Sigma J Eng & Nat Sci 38 (2), 2020, 945-954

Sigma Journal of Engineering and Natural Sciences Sigma Mühendislik ve Fen Bilimleri Dergisi

Research Article

EVALUATION OF EXCESS LIFETIME CANCER RISK CAUSED BY EXTERNAL EXPOSURE DUE TO NATURAL RADIOACTIVITY IN BOLU, TURKEY

Naz Zeynep ATEŞ*¹, Kübra BAYRAK², M. Ergun TURGAY³, Erol KAM⁴

¹Faculty of Arts and Sciences, Yıldız Technical University, ISTANBUL; ORCID: 0000-0002-9794-0554
²Faculty of Arts and Sciences, Akdeniz University, ANTALYA; ORCID: 0000-0002-9199-8296
³Engineering Faculty, Yalova University, YALOVA; ORCID: 0000-0003-1708-8283
⁴Faculty of Arts and Sciences, Yıldız Technical University, ISTANBUL; ORCID: 0000-0001-5850-5464

Received: 30.12.2019 Revised: 09.04.2020 Accepted: 13.04.2020

ABSTRACT

In this study, the gamma dose rates in outdoor air at seventy-seven points around Bolu province were meausured using a counter (Eberline, ESP-2). Radiological hazards were evaluated by estimating the excess lifetime cancer risks caused by external exposure. The gamma dose rates measured varied from 11 to 68 nGyh⁻¹with an average value of 22 nGy h⁻¹. The avarege value of the corresponding outdoor annual effective dose and the excess lifetime cancer risk was found as 27.23 μ Sv and 0.95x10⁻⁴, respectively. These values could be compared to other studies which existed in Turkey and also in the world.

Keywords: Outdoor gamma dose rate, natural radioactivity, scintillation detector, AEDE, cancer risk, Bolu.

1. INTRODUCTION

Radionuclides, which exposed to people, exist as naturally and artificially on the Earth. Radioactive elements stated in rocks and artificially obtained radionuclides cause the formation of environmental gamma radiation. Examining the Earth's geological structure, it is seen that there are rock beds at a certain 30 cm thickness just beneath the soil layer. It is known that a significant part of the gamma radiation is originated from the surface layer at 0-25 cm depth. Randomize events as radioactivity occurs naturally (caused by primordial nuclides) or by handmade (originates to artificial processes). The largest contribution to total radiation dose whichever received by humans comes from Natural sources. Depending on the sources like terrestrial and cosmogenic natural radioactivity; environmental measurements are required to determine the background radiation level. The terrestrial component of the background is originated from various radioactive nuclides. The levels of radionuclide (in soil, water, and air) change depending on the geological and geographical characteristics of the zone. The natural radiation consists of cosmic rays and terrestrial components. Terrestrial radiation can be measured via gamma-ray spectroscopy separately. By the way, cosmic effects would be calculated by subtracting of terrestrial from measured outdoor gamma dose, too. The United Nations Scientific Committee on

^{*} Corresponding Author: e-mail: zeynepnazates@hotmail.com, tel: (536) 301 47 57

the Effects of Atomic Radiation (UNSCEAR, 2008) estimates the global average human exposure from natural radiation n sources as 2.4 mSv per year and the radionuclides that are present of *soil* samples (it is terrestrial component) are considered to be responsible for a portion of this amount [1]. Rest amounts are originated water and air, too. In this study, gamma dose rates, which are caused by natural radionuclides in the air, were calculated by taking measurements at 74 different locations 1 m from the ground at Bolu city and its vicinity.

2. LITERATURE SURVEY

Over the past two decades, a few results due to radioactivity levels have been published in some papers related to gamma dose rates in the air for Turkish provinces ([7] to [16]). Besides, there are many worldwide studies in the literature. As an example of them; in 2002, Ghiassi and Mortavazi have measured the absorbed gamma dose rates in the air for the Ramsar region of Persia. They have studied the effects of radiation on human life. The annual dose was also calculated that it is 260 mSv and this value is higher than the stipulated annual limit of 20 mSv in North Persia. In genetic works, the effects of this high level were obtained the difference of the blood lenfosid samples of humans [18]. Nearby, there is any study for Bolu province realized in literature. Therefore, the purpose of this study is to measure dose rates in the air from different locations throughout the province of Bolu, and then assess the cancer risk to human life by calculation of the outdoor gamma dose. The human population in this city is up to three hundred thousand and this study will be a baseline for next studies about environmental radioactivity measurements, too.

2.1. Measuring Area

Bolu region is located in the west Black Sea Region between 30° 32' and 32° 36' east longitudes, 40° 06' and 41° 01' northern latitudes (map is shown in Figure 1). Bolu is a preferred region especially for winter tourism and thermal tourism. In addition, Industrial districts located in various places, Bolu University and hospitals provide employment and intensity in the city. It is considered necessary to investigate this area as it is a region that the public has visited frequently for different reasons. The average temperature is 24.08 °C and the average rainfall is 65 mm. The region spans an area of 8276 km² and with a population of about 0.3 million [2].

Figure 1. Regional Map of Bolu Province, Turkey [3]

2.2. Inhalation

Airborne radioactivity is important to identify the visual as a spectrum or the abundance as intensity by radionuclides making up the contamination. Radionuclides will very rapidly appear in ground-level air, and air samples can give the first indication of the nature of the contamination. Radioactive materials in the air may result in exposure to humans by inhalation.

2.3. Measuring points for gamma dose rates in air

In this study, Coordinates are assigned by the GPS instrument which Magellan Explorist 510 and these values are recorded in Table 1. Dose rate map also was shown in Figure 2, too.

County Name (sampling pcs)	Latitude (limits)	Longitude (limits)	
Bolu- center (36)	40,60505 - 40,78414	31,56857 - 31,73905	
Dörtdivan (4)	40,71443 - 40,72296	32,05771 - 32,06561	
Gerede (7)	40,79343 - 40,80222	32,18495 - 32,21336	
Göynük (4)	40,39563 - 40,40259	30,78166 - 30,79121	
Kıbrıscık (1)	40,40993	31,84785	
Mengen (8)	40,93111- 40,94618	32,06432 - 32,08451	
Mudurnu (5)	40,46313 - 40,46603	31,21092 - 31,21288	
Seben (4)	40,40719 - 40,40875	31,57052 - 31,57283	
Yeniçağa (5)	40,76986 - 40,77374	32,02476 - 32,03844	
BOLU (74)	40,39563 - 40,94618	30,78166 - 32,21336	

Table 1. Coordinates as classified due to counties of Bolu for totally 74 different samplings

Figure 2. Map for Sampling Points in dose rate diagram [4]

2.4. Measurement System

The measurements around Bolu province were realized by using a counter (Eberline, ESP-2) portable device that required for the reading process. It is wired to SPA-6 plastic scintillator which placed in order to detect function. The instrument was kept up to 1m from the soil surface and at the sampling point, the measurement duration was 60 seconds. Then the average dose rates were recorded. The main instrument is the ESP-2. The detector is connected to the reader via an MHV-series cylindrical connector. The readout of the counter has been presented with a 2×16 alphanumeric (LCD) display. This ratemeter is operated by the CPU/Intel 80C31 processor family and has got external RAM 8KB, EPROM 16KB. The scintillator and reader were fitted to realize its output. It is provided the pulse signal to the electronics for counting. The pulse rate that the output of the reader, is proportional to the radiation intensity by detected by the sensor. The high voltage supply provides the required bias voltage to the SP-6. The adjustable voltage operates the optimized voltages for a large selection of detectors. The low voltage supply regulates the operating voltage for the ESP-2 electronics (Figure 3). The amplifier is a linear, adjustable gain, multistage design. It amplifies the signal from the probe to a usable level at the amplifier output. The discriminator provides a signal on its output only if the signal from the amplifier exceeds the adjustable threshold. This provides a means for rejecting noise and/or unwanted signals.

Figure 3. ESP-2 Rate meter and SPA-6 scintillation detector, Eberline [5]

3. OUTDOOR DOSE RATES AS ORIGINATED TO THE TERRESTRIAL EFFECT AND COSMIC RAY

Absorbed gamma doses are originated to terrestrial and cosmic rays together. To obtain the absorbed dose rates in air, the instrument is kept about 1-meter upperside from ground level. Because of this level; it is important that how many doses exposed in the air against human gonad. The human gonad is the more sensitive organ against radiation damage. Annual doses in the air were also calculated by using the gamma dose rates. Gamma dose rates graphic (histogram) was given in Figure 4.

3.a. Determinations for AEDE by using ADRA

It is easy to calculate average annual dose (AEDE) by using average dose rates for all counties by using values given in Table 1 with ref. of (UNSCEAR, 2008), calculation of AEDE is possible by using below parameters [1]:

AEDE= ADRA* DCF* OF* T

Eq. 1

Eq. 2

where ADRA refers to absorbed dose rate in the air (nGyh⁻¹), A is the activity, DCF refers to dose conversion factor (0.7 Sv Gy⁻¹), OF is outdoor occupancy factor (0.2), T is the exposure time (8760 h v⁻¹). AEDE is commonly used in an annual effective dose equivalent (μ Sv). These annual doses were shown for all counties in Table 2.

County Name (sampling pcs)	Absorbed Gamma Dose Rate [nGyhr ⁻¹] ADRA, range/ average	Annual Effective Dose Equivalent [μSv] AEDE, average
Bolu- center (36)	63.65-10.85/ 16.11	19.76
Dörtdivan (4)	27.60-15.60/ 22.14	27.16
Gerede (7)	45.00-15.45/ 23.76	29.14
Göynük (4)	24.40-21.10/ 23.11	28.35
Kıbrıscık (1)	18.07	22.16
Mengen (8)	68.35-20.55/ 39.14	48.01
Mudurnu (5)	53.85-28.40/ 34.11	41.84
Seben (4)	25.55-19.80/ 23.18	28.43
Yeniçağa (5)	24.75-15.90/ 19.40	23.80
BOLU (74)	68.35-18.07/ 22.20	27.23

Table 2. ADRA and AEDE values, for a total 74 measuring points [**nGvhr**⁻¹, μ **Sv**]

** Average for Bolu [dose rate: 22.20 nGyhr⁻¹; annual dose: 27.23 μSv]

3.b. Determination of Excess Lifetime Cancer Risk

E.L.C.R. can be calculated using by AEDE value:

ELCR= AEDE* DL* RF

herewith AEDE in μ Sv, DL is the duration of life (70 years), RF refers to a risk factor (Sv⁻¹) as fatal cancer risk per Sv. The calculation for stochastic effects; ICRP 103 [6] uses values of 0.05 for the public (ICRP, 2007). AEDE&ELCR values were shown in Table 3.

County Name (sampling pcs)	Average Annual Doses Equivalent in µSv	Average Lifetime Cancer Risk [(x10 ⁻⁴)]
Bolu- center (36)	19.76	0.69
Dörtdivan (4)	27.16	0.95
Gerede (7)	29.14	1.02
Göynük (4)	28.35	0.99
Kıbrıscık (1)	22.16	0.78
Mengen (8)	48.01	1.68
Mudurnu (5)	41.84	1.46
Seben (4)	28.43	1.00
Yeniçağa (5)	23.80	0.83
BOLU (74)	27.23	0.95

Table 3. AEDE and ELCR values, for a total 74 measuring points [µSv, (x10-4)]

** Average for Bolu [dose: 27.23 μSv; risk: 0.95(x10⁻⁴)]

4. STATISTICS AND COMPARISON

With analyzing of Table 4, it could be seen the annual dose and cancer risk for Bolu, are less than the world average. They are also less than a lot of Turkish provinces, too.

		Average Lifetime	
[ref no], Region	Average Annual Doses	Cancer Risk	Reference,
(Nm. of sampling)	Equivalent in µSv	[(x 10 ⁻⁴)]	year
[7] Adana	82.00	2.87	Değerlier, 2008
[8] Ankara (341)	71.83	2.69	Kapdan, et al, 2018
[9] Artvin (204)	214.5	7.50	Taşkın, et al, 2015
[10] Balıkesir (92)	156.3	6.30	Kapdan, et al, 2011
[11] Çanakkale	260	9.10	Kam, et al, 2007
			G.Karahan, A.Bayülken,
[12] İstanbul (105)	79.72	2.79	2000
[13] Kastamonu	67.00	2.35	Kam, et al, 2007
[14] Şanlıurfa	74.7	2.62	Kam, et al, 2007
[15] Hatay (215)	63.93	2.24	M. E. Turgay, 2015
[16] IDA villages (75)	198.66	6.95	M. E. Turgay, 2019
Bolu (74)	27.23	0.95	This study
[1] World	73.6	2.9	UNSCEAR, 2008
[17] R. Janeiro, Brasil	90.0	3.15	Licinio, et al, 2013
[18] Ramsar, Persia	105.0	3.68	Ghiassi, et al, 2002
[19] Canary Island,			
Spain	91.95	3.22	Arnedo, et al, 2017
[20] Yalova	59.02	2.07	Bayrak et al,2020

Table 4.	Comparison	Chart for	AEDE	and	ELCR
----------	------------	-----------	------	-----	------

5. CONCLUSION

The minimum dose was calculated to 19.76 µSv for the central district of Bolu and it is a very good situation due to a higher population than the other districts live in there. The maximum dose was calculated to 48.01 µSv for the Mengen district as average. It could be said that the highest cancer risk is evaluated for the people live there for Bolu province. Radioactive sources and locations were not well known in Turkey as effectively. This is highly risky about human healthy in geography. So, this and similar studies are important to determine radioactivity levels and their cancer risk, too. In comparison to neighbor provinces as Ankara and Kastamonu, it seems too much lower than and higher quality of inhalation for the Bolu community. Besides, with this study, it is possible to say that; there is no risk on humans by inhalation. This study would be also referenced for future researches, besides it will be useful to compare with different studies for Bolu which, will be completed in the future, for example after a nuclear pollution via will be located a reactor in Sinop, such as based on a reactor leakage, attack by nuclear weapons, etc., too.

Acknowledgments

Herewith declared that; Funding: There is no funding for this study. Conflict of Interest: The authors declare that they have no conflict of interest.

REFERENCES

- UNSCEAR, Sources and effects of ionizing radiation, Report of the United Nations [1] Scientific Committee on the Effects of Atomic Radiation to the General Assembly, United Nations, NY, (2008).
- Bolu Province/ Wikipedia. [2]
- Bolu map/ http://cografyaharita.com/haritalarim/41_bolu_ili_haritasi.png [3]
- [4] Software for drawing was used by CNAEM/TAEK.
- http://www.pchemlabs.com/manuals/pdf/eberline-esp2-technical-manual.pdf [5]
- [6] ICRP., ICRP Publication 103 recommendations of the ICRP: annals of the ICRP volume 37/2-4. International Commission on Radiological Protection. Pergamon Pres, 2007, Oxford, UK.
- [7] Değerlier, M., KARAHAN G. (2007). Ph.D. Thesis: Annual Effective Dose of Natural Environmental Radioactivity Measurements for Adana region. N.S. Institue- CU/ Adana.
- Enis Kapdan, et all., Outdoor radioactivity and health risk assessment for capital city [8] Ankara, Turkey, Journal of Radioanalytical and Nuclear Chemistry, 318 (2018), 1033-1042, doi: 10.1007/s10967-018-6060-5.
- Yasar Kobya, et all., (2015), Evaluation of Outdoor Gamma Dose Rate and Cancer Risk [9] in Artvin Province, Turkey, Human and Ecological Risk Assessment: An International Journal, 21:8, 2077-2085, doi: 10.1080/10807039.2015.1017876.
- [10] E. Kapdan., et. All, Outdoor Radioactivity and Health Risks in Balikesir, Northwestern Turkey, Radiation Protection Dosimetry (2011), pp: 1-9, doi:10.1093/rpd/ncr038.
- E. Kam, et all., A study of background radioactivity level for Canakkale, Turkey. Environ [11] Monit Assess (2010), 168:685-690, doi: 10.1007/s10661-009-1143-y.
- G. Karahan, A. Bayülken, Assessment of gamma dose rates around Istanbul (Turkey), [12] Journal of Environmental Radioactivity, 47 (2000), 213-221, doi: 10.1016/S0265-931X(99)00034-X
- [13] E. Kam, et all., Environmental radioactivity measurements in Kastamonu region of northearn Turkey, Applied Radiation and Isotopes, (2006), V.65, pp. 440-444., doi:10.1016/j.apradiso.2006.11.005

- [14] E. Kam, et all., Assessment of environmental radioactivity for Sanliurfa region of southeastern Turkey, Radiat. Meas., 42 (2007), 1387-1391, doi.org/10.1016/j.radmeas.2007.05.052
- [15] M. E. Turgay, et all., (2015). Ph.D. Thesis: Assessment of the Environmental Radioactivity in Hatay region. N.S. Institue- GAUN/G.Antep.
- [16] Muttalip Ergun TURGAY, Cancer Risk Determination for IDA villages by using Annual Gamma Doses in Air, around Edremit&Ayvacık Districts; Balıkesir&Çanakkale, TURKEY, European Journal of Science and Technology, (2019), 15, pp: 433-439, EJOSAT, doi: 10.31590/ejosat.512562
- [17] Lic'inio MV, et al. 2013. A high spatial resolution outdoor dose rate map of the Rio de Janeiro city, Brasil, risk assessment and urbanization effects. J Environ Radioact 126:32-9., doi: 10.1016/j.jenvrad.2013.07.012
- [18] Ghiassi M., Mortazavi S. M., Cameron J. R. (2002). Very High Background Areas of Ramsar, Persia: Preliminary Biological Studies, Health Physics, 82(1), 87-93.
- [19] M. A. Arnedo, et all, (2017), Mapping Natural Radioactivity of soils in the eastern Canary Islands, Spain, Journal of Environmental Radioactivity, 166, pp: 242-258, doi: https://doi.org/10.1016/j.jenvrad.2016.07.010
- [20] Bayrak, K, Yümün, Z, Çakar, M. (2020). Investigation of Outdoor Gamma Dose Rates in Yalova, Turkey. Avrupa Bilim ve Teknoloji Dergisi, (18), 568-573. DOI: 10.31590/ejosat.686668