equation (7) with the elements of the base set {1, 𝑥, 𝑥2, … , 𝑥𝑁}. By “inner product” we mean the 

inner product induced by the standard 𝐿2-norm in the space 𝐿2(𝑎, 𝑏) of the square integrable 

functions on 𝑎 ≤ 𝑥 ≤ 𝑏. More explicitly, if 𝑓, 𝑔 ∈ 𝐿2(𝑎, 𝑏), their inner product is < 𝑓,𝑔 >=

∫ 𝑓(𝑡)𝑔(𝑡)𝑑𝑡
𝑏

𝑎
. Thanks to the linearity of inner product, for an arbitrary 𝑘 = 0,1,… , 𝑁 we have  

 

< 𝐖(𝑥), 𝑥𝑘 > 𝐀 =< 𝑔(𝑥), 𝑥𝑘 >. 
 

Here, < 𝐖(𝑥), 𝑥𝑘 > is simply a row vector of length 𝑁 + 1 resulting from taking inner 

product of 𝑥𝑘 with all entries (which are functions of 𝑥) in 𝐖(𝑥) one by one. Therefore, for each 

𝑘 the above is a linear equation in the unknown coefficients 𝑎0, 𝑎1, … , 𝑎𝑁. More explicitly, we 

have 
 

Ş. Yüzbaşı, M. Karaçayır     / Sigma J Eng & Nat Sci 38 (2), 995-1005, 2020 



999 

 

 

< 𝐖(𝑥), 𝑥𝑘 >= [< 𝐖1(𝑥), 𝑥𝑘 > < 𝐖2(𝑥), 𝑥𝑘 > ⋯ < 𝐖𝑁+1(𝑥), 𝑥𝑘 >],  
 

where 𝐖𝑗(𝑥) denotes the 𝑗-th entry in 𝐖(𝑥). Since there are 𝑁 + 1 possible values for 𝑘, hence 

there are 𝑁 + 1 such inner products, we have a total of 𝑁 + 1 linear equations in the same 

number of unknowns 𝑎0, 𝑎1, … , 𝑎𝑁 expressed by the system 
 

𝐖𝐀 = 𝐆,                                                                                                                                      (8) 
 

where 
 

𝐖 = [

< 𝐖(𝑥),1 >

< 𝐖(𝑥), 𝑥2 >
⋮

< 𝐖(𝑥), 𝑥𝑁 >

] , 𝐆 = [

< 𝑔(𝑥),1 >

< 𝑔(𝑥), 𝑥2 >
⋮

< 𝑔(𝑥), 𝑥𝑁 >

]. 

 

The polynomial formed by the solutions of the system (8) is not taken as the approximate 

solution of problem (1)-(2) since the mixed conditions (2) have not been taken into account yet. In 

order to incorporate these conditions, we transform them into matrix equations by means of the 

auxiliary matrices 𝐗(𝑥), 𝐀 and 𝐁 defined before. Thus, the 𝑖-th mixed condition can be rewritten 

as 
 

∑ 𝑎𝑖,𝑗

𝑚−1

𝑗=0
𝐗(𝑎)𝐁𝑗𝐀 + 𝑏𝑖,𝑗𝐗(𝑏)𝐁𝑗𝐀 = (∑ 𝑎𝑖,𝑗

𝑚−1

𝑗=0
𝐗(𝑎)𝐁𝑗 + 𝑏𝑖,𝑗𝐗(𝑏)𝐁𝑗)𝐀 = 𝐂𝑖𝐀 = 𝜆𝑖 ,   

 

for 𝑖 = 1,2,… ,𝑚, where we used the notation 𝐂𝑖 = ∑ 𝑎𝑖,𝑗𝐗(𝑎)𝐁𝑗𝑚−1
𝑗=0 + 𝑏𝑖,𝑗𝐗(𝑏)𝐁𝑗. In order to 

impose the mixed conditions (2) on the approximate solution 𝑦𝑁, we must incorporate them into 

the system (8). Since there should be as many equations as unknowns in a linear system for it to 

have a unique solution, we do this by replacing the last 𝑚 rows of (8) by the rows corresponding 

to the 𝑚 mixed conditions, thus obtaining the new matrices 
 

�̃� = [< 𝐖(𝑥), 1 > ; < 𝐖(𝑥), 𝑥 > ; … ;  < 𝐖(𝑥), 𝑥𝑁−𝑚 > ;  𝐂1 ;  𝐂2; … ;  𝐂𝑚],   

�̃� = [< 𝑔(𝑥), 1 > ; < 𝑔(𝑥), 𝑥 > ;… ; < 𝑔(𝑥), 𝑥𝑁−𝑚 > ; 𝜆1 ; 𝜆2 ;  … ; 𝜆𝑚].  
 

Here, we used the convention that a semicolon starts a new row. If the resulting modified 

system �̃�𝐀 = �̃� is of full rank, it has a unique solution computed by 𝐀 = �̃�−1�̃�. This solution 

gives rise to the polynomial 𝑦𝑁(𝑥) = ∑ 𝑎𝑛
𝑁
𝑛=0 𝑥𝑛, which is the approximate solution of problem 

(1)-(2) which strictly satisfies the mixed conditions (2). 

In obtaining the unknown coefficients 𝑎0, 𝑎1, … , 𝑎𝑁, it is important to consider the stability of 

the numerical method used to solve the linear system �̃�𝐀 = �̃�. The standard matrix inversion 

algorithm in most computer algebra systems (e.g. MATLAB) is based on LU factiorization, 

which is known to be unstable in some cases [22]. This may be an issue in our case as the 

numerical scheme described in this section is prone to yield coefficient matrices with high 

condition numbers, making the system �̃�𝐀 = �̃� ill-conditioned. For this reason, we employed a 

stable iterative method to find the inverse of the coefficient matrix �̃�. This method was 

considered in [23] and also in [24], where its convergence was proved. In order to find the inverse 

of an 𝑁 × 𝑁 matrix 𝐌, starting from an initial guess 𝐀0, the method computes 
 

𝐀𝑛+1 = 𝐀𝑛(3𝐼 − 𝐌𝐀𝑛(3𝐼 − 𝐌𝐀𝑛)), 𝑛 = 0,1,2,… 
 

where 𝐼 is the 𝑁 × 𝑁 identity matrix. As the initial guess, we used 
𝐌𝑇

|𝐌|1|𝐌|∞
, which was suggested 

in [24]. The solutions of the final linear algebraic system in each of the example problems in 

Section 4 have been carried out using this iterative algorithm. 

Another issue that might interest the reader is the applicability of the presented method to 

nonlinear problems. If the equation to be solved is nonlinear, then in the matrix form 
 

𝐖(𝑥)𝐀 = 𝑔(𝑥) 
 

A Galerkin-type Method for Solutions of    …        /   Sigma J Eng & Nat Sci 38 (2), 995-1005, 2020 



1000 

 

 

of the equation, the vector 𝐖(𝑥) involves the unknown coefficients 𝑎0, 𝑎1, … , 𝑎𝑁 in its entries, 

which means that the system 
  

𝐖𝐀 = 𝐆 
 

of algebraic equations would not be linear. In this case, the solution of the problem requires 

solving a nonlinear system of algebraic equations. We refer the interested reader to [19] in order 

to help understand the application of the discussed scheme to nonlinear problems. 

 

3. ERROR ESTIMATION AND RESIDUAL CORRECTION 

 

Let us denote the exact solution of problem (1)-(2) by 𝑦exact. If this solution is known, we can 

measure the accuracy of an approximate solution 𝑦𝑁 by considering its absolute error given by 
|𝑒𝑁(𝑥)| = |𝑦exact(𝑥) − 𝑦𝑁(𝑥)|. However, the exact solution is not at hand in most cases, 

depriving us of this direct measure. In such cases, the residual of the approximate solution can be 

used as an alternative measure . In Section 2, we already considered this residual in (3), given by 
 

∑ ∑ 𝑃𝑗,𝑘

𝐽

𝑗=0

𝑚

𝑘=0

(𝑥)𝑦𝑁
(𝑘)

(𝜆𝑗𝑥 + 𝜇𝑗) − ∫ ∑ 𝐾𝑟
𝑚
𝑟=0

𝑏

𝑎
(𝑥, 𝑡)𝑦𝑁

(𝑟)(𝑡)𝑑𝑡

−∫ ∑ 𝐿1,𝑟
𝑚

𝑟=0

𝑥

𝑎
(𝑥, 𝑡)𝑦𝑁

(𝑟)(𝑡)𝑑𝑡 − ∫ ∑ 𝐿2,𝑟
𝑚

𝑟=0

ℎ(𝑥)

𝑎
(𝑥, 𝑡)𝑦𝑁

(𝑟)
(𝑡)𝑑𝑡 − 𝑔(𝑥).

                                 (9) 

 

On the other hand, since 𝑦exact is the exact solution, its residual is zero as given by 
 

𝑅𝑁(𝑥):= ∑ ∑ 𝑃𝑗,𝑘

𝐽

𝑗=0

𝑚

𝑘=0

(𝑥)𝑦exact

(𝑘)
(𝜆𝑗𝑥 + 𝜇𝑗) − ∫ ∑ 𝐾𝑟

𝑚
𝑟=0

𝑏

𝑎
(𝑥, 𝑡)𝑦exact

(𝑟)
(𝑡)𝑑𝑡

−∫ ∑ 𝐿1,𝑟
𝑚

𝑟=0

𝑥

𝑎
(𝑥, 𝑡)𝑦exact

(𝑟)
(𝑡)𝑑𝑡 − ∫ ∑ 𝐿2,𝑟

𝑚

𝑟=0

ℎ(𝑥)

𝑎
(𝑥, 𝑡)𝑦exact

(𝑟)
(𝑡)𝑑𝑡 − 𝑔(𝑥) = 0.

                    (10) 

 

In view of the identity 𝑒𝑁
(𝑟)(𝑥) = 𝑦exact

(𝑟) (𝑥) − 𝑦𝑁
(𝑟)(𝑥), subtracting (9) from (10) yields 

 

∑ ∑ 𝑃𝑗,𝑘

𝐽

𝑗=0

𝑚

𝑘=0

(𝑥)𝑒𝑁
(𝑘)

(𝜆𝑗𝑥 + 𝜇𝑗) = −𝑅𝑁(𝑥) + ∫ ∑ 𝐾𝑟
𝑚
𝑟=0

𝑏

𝑎
(𝑥, 𝑡)𝑒𝑁

(𝑟)
(𝑡)𝑑𝑡

+∫ ∑ 𝐿1,𝑟
𝑚

𝑟=0

𝑥

𝑎
(𝑥, 𝑡)𝑒𝑁

(𝑟)
(𝑡)𝑑𝑡 + ∫ ∑ 𝐿2,𝑟

𝑚

𝑟=0

ℎ(𝑥)

𝑎
(𝑥, 𝑡)𝑒𝑁

(𝑟)
(𝑡)𝑑𝑡.

                      (11) 

 

The unknown of this equation is the actual error 𝑒𝑁 corresponding to the approximate solution 

𝑦𝑁. In addition, since both 𝑦exact and 𝑦𝑁 satisfy the mixed conditions (2), we have 
 

∑ (𝑎𝑖,𝑗𝑒𝑁
(𝑗)

(𝑎) + 𝑏𝑖,𝑗𝑒𝑁
(𝑗)

(𝑏))
𝑚−1

𝑗=0
= ∑ (𝑎𝑖,𝑗(𝑦exact − 𝑦𝑁)(𝑗)(𝑎) + 𝑏𝑖,𝑗(𝑦exact − 𝑦𝑁)(𝑗)(𝑏))

𝑚−1

𝑗=0

= ∑ (𝑎𝑖,𝑗𝑦exact

(𝑗)
(𝑎) + 𝑏𝑖,𝑗𝑦exact

(𝑗)
(𝑏))

𝑚−1

𝑗=0
− ∑ (𝑎𝑖,𝑗𝑦𝑁

(𝑗)
(𝑎) + 𝑏𝑖,𝑗𝑦𝑁

(𝑗)
(𝑏))

𝑚−1

𝑗=0
= 𝜆𝑖 − 𝜆𝑖 = 0.

        

                                                                                                                                                      (12) 
 

 The solution of equation (11) subject to the homogeneous conditions (12) is the actual error 

𝑒𝑁. The problem (11)-(12) is called the “error problem” associated with the approximate solution 

𝑦𝑁. Since it is exactly of the same form as the original problem (1)-(2), we can apply the present 

scheme using a new parameter value 𝑀, and obtain an approximation to the actual error 𝑒𝑁. We 

denote the obtained solution by 𝑒𝑁,𝑀. Since 𝑒𝑁,𝑀 is not the actual solution but an approximation 

to it, we call this an estimation for the actual error. Since the actual error satisfies 𝑦exact(𝑥) =
𝑦𝑁(𝑥) + 𝑒𝑁(𝑥), this estimation is used to obtain a new approximate solution 𝑦𝑁,𝑀 as follows: 
 

𝑦𝑁,𝑀(𝑥) = 𝑦𝑁(𝑥) + 𝑒𝑁,𝑀(𝑥).  
 

For the error 𝐸𝑁,𝑀 of this new approximate solution we can write  
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𝐸𝑁,𝑀(𝑥) = 𝑦exact(𝑥) − 𝑦𝑁,𝑀(𝑥)

= (𝑦𝑁(𝑥) + 𝑒𝑁(𝑥)) − (𝑦𝑁(𝑥) + 𝑒𝑁,𝑀(𝑥)) = 𝑒𝑁(𝑥) − 𝑒𝑁,𝑀(𝑥).
  

 

Thus, the accuracy of the new approximation 𝑦𝑁,𝑀 is equal to the accuracy of the estimation 

𝑒𝑁,𝑀 for the actual error 𝑒𝑁. Referring to the expectation that 𝑦𝑁,𝑀 is more accurate than 𝑦𝑁, it is 

called a corrected approximate solution of problem (1)-(2), and the process of obtaining it is 

called residual correction. The effectivity of this technique will be made clear in one of the 

example problems in the next section. 

 

4. APPLICATIONS TO EXAMPLE PROBLEMS 

 

In this section, we apply the numerical scheme described in Section 2 to three example 

problems taken from present works. We also demonstrate the application of residual correction on 

one of these problems. All calculations have been carried out in MATLAB. 
 

Example 1: First example problem is the following second order equation taken from [15]: 
 

(𝑥2 + 1)𝑦″(0.2𝑥) + 𝑥𝑦′(𝑥 − 1) − (𝑥 − 1)𝑦(𝑥 + 2) + 𝑦(𝑥) = 6 −
14𝑥

3
− 𝑥2 −

5𝑥3

2
−

𝑥4

3
    

+2 ∫ 𝑥𝑦′(𝑡)𝑑𝑡
1

0
+ ∫ (𝑥𝑡2 + 𝑡𝑥2)

0.5𝑥+1

0
𝑦″(𝑡)𝑑𝑡,  𝑦(0) = −1, 𝑦′(1) = 3.

     (13) 

 

In this problem, we have 𝐕1(𝑥) = 0 in the terminology we introduced in Section 2. As for the 

other terms which are present in (6), we have when we apply the numerical scheme with 𝑁 = 2: 
 

𝐃(𝑥) = [2 − 𝑥, 2 + 𝑥 − 𝑥2, 6 − 2𝑥 + 2𝑥2 − 𝑥3], 𝐅(𝑥) = [0, 2𝑥, 2𝑥],

𝐕2(𝑥) = [0, 0,
2𝑥

3
+ 2𝑥2 +

3𝑥3

2
+

𝑥4

3
] .

  

 

As a result, the left-hand side of equation (7) is computed as 
 

𝐖(𝑥) = [2 − 𝑥, 2 − 𝑥 − 𝑥2, 6 −
14𝑥

3
−

5𝑥3

2
−

𝑥4

3
].  

 

After applying inner product with the monomials 1, 𝑥, 𝑥2, we obtain the system 𝐖𝐀 = 𝐆, 

where 
 

𝐖 = [

3/2 7/6 119/40
2/3 5/12 8/9
5/12 13/60 31/84

] , 𝐆 = [

317/120
23/36
71/420

].  

 

The matrices for the mixed conditions are [1 0 0]𝐀 = −1 and [0 1 2]𝐀 = 3. 

Replacing the last two rows of 𝐖 and 𝐆 with these gives the modified system �̃�𝐀 = �̃�, where 
 

�̃� = [
3/2 7/6 119/40
1 0 0
0 1 2

] , �̃� = [
317/120

−1
3

].  

 

The solution of this system is 𝐀 = [−1  1  1]𝑇, yielding the solution 𝑦2(𝑥) = −1 + 𝑥 + 𝑥2. 

This is equal to the exact solution of problem (13). Using 𝑁 values greater than 2 does not change 

this: We still obtain this exact solution as a result of applying the numerical scheme. 
 

Example 2: Next example is a second order generalized pantograph-type Volterra integro-

differential equation with an integral term having a functional upper limit taken from [12, 15]:  
 

𝑦″(𝑥) − 𝑥𝑦′(0.5𝑥 − 1) − 𝑦(𝑥 − 1) = 𝑔(𝑥) + ∫ (cos(𝑥)𝑡𝑦(𝑡) + sin(𝑥)𝑡𝑦′(𝑡))𝑑𝑡
𝑥

0

                                      +∫ sin
𝑥+1

0
(𝑥)𝑡𝑦′(𝑡)𝑑𝑡, {

𝑦(0)=1,
𝑦'(0)=1.

                  (14) 

 

Here we have 𝑔(𝑥) = 0.5 sin(1) 𝑥 + 𝑥 sin(0.5𝑥 − 1) − cos(𝑥 + 1) − cos(2𝑥) −
0.5 cos(2𝑥 + 1) − 0.5 sin(2𝑥 + 1) − 𝑥 sin(2𝑥) − 0.5𝑥 sin(2𝑥 + 1) + 0.5 cos(1) + 0.5 sin(1). 

Exact solution is known to be 𝑦exact(𝑥) = cos(𝑥). We have solved this problem using various 
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choices for the parameter 𝑁. As an illustration, the solutions corresponding to 𝑁 = 3 and 𝑁 = 6 

are given by 
 

𝑦3(𝑥) = 1 − 0.4720061108𝑥2 + 0.0495159638𝑥3,

𝑦6(𝑥) = 1 − 0.5004728649𝑥2 − 0.0007124006𝑥3 + 0.0417241808𝑥4 + 0.0000382967𝑥5

−0.0012101609𝑥6.

  

 

The absolute errors of the approximate solutions are depicted in Figure 1. It is seen that 

increasing 𝑁 makes the solutions significantly more accurate. In addition, we compare the 

absolute errors obtained using 𝑁 = 4,  8 with those of Laguerre collocation method [12] and 

Dickson collocation method [15] in Table 1. It is understood that the present method performs 

closely to the other two methods for 𝑁 = 4 while it is slightly inferior to them for 𝑁 = 8. 

 

Table 1. Comparison of the actual absolute errors of the present method with Laguerre 

collocation method and Dickson collocation method corresponding to 𝑵 = 𝟒,  𝟖 in Problem (14). 
 

 Laguerre col. method Dickson col. method Present method 

𝑥 |𝑒4(𝑥)| |𝑒8(𝑥)| |𝑒4(𝑥)| |𝑒8(𝑥)| |𝑒4(𝑥)| |𝑒8(𝑥)| 
0.2 1.408E − 5 2.370E − 7 7.037E − 5 1.273E − 6 4.644E − 5 1.626E − 6 

0.4 1.270E − 4 1.104E − 6 2.918E − 4 6.516E − 6 1.804E − 4 8.162E − 6 

0.6 1.726E − 4 2.936E − 6 8.687E − 4 1.612E − 5 5.967E − 4 2.051E − 8 

0.8 2.950E − 4 6.067E − 6 2.174E − 3 2.793E − 5 1.677E − 3 3.703E − 5 

1 1.849E − 3 1.054E − 5 4.598E − 3 3.715E − 5 3.837E − 3 5.308E − 5 

 

 
 

Figure 1. Errors of the approximate solutions of Problem (14) obtained by N = 4,  6,  7,  8,  10. 

 

Example 3: Lastly, we solve the Volterra delay integro-differential equation from [14, 15]: 
 

𝑦′(𝑥) + 2𝑦′(𝑥 − 0.5) − 𝑦(𝑥) + (𝑥2 − 𝑥)𝑦(0.5𝑥 − 1) = 𝑔(𝑥) + ∫ 𝑥𝑒−𝑡𝑦(𝑡)𝑑𝑡
𝑥

0

+∫ ((𝑥2 − 2𝑡 − 2)𝑦′(𝑡))𝑑𝑡
0.5𝑥

0
,  y(0)=1.

                      (15) 

 

Here, 𝑔(𝑥) = (𝑥2 − 𝑥)𝑒0.5𝑥−1 + 2𝑒𝑥−0.5 − 𝑥2𝑒0.5𝑥 + 𝑥𝑒0.5𝑥 and the exact solution is 

𝑦exact(𝑥) = 𝑒𝑥. We have solved this problem using 𝑁 = 4 and 𝑁 = 7. We also compared the 

absolute errors with Chelyshkov collocation method [14] and Dickson collocation method [15] in 

Table 2. 
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Table 2. Comparison of the actual absolute errors of the present method with Chelyshkov 

collocation method and Dickson collocation method corresponding to 𝑵 = 𝟒,  𝟕 in Problem (15). 
 

 Chelyshkov col. method Dickson col. method Present method 

𝑥 |𝑒4(𝑥)| |𝑒7(𝑥)| |𝑒4(𝑥)| |𝑒7(𝑥)| |𝑒4(𝑥)| |𝑒7(𝑥)| 
0.2 2.926E − 4 7.378E − 6 1.738E − 4 7.414E − 7 2.619E − 4 5.775E − 7 

0.4 2.704E − 4 1.773E − 6 5.303E − 5 1.355E − 6 4.195E − 4 1.746E − 6 

0.6 4.497E – 4 1.851E − 5 4.756E − 4 4.143E − 7 9.470E − 5 1.685E − 6 

0.8 1.740E – 3 2.969E − 5 8.732E − 4 1.903E − 6 6.680E − 4 7.401E − 7 

1 2.432E − 3 2.117E − 6 5.833E − 4 3.347E − 6 8.687E − 4 3.357E − 6 

 

Let us now improve the approximate solutions corresponding to 𝑁 = 4 and 𝑁 = 8 by using 

residual correction. Solving the corresponding error problems using 𝑀 = 6 and 𝑀 = 8  yields 
 

𝑒4,6(𝑥) = 0.0008877708𝑥 + 0.0036931793𝑥2 − 0.0055931160𝑥3 − 0.0101119108𝑥4

+0.0085305959𝑥5 + 0.0017169189𝑥6,

𝑒7,8(𝑥) = −0.0000005664𝑥 − 0.0000139856𝑥2 − 0.0000059217𝑥3 + 0.0000398116𝑥4

+0.0000331595𝑥5 − 0.0000382998𝑥6 − 0.0000413434𝑥7 + 0.0000304212𝑥8.

   

 

We then use these error estimates to obtain the corrected approximate solutions 𝑦4,6 and 𝑦7,8 

as 
 

𝑦4,6(𝑥) = 𝑦4(𝑥) + 𝑒4,6(𝑥), 𝑦7,8(𝑥) = 𝑦7(𝑥) + 𝑒7,8(𝑥),   
 

The accuracy of these corrected solutions depends directly on the accuracy of the error 

estimates 𝑒4,6 and 𝑒7,8. For this reason, it is a good idea to sketch the graphs of these estimates 

versus the original actual errors 𝑒4 and 𝑒7. This is done in Figure 2, where it is seen that both 

estimates are reasonably close to the original actual errors. In addition, the actual errors are given 

together with their estimates in Table 3. We can infer that the accuracy of the error estimates has 

given rise to reduced error values exhibited by the improved solutions, shown in fourth and 

seventh columns. The reader may find it helpful to compare this situation to the note closing 

Section 3. 

 

Table 3. Actual errors of the original aproximate solutions 𝒚𝟒 and 𝒚𝟕 compared with their 

estimations and improved versions obtained using 𝑴 = 𝟔 and 𝑴 = 𝟖 in Problem (15). 
 

 Errors corresponding to (𝑁,𝑀) = (4,6) Errors corresponding to (𝑁,𝑀) = (7,8) 

𝑥 𝑒4(𝑥) 𝑒4,6(𝑥) 𝐸4,6(𝑥) 𝑒7(𝑥) 𝑒7,8(𝑥) 𝐸7,8(𝑥) 

0.2 2.619E − 4 2.672E − 4 −5.296E − 6 −5.775E − 7 −6.486E − 7 7.118E − 8 

0.4 4.195E − 4 4.235E − 4 −3.988E − 6 −1.746E − 6 −1.689E − 6 −5.679E − 8 

0.6 9.470E − 5 8.703E − 5 7.666E − 6 −1.685E − 6 −1.349E − 6 −3.368E − 7 

0.8 −6.680E − 4 −6.862E − 4 1.823E − 5 7.401E − 7 1.130E − 6 −3.899E − 7 

1 −8.687E − 4 −8.765E − 4 7.773E − 6 3.357E − 6 3.275E − 6 8.191E − 8 
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Figure 2. Comparison of the actual errors 𝒆𝟒 and 𝒆𝟕 with their estimations in Problem (15). 

 

5. CONCLUSION 

 

In this paper, we have presented a Galerkin-like numerical scheme in order to find 

approximate solutions of linear Volterra-Fredholm delay integro-differential equations with an 

integral term having functional upper limit. Simulation results reveal that increasing the parameter 

𝑁 of the method yields significantly more accurate solutions. In addition, the present scheme has 

the virtue of yielding the exact solution in case that solution is a polynomial. Residual error 

correcting technique, which makes it possible to improve the accuracy of an obtained 

approximate solution, has been tested on an example problem with satisfactory results. 

Comparisons with several other popular methods exhibit results which are rather close or in 

favour of the present scheme. A drawback of the present scheme is the possible impossibility of 

the exact evaluation of the relevant integrals for certain types of kernel functions; but this issue 

can be overcome by the use of a suitable numerical integration technique. Considering all these 

factors, one can rely upon the presented scheme when the need arises to obtain accurate solutions 

of linear integro-differential equations of similar type. 
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