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ABSTRACT 

 

The aim of the study is to describe and model the spatial distribution of the road traffic accidents (RTAs) rate 

with the factors considering space–time relationship for the period between 2013–2018 in the provinces of 
Turkey. The RTA rate is modelled with the factors which are population, the number of different types of 

motor vehicles registered, lengths of three types of provincial roads and these factors measured in the 

neighbours. Firstly, spatial maps are used to demonstrate the spatial variability of RTAs in Turkey. Global and 
local spatial autocorrelation analyses are conducted to demonstrate whether the RTA in provinces with high 

rates of accidents show similar clusters. Spatial regression and panel models are considered a solution to 

examine the space–time relationship between the RTA and RTA’s neighbourhood characteristics. We found 
that the RTA rate is not distributed randomly across Turkey. Spatial distribution of provinces with high rates 

of accidents is non-random (Moran’s I changes between 0.52 and 0.59 with p <0.001). Moreover, while LISA 

analysis demonstrates the provinces determined as local clusters, the fixed effects models with different 
spatial structures show that the RTA rate is positively correlated with number of cars, vans, private vehicles 

and length of asphalt roads, other factors are negatively correlated and also non-asphalt road is not significant 

to explain the RTA rate. On the other hand, spatial parameters are significant in all models (p <0.1) and 
neighbouring region characteristics in terms of explanatory variables do not affect the explanation upon the 

RTA rate. 

Keywords: Road traffic accident (RTA), spatial statistics, local indicators of spatial association, spatial panel 
econometrics, Turkey. 

 

 

1. INTRODUCTION 

 

Road traffic accidents (RTAs) have been identified as "human-caused natural disaster" by the 

World Health Organization. RTAs in most of the countries increase due to Human’ mistakes 

(inattentive driving), traffic rule violations, increase of the vehicles in traffic, improper use of 

heavy vehicles on roads, environmental factors and unfavourable climatic conditions. RTAs in 

turkey often occur as a result of road infrastructure problems and traffic violations [1]. Turkey is a 

bridge between Asia and Europe [2-3]. Although the population was estimated as 72.75 million in 

2010, and now it is over 82 million. These statistical results support that without any fall or 
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breakage the population of the country kept growing from the 19th century until now. This strong 

increase causes an increase in vehicle numbers and thus RTAs. The number of driver’s license 

holders was about 30 million in 2017. This number increases every year.  The parameters of RTA, 

which cause accidents , are numerous and have a complex structure and just because of this the 

researchers interest in analysing them for the purpose of understanding, comparing, modelling 

and demonstrating accidents. Particularly, spatial factors and also models are main interest 

recently. For example, Levine et al. [4] use a spatial lag model to investigate the spatial patterns 

of motor vehicle accidents in Honolulu, Hawaii, during the year 1990. Erdogan [3] describes the 

inter-province differences in traffic accidents and mortality on roads of Turkey by using 

spatial analysis.  While Papadimitriou et al. [5] also consider another Spatial lag model to model 

the spatial variation of crash rates in Greece for the year 2002, LaScala et al. [6] propose a spatial 

error model to map locations of pedestrian injuries in San Francisco, California, for the year 1990 

and the analysis supported that the geographical proximity has an impact on the traffic safety of 

spatial units. Network kernel density estimation with local Moran’s I for hot spot detection (an 

area with higher concentration of RTAs) of traffic accidents is used in [7]. In the framework of 

spatial econometrics, crash rates analysis in China using a spatial panel model is conducted in 

Soro et al. [8] and it is found that freight traffic, the length of paved roads and the populations of 

age 65 and above are related to higher rates in RTA while the opposite trend is observed for the 

Gross Regional Product, the urban unemployment rate and passenger traffic. Lakes [9] studies a 

spatially explicit analysis of traffic accidents involving pedestrians and cyclists in Berlin and, 

the spatial distribution analysis shows, however, that there are significant spatial clusters (hot 

spots) of traffic accidents with a strong concentration in the inner city area. Daniel et al. [10] 

studies RTA in Nigeria with spatial analysis tools and they observe that there is significant 

clustering of RTA occurrence and death in the Federal capital territory and Nasarawa state. Hot 

spot analysis based on network spatial weights to determine spatial statistics of traffic accidents in 

Rize, Turkey are conducted in [1]. In [11], the RTAs statistics in Turkey show that drivers are 

responsible for the highest rate of defects. Factors influencing traffic accident frequencies on 

urban roads are studied with a spatial panel time-fixed effects error model in [12]. Akgungor and 

Dogan [13] use an artificial neural network model and a genetic algorithm model to estimate the 

number of accidents, fatalities and injuries in Ankara, Turkey, utilizing the data obtained between 

1986 and 2005. While the number of people killed in RTAs in Turkey between 1990 and 2014 is 

modelled as the function of time by linear regression in [14], RTAs within last ten years in 

Turkey with an analysis of factors is described in [15]. Also, some methods are used to analyse 

the annual average daily traffic, the number of accident, injury and death, average velocity, 

distance, the number of links and junctions parameters in road between Erzincan and Agri 

(Gurbulak) cities in Turkey [16]. Dereli and Erdogan [17] aim to study traffic accidents in Turkey 

by means of GIS and statistical methods. GIS based surveillance of RTAs risk for Rawalpindi city 

is conducted in [18]. The occurrences and frequencies of RTAs in Hosanna town, Ethiopia, are 

discussed in [19]. As a result of the literature review, it can be claimed that RTA with multi-

parameters, one of an important public health issue, should be studied with spatial statistics tools.   

Thus, the study is to designed to describe and model the spatial distribution of the road traffic 

accidents (RTAs) rate with the factors considering space–time relationship for the period between 

2013–2018 in the provinces of Turkey. The RTA rate is modelled with the factors which are i. 

population ii. the number of different types of motor vehicles registered, iii. Lengths of three 

types of provincial roads. Spatial maps show the spatial variability of RTAs in Turkey.  It is a 

common practice to use the rate concerning the factor in order to compare regions or cities in 

terms of the certain factor. For this reason, the RTA rate, calculated by the number of RTAs /the 

population of cities, is used in analysis. Global (Moran’s I) and local spatial autocorrelation 

(LISA) analyses applied to show whether provinces with high RTA show similar clusters. Spatial 

panel models are considered a solution to examine the space–time relationship between the RTA 

and RTA’s neighbourhood characteristics. We find that the RTA rate is not distributed randomly 
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across Turkey. The spatial distribution of provinces with high rates of accidents is non-random 

and it seen as globally clustered with significance of p< 0.05, where Moran’s I changes between 

0.52 and 0.59 with p<0.001).  Moreover, LISA analysis shows the provinces determined as local 

clusters in terms of the RTA rate (with a level of significance of 95%). As a result, detecting the 

spatial pattern of RTA is necessary so that obtain reliable parameter estimates via panel models. 

Firstly, we estimated the pooled, random-effect and fixed-effects panel models and found that the 

fixed effects models should be preferred according to the Hausman specification tests. Thus, the 

fixed effects models with different spatial structures are operated to model the RTA rate. The 

results showed that the RTA rate is positively correlated with number of cars, vans, private 

vehicles and length of asphalt roads, other factors are negatively correlated and also non-asphalt 

road is not significant to explain the RTA rate. On the other hand, spatial parameters are 

significant usually in all models (p<0.1) and lagged-independent variables (neighbouring region 

characteristics in terms of explanatory variables) do not affect the explanation upon the RTA rate. 

For all computations and maps, In R software, spdep and qqplot2 library are used for visualization 

of variables and spatial analyses, furthermore spatial panel analyses and econometrics analysis are 

conducted with plm and splm library.  

 

2. DATA 

 

RTA data is taken form Turkish Statistical Institute for the period of 2013-2018. Data is 

collected at province level. Map of Turkey showing the 81 provinces is provided in Fig. 1 to see 

the place of provinces. The maps displayed in Fig. 2 exhibit spatial distribution of the RTAs rate 

across all Turkish provinces. These maps enable us to clearly see the changes of the RTA rate in 

provinces between the years of 2013 and 2018. Specifically, while sub-regions in the west has the 

highest RTA rate, indicated with dark red area in the map, light red shows lowest rate. The higher 

RTA rate is still observed in Mugla in the south west part of Turkey for 2013-2014. As well as 

Mugla, Kilis has the highest RTA rate for 2014.  These findings show the highest RTA rate of the 

most populated cities, Izmir, Istanbul, Bursa and, Ankara, which is the capital of Turkey, between 

the years 2015 and 2018. Istanbul is the world 8th largest city and has been inhabited since 

around 3000 BCE.  

 

 
 

Figure 1. Turkey provinces maps 
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Figure 2. Natural breaks maps for traffic accidents for 2013-2018 

 

Several variables proposed in the literature are considered, which affect the level of the RTA. 

In this study, the variables are selected according to the availability of data in Turkey at the level 

of 81 provinces for the entire period between 2013-2018. While RTA data used in the analysis are 

taken from Turkish Statistical Institute, data concerning lengths of three types of provincial roads 

is provided from General Directorate of Highways. 

 

3. METHODS 

 

Spatial econometrics include methods for spatial interaction (spatial autocorrelation or spatial 

dependency) and spatial structure (spatial heterogeneity) [20-22], while spatial statistics include 

both descriptive and inferential methods used for the analysis of georeferenced data. Both spatial 

statistics and spatial econometric models need quantifying the neighbour structure of the spatial 

units. This spatial structure is expressed by a spatial weights matrix 𝑊, whose element is 𝑤𝑖𝑗.  In 

other words, spatial structure between n spatial units (regions) is summarized by spatial weight 

matrix. Although there are many types of the spatial weight matrix 𝑊, rook, queen and k nearest 

neighbours continuity are well-known and mostly used matrix [23-29].  

The spatial weight matrix, the queen matrix which defines all observations that shares 

common boundaries or vertices as neighbours, is given. The elements (𝑤𝑖𝑗) of the queen matrix 

are determined as 
 

𝑤𝑖𝑗 = {
1, 𝑢𝑛𝑖𝑡𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

0,   𝑢𝑛𝑖𝑡𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 
  

 

The element 𝑤𝑖𝑗 (𝑖, 𝑗 =  1, … , 𝑛) reflects the spatial influence of unit 𝑗 on unit 𝑖, while 𝑤𝑖𝑖 

always equals zero.  

 

3.1. Spatial Autocorrelation 

 

Two types of spatial autocorrelation are well-known: i. Global autocorrelation statistics, 

which demonstrate the spatial associations over the whole region, ii. Local autocorrelation 

measures, which are used traditional hotspot detection methods or finding local clusters. In the 

following, we briefly introduce both global and local spatial association measures. 
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Global spatial autocorrelation statistics  

The well-known statistic to measure global spatial autocorrelations is the Moran’s I, given as 

follows: 
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where n is the total number of spatial observations (i.e. districts), xi and xj are the values 

corresponding to the spatial districts i and j respectively.  x  is the mean value of xi, i=1,…, n of 

all spatial districts, wij is an element of spatial weight matrix which shows spatial interaction 

between locations i and j. There is positive spatial autocorrelation when high values of one 

variable at one location are associated with high values at the neighbouring location. Generally, if 

the Moran’s I is more/less than 0 and also 0, there is positive/negative autocorrelation and also no 

spatial autocorrelation.  

  

Local Spatial autocorrelation analysis  

While the global measures of spatial autocorrelation emphasize average spatial dependence 

over whole region or map, local measures of spatial association aim identifying patterns of spatial 

dependence within the sub-regions [26-28]. Although there are different measures for local spatial 

associations, the well-known one is the Local Moran’s I proposed by [20] and its formula is given 

as follows: 
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While large positive 𝐼𝑖 values point local cluster around the i-th location, large negative 𝐼𝑖 

values indicate that the data value sign at the th position is the opposite of its neighbors [26]. 

 

3.2. Local Spatial Clustering: LISA 

 

Local Moran I is used to define local indicators of spatial relationship (LISA). LISA requires 

two conditions: (a) indicates the degree of significant spatial clustering for each location; (b) the 

sum of local statistics is proportional to a global indicator of spatial relationship [21-23]. The 

local spatial autocorrelation measure is defined as the presence of deviations from global spatial 

association patterns and "hotspots" such as local clusters or local outliers [30]. 

 

3.3. Spatial Panel Models 

 

Spatial panel (SP) data contain time series observations for each geographical unit, they 

typically provide more information and variability as compared to one-dimensional data. Because 

of having N cross-section and T time series observations, panel data has many advantages such as 

giving more degrees of freedom and more information and having control between individual or 

time heterogeneity [31]. Thus, the SP model controls for both spatial and time effects. Three 

panel models (pooled, fixed effects, random effects) are extensively used in the literature. A fixed 

effect models check over whether intercepts change across group or time period, whereas a 

random effect models focus on differences in error variance components across individual or time 

period [32]. A two-way fixed model considers two sets of dummy variables. These commonly 
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used panel models in applied researches are extended to include spatial error autocorrelation or a 

spatially lagged dependent or spatially lagged independent variables [33-35] which are briefly 

introduced as follows: 
 

Spatial Pooled Model 

The pooled linear regression model with spatial specific effects is compactly given as 
 

𝑌𝑡 = 𝜌𝑊𝑌𝑡 + 𝑋𝑡𝛽 + 𝑊𝑋𝑡𝜃 + 𝛼𝑡𝑁 + 𝑢𝑡  

𝑢𝑡 = 𝜆𝑊𝑢𝑡 + 𝜀𝑡  
 

The model can be expressed with the time index (i) and the cross-sectional dimension (t), 
 

𝑦𝑖𝑡 = 𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗𝑡𝑖≠𝑗 + 𝑥𝑖𝑡𝛽 + ∑ 𝑤𝑖𝑗𝑥𝑗𝑡𝜃𝑖≠𝑗 + 𝛼 + 𝑢𝑖𝑡  

𝑢𝑖𝑡 = 𝜆 ∑ 𝑤𝑖𝑗𝑦𝑢𝑗𝑡𝑖≠𝑗 + 𝜀𝑖𝑡  
 

where i is an index for the cross-sectional dimension (spatial units), with i=1,...,N, and t is an 

index for the time dimension (time periods), with t=1,...,T and 𝑦𝑖𝑡 is an observation on the 

dependent variable at i and t, 𝑦𝑖𝑡  an vector of observations on the independent variables, and β is 

a vector of unknown parameters. 𝜀𝑖𝑡 is an independently and identically distributed error term for 

i and t with zero mean and constant variance, 𝑢𝑖𝑡 is spatially auto-correlated error term.   

Table 1 shows the spatial coefficient, spatial models, related information. The all considered 

spatial panel models (pooled, fixed and random) in this study are expressed with spatial effect or 

spatial models such as SLM, SEM, SDM and GNSM. 

 

Table 1. The relationships different spatial dependence 
 

Spatial Coefficient  Spatial Models 

Symbols Definition Meaning  Coefficients Models 
Abbreviati

on 

𝜌 

Coefficients for 

spatially lagged 
dependent variable 

Show endogenous 

interaction effects 
 

𝜌 ≠ 0, 𝜆 = 0, 𝜃 = 0 
 
 

Spatial lag 

model 
SLM 

𝜆 

Spatial autoregressive 
coefficient 

 

Show interaction effects 

among the error terms 
 

𝜌 = 0, 𝜆 ≠ 0, 𝜃 = 0 
 

Spatial error 

model 
SEM 

𝜃 

Coefficients for 
spatially lagged 

dependent variable 

Show exogenous 

interaction effects 
 

𝜌 = 0, 𝜆 = 0, 𝜃 ≠ 0 
 

Spatial 
Durbin 

Model 

SDM 

 

    
𝜌 ≠ 0, 𝜆 ≠ 0, 𝜃 ≠ 0 

 

General 
Nesting 

Spatial 

Model 
 

GNSM 

    
𝜌 = 0, 𝜆 = 0, 𝜃 = 0 

 

Classic 

model 
OLS 

 

Spatial Fixed Model 

In the fixed effects models, a dummy variable is included in the model. Fixed effects panel 

model with spatial effect are given as follows: 
 

𝑦𝑖𝑡 = 𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗𝑡

𝑖≠𝑗

+ 𝑥𝑖𝑡𝛽 + ∑ 𝑤𝑖𝑗𝑥𝑗𝑡𝜃

𝑖≠𝑗

+ 𝛼𝑖 + 𝑢𝑖𝑡 

𝑢𝑖𝑡 = 𝜆 ∑ 𝑤𝑖𝑗𝑢𝑗𝑡𝑖≠𝑗 + 𝜀𝑖𝑡  

𝛼𝑖 = (𝛼 + 𝜆𝑖)  
 

Spatial and time effects in fixed effects models is provided by  
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𝑦𝑖𝑡 = 𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗𝑡

𝑖≠𝑗

+ 𝑥𝑖𝑡𝛽 + ∑ 𝑤𝑖𝑗𝑥𝑗𝑡𝜃

𝑖≠𝑗

+ 𝛼𝑖 + 𝛼𝑡 + 𝑢𝑖𝑡 

𝑢𝑖𝑡 = 𝜆 ∑ 𝑤𝑖𝑗𝑦𝑢𝑗𝑡𝑖≠𝑗 + 𝜀𝑖𝑡.  
 

Spatial Random Effect Model 

In the random effects model, it is assumed that the random variables 𝑢𝑖  and 𝜀𝑖𝑡 are 

independent of each other. 

Random effect panel model with spatial effects is presented as follows: 
 

𝑦𝑖𝑡 = 𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗𝑡𝑖≠𝑗 + 𝑥𝑖𝑡𝛽 + ∑ 𝑤𝑖𝑗𝑥𝑗𝑡𝜃𝑖≠𝑗 + 𝛼 + 𝑢𝑖𝑡  

𝑢𝑖𝑡 = 𝛼𝑖 + 𝜆 ∑ 𝑤𝑖𝑗𝑦𝑢𝑗𝑡𝑖≠𝑗 + 𝜀𝑖𝑡  

 

4. RESULTS 

 

The spatial autocorrelation analysis of the RTA rate reveals global spatial clustering at the 

provincial level of Turkey, as seen Table 2. The queen weight matrix is used to define the spatial 

relationships between provinces. Table 2 summarizes the global Moran’s I statistics and the 

related p-values for the corresponding years for the RTA. The RTAs exhibit significant spatial 

autocorrelation pattern for each year. All global Moran’s I statistics are positive and significant at 

0.001 level and suggests that the RTA rates have the clustered pattern in Turkey. 

 

Table 2.  Global Moran’s I value for the spatial autocorrelation of the RTA rate in Turkey 
 

Years Moran’s I p-value 

2013 0.5987499 < 0.001 

2014 0.5201189 < 0.001 

2015 0.5693021 < 0.001 

2016 0.5724939 < 0.001 

2017 0.5817596 < 0.001 

2018 0.5744464 < 0.001 

p-values in parentheses 

 

The observed significant positive spatial autocorrelations from 2013 until 2018 indicated that 

the RTA rate remained unchanged at provincial level in Turkey. Thus, in order to further detect 

local autocorrelation (or the contribution of each province to global spatial autocorrelation), LISA 

(local correlation analyses) are performed [26].  Hot spots, in red color, and cold spots, in blue, is 

observed via LISA maps (Fig. 3). Pink and purple regions show spatial outliers (H-L and L-H), 

respectively. Provinces shown in white do not indicate absence or presence of any spatial 

dependency in figures (see Fig. 3). Sum up, the map usually contains four groups of observations. 

Whereas the HH indicates that high values are surrounded by high values, the LL group means 

that low values are surrounded by low values. Although, hot spots (HH) are seen on southwest of 

Turkey in 2013 and 2014 and in the following years, they are spread in the north. Outliers can be 

seen on east and southeast of Turkey. 
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Figure 3. LISA cluster map for the RTA rate between 2013-2018 (5% significance level) 

 

Since the RTA rate is proven to be spatially auto-correlated, which violates the assumption of 

OLS regression that the observations be independent, a spatial econometric model will be used to 

investigate the hidden influencing factors of RTA rate considering space–time relationship for the 

periods 2013-2018. 

 

Table 3. Tests for non-spatial panel models 
 

Tests  Test Value p-value 

F  4.8021 < 2.2e-16 

LM  1.376 0.2408 

Hausman  422.65 < 2.2e-16 

 

Fixed effects are tested by the F test, while random effects are examined by the Lagrange 

multiplier (LM) test (Breusch and Pagan test). If the null hypothesis is not rejected, the pool 

regression can be suitable model. According to results of F, LM tests in Table 3, the pool model is 

not suitable to model the RTA rate. On the other hand, the Hausman specification test (Hausman 

test) compares a random effect models with fixed effect model. If the null hypothesis, stated that 

the individual effects are uncorrelated with the other repressors, is not rejected, a random effect 

model is favoured over its fixed counterpart [35]. As the Hausman test result suggests that the 

hypothesis of random effects must be rejected at % 5 per cent significance, thus, we adopt the 

fixed effects models and estimate the individual, time and individual‐time fixed effects separately.  

V. Yildirim, Y. Mert Kantar     / Sigma J Eng & Nat Sci 38 (4), 1667-1680, 2020 



1675 

 

On the other hand, according to time-fixed effect tests (F test value=158.92, p-value < 2.2e-16 

and LM test value=6005, p-value < 2.2e-16), time effects can be considered.   

While the result of the Breusch-Pagan (BP) test (value=424.04, p-value < 2.2e-16) implies the 

presence of heteroscedasticity, the Breusch-Pagan LM test (value=10893, p-value < 2.2e-16) and 

the Pesaran CD test (value=95.419, p-value < 2.2e-16) indicate presence of cross-sectional 

dependence. Considering all panel test results and Moran’s I values together, spatial models 

should be applied for modelling the RTA rate. 

 

Table 4. Hausman Test for spatial panel models 
 

Model  Test Value p-value 

SLM 1877.47487 < 0.001 

SEM  66.46718 < 0.001 

SDM 746.44437 < 0.001 

GNSM 448.86711 < 0.001 

 

As seen in Table 4, the results of Hausman test for spatial panel models shows that all fixed 

effects models are significant, thus, the fixed panel models with consideration of spatial effects 

are operated and the estimated results are presented in Tables 5 and 6 corresponding to spatial 

error autocorrelation, spatial dependent lag and spatial independent lag. Tables are divided in two 

parts, according to the fixed and fixed two ways models corresponding to spatial model, SEM, 

SLM, SDM, GNSM with different spatial structures, as in Table 1. 

 

Table 5. Estimation results of the Fixed and Fixed two-way panel models with SEM and SLM 
 

   SEM  SLM 

Models  Fixed Model Fixed Two Ways  Fixed Fixed Two Ways 

Variable  Coeff  p value Coeff  p value  Coeff  p value Coeff  p value 

Number of cars  0,0685 *** 2,59E-25 0,0684 *** 2,99E-25  0,0680 *** 5,19E-25 0,0679 *** 4,34E-25 

Number of 

minibuses 
 -0,4471 *** 3,15E-06 -0,5264 *** 3,20E-07  -0,4318 *** 5,95E-06 -0,5262 *** 3,01E-07 

Number of buses  -1,0413 *** 8,91E-05 -1,2401 *** 5,26E-06  -0,9888 *** 1,91E-04 -1,2290 *** 5,80E-06 

Number of vans  0,1160 *** 9,57E-07 0,1440 *** 8,39E-09  0,1113 *** 2,69E-06 0,1438 *** 8,18E-09 

Number of trucks  -0,1399 ** 1,63E-03 -0,1790 *** 6,40E-05  -0,1311 ** 3,20E-03 -0,1752 *** 8,61E-05 

Number of 

motorbikes 
 -0,0170 ** 2,08E-03 -0,0179 ** 1,20E-03  -0,0165 ** 2,81E-03 -0,0181 *** 9,82E-04 

Number of 

private vehicles 
 1,5478 *** 2,31E-04 1,6066 *** 1,22E-04  1,6076 *** 1,51E-04 1,6549 *** 7,49E-05 

Number of 

tractors 
 -0,0266 ** 1,94E-03 -0,0252 ** 3,26E-03  -0,0274 ** 1,40E-03 -0,0252 ** 3,10E-03 

Length of asphalt 

roads   
 6,08E-06 *** 1,62E-05 7,29E-06 *** 4,12E-07  6,11E-06 *** 1,53E-05 7,35E-06 *** 3,13E-07 

Length of surface 

coating roads 
 -3,05E-06 *** 1,62E-06 -2,84E-06 *** 1,03E-05  -3,20E-06 *** 4,60E-07 -2,84E-06 *** 9,43E-06 

length of non 

asphalt roads 
 3,14E-06  3,84E-01 3,54E-06  3,23E-01  3,16E-06  3,81E-01 3,17E-06  3,75E-01 

Spatial coefficient 𝝀 0,1129 
*1

 8,42E-02 0,0258 
 

7,03E-01 𝝆 0,0883 
*1

 8,83E-02 0,0979 
*1

 6,59E-02 

Signif. codes:  0    ‘***’ 0.001    ‘**’ 0.01    ‘*’ 0.05    ‘*1’ 0.1   ‘ ’ 1 

 

Turning to the spatial panel models in Tables 5, the results demonstrate while the coefficient 

of spatially autocorrelation λ in the SEM in fixed model is significant (0.1129), λ in the fixed two-

way panel model in the specifications of the SEM is not significant, and it has low value (0.0258). 

This suggests that the RTA rate is significantly influenced by the variation in neighbouring error 

term in fixed model. The results for SEM in Table 5 showed that the RTA rate is positively 

correlated with number of cars, private vehicle, vans and length of asphalt roads, other factors are 

negatively correlated. On the other hand, also non-asphalt road is not significant to explain the 
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RTA rate. The accident may be occurred on the asphalt due to high speed driving. Number of 

private vehicles have positively maximum effect and number of buses has negatively maximum 

effect way, and meanwhile length of asphalt roads and surface coating roads have minimum effect 

on SEM. Both of spatially autocorrelation parameter ρ are significant in SLM in fixed and fixed 

two ways models and have also almost same values (0.0883 and 0.0979). It means that, 

considering both of time and individual effect together neighbourhood effect is increased. Similar 

to SEM, number of private vehicles and number of buses have maximum effect, length of asphalt 

roads and surface coating roads have minimum effect on SLM.  Number of buses has greater 

effect than number of minibuses in SEM and SLM. Number of motorbikes and tractors has 

naturally minimum effect among all vehicles.  

On the other hand, the estimation results of the fixed and fixed two ways panel models with 

spatially lagged explanatory variables (SDM and GNSM) are given in Table 6. While spatial 

parameters are significant in all models (p<0.1) except GNSM fixed, the estimated coefficients of 

the lagged independent variables (neighbouring region characteristics in terms of independent 

variables) are not affect the RTA rate. The results obtained in the previous Table are also valid 

here. Although the results of fixed two-way panel model in the specifications of the SEM indicate 

that the RTA rate is positively affected by the number of cars, vans, private vehicles and length of 

asphalt roads, while length of surface coating roads are negatively correlated to explain RTA. 

Neighbours’ explanatory variables, the observed indirect effects associated with explanatory 

variables are all statistically meaningless suggesting non- evidence of spillover effects. Therefore, 

these results provide justification for using spatial panel-data modelling approach to analyse the 

factors for RTA. 

Considering significance, in GNSM in two ways effect, spatial parameters are higher than 

other models and other effects (ρ= -0.47 and λ=0.33) and also parameter of spatially lagged 

dependent variable is different than others as negative sign. Furthermore, they have smallest p-

value in all of them. However, if it is taken into account significance of the lagged explanatory 

variables, it can be expressed that SEM or SLM are suitable for modelling the RTA rate. 

Sum up, all the explanatory variables (except length of non-asphalt roads) are significant in all 

models and effects. As well as number of private vehicles, lagged number of private vehicles is 

only significant variable among all lagged variables (except in SDM in Two-Ways). 

While spatial statistics have a potential to reveal the local or global spatial patterns of the 

considered factors, spatial econometric models allow us to find out spatial relationships and 

also can help to explain the factors behind observed spatial patterns. The applications of such 

spatial statistics tools to RTA will help to identification of provinces in terms of RTA with 

outstandingly spatial effects in Turkey. These results can be used by researchers working in road 

safety management. 
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Table 6. Estimation results of the Fixed and Fixed two-way panel models with SDM and GNSM 
 

Models SDM GNSM 

 
Fixed Fixed Two-Ways Fixed Fixed Two-Ways 

Variables Coeff 
 

p value Coeff 
 

p value Coeff  p-value Coeff  p-value 

Number of cars 0,0691 *** 3,48E-25 0,0681 *** 9,02E-25 0,0690 *** 4,01E-25 0,0617 *** 4,54E-22 

Number of minibuses -0,4969 *** 5,07E-07 -0,5411 *** 1,54E-07 -0,4951 *** 5,91E-07 -0,5465 *** 4,85E-08 

Number of buses -1,0770 *** 6,40E-05 -1,2281 *** 5,58E-06 -1,0634 *** 8,05E-05 -1,1282 *** 9,46E-06 

Number of vans 0,1233 *** 2,90E-07 0,1484 *** 2,87E-09 0,1217 *** 4,90E-07 0,1499 *** 5,79E-10 

Number of trucks -0,1536 *** 7,07E-04 -0,1930 *** 2,40E-05 -0,1503 *** 9,41E-04 -0,1765 *** 3,88E-05 

Number of motorbikes -0,0163 ** 3,28E-03 -0,0185 *** 8,41E-04 -0,0160 ** 3,78E-03 -0,0174 *** 9,20E-04 

Number of private vehicles 1,6465 *** 1,05E-04 1,6911 *** 5,58E-05 1,6709 *** 8,96E-05 1,9212 *** 2,45E-06 

Number of tractors -0,0257 ** 2,90E-03 -0,0228 ** 8,83E-03 -0,0260 ** 2,58E-03 -0,0209 * 1,11E-02 

Length of asphalt roads   5,65E-06 *** 7,24E-05 7,12E-06 *** 8,92E-07 5,65E-06 *** 7,39E-05 7,84E-06 *** 2,57E-08 

Length of surface coating roads -3,33E-06 *** 2,24E-07 -2,85E-06 *** 9,62E-06 -3,41E-06 *** 1,12E-07 -3,03E-06 *** 5,67E-07 

length of non asphalt roads 2,99E-06  4,12E-01 3,10E-06  3,90E-01 3,00E-06  4,09E-01 2,52E-06  4,55E-01 

Lagged Number of cars -0,0004  9,73E-01 -0,0021  8,56E-01 -0,0004  9,75E-01 -0,0030  7,85E-01 

Lagged Number of minibuses -0,0912  6,80E-01 -0,1322  5,57E-01 -0,0885  6,89E-01 -0,1467  4,87E-01 

Lagged Number of buses 0,1248  7,85E-01 0,0399  9,40E-01 0,1050  8,17E-01 -0,2213  6,45E-01 

Lagged  Number of vans 0,0276  5,78E-01 0,0337  5,03E-01 0,0276  5,79E-01 0,0358  4,53E-01 

Lagged Number of trucks -0,0928  3,51E-01 -0,1019  2,97E-01 -0,0934  3,48E-01 -0,1182  2,11E-01 

Lagged Number of motorbikes -0,0103  3,23E-01 -0,0081  4,30E-01 -0,0095  3,62E-01 0,0010  9,19E-01 

Lagged_ Number of private vehicles 1,5995 *1 9,95E-02 1,5167  1,42E-01 1,6651 *1 8,56E-02 1,8736 *1 5,26E-02 

Lagged Number of tractors -0,0072  7,12E-01 -0,0037  8,45E-01 -0,0063  7,48E-01 0,0064  7,27E-01 

Lagged_ Length of asphalt roads   1,50E-06  6,30E-01 2,07E-06  5,06E-01 1,50E-06  6,32E-01 2,24E-06  4,52E-01 

Lagged_ surface coating roads 2,43E-12  1,00E+00 3,97E-08  9,75E-01 -6,94E-08  9,52E-01 -4,68E-07  6,85E-01 

Lagged_ length of non asphalt roads -3,05E-06  7,46E-01 -4,61E-06  6,19E-01 -2,99E-06  7,52E-01 -5,36E-06  5,49E-01 

 

0,0883 *1 8,96E-02 0,0892 *1 9,34E-02 -0,0489  6,59E-01 -0,4713 *** 5,65E-06 

 

      0,1187  1,48E-01 0,3324 *** 2,41E-07 

Signif. codes:    ‘***’ 0.001    ‘**’ 0.01    ‘*’ 0.05    ‘*1’ 0.1   ‘ ’ 1 

 

5. CONCLUSION 

 

The main results obtained from the presented study can be listed as follows: 
 

 The RTA rate of 81 provinces in Turkey are examined by spatial statistics and spatial 

econometric tools over the period of 2013–2018.  

 Since population is positively associated with RTA, the RTA rate is calculated as number 

of traffic accidents/ population in order to fairly compare the RTA in provinces. 

 The Moran’s I value is found as around 0.5 and its p < 0.001 for the RTA rate confirms 

the clustered pattern and global spatial autocorrelation. 

 The presence of neighbouring effects in the RTA rate is evidenced through the Moran's I 

statistic and natural breaking maps.  

 LISA analysis show the significant provinces with a level of significance of 95% 

determined as a cluster with local Moran’s I. The result of LISA confirms that hot spots generally 

appear on western and southern regions which tend to have higher car speed/volume and more 

travel roads. The analysis also show that the majority of crashes occur in major provinces with 

large population and specific urban activity centres. 

 According to the Hausman specification test, the fixed effects models should be preferred 

for modelling the RTA rate.  
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 The results showed that the RTA rate is positively correlated with number of cars, vans, 

private vehicles and length of asphalt roads, other factors are negatively correlated and also non-

asphalt roads are not significant to explain RTA. The length of asphalt roads is unexpectedly one 

of the sources of higher RTA rate; speeding is probably the reason. It can be concluded from 

analysis if the number of private vehicles rise in provinces, it is triggering to increasing the RTA. 

Pavement maintenance is essential for ensuring good riding quality and avoiding traffic accidents. 

Improving road safety is one of the most important objectives for pavement management systems.  

 Spatial parameters are mostly significant (p<0.1) and lagged independent variables 

(Neighbours’ explanatory variables) do not affect the RTA rate, suggesting non- evidence of 

spillover effects. While a spatial spillover effect between Turkey’s provinces does exist in terms 

of the RTA rate, only lagged number of private vehicles is significant to explain RTA in other 

provinces. In other words, the number of private vehicles in provinces has a significant positive 

spatial spillover effect on RTA in other provinces.  
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