
1023 

 

Sigma J Eng & Nat Sci 36 (4), 2018, 1023-1032 
 

                                                                                                                                 

 

 

 

 

Research Article 

ANALYSIS OF THE VIABILITY OF APPLYING THE PRINCIPAL 

COMPONENTS TECHNIQUE IN MULTIVARIATE DATA FROM TRAFFIC 

ACCIDENTS 

 

 

Maria Lígia CHUERUBIM*
1
, Irineu Da SILVA

2
  

 

 
1Faculty of Civil Engineering, Federal University of Uberlândia, Bloco 1Y, Campus, BRAZIL;  

ORCID: 0000-0002-2019-9198 
2School of Engineering of São Carlos, Dept. of Transportation Eng., BRAZIL; ORCID: 0000-0001-5775-6683 

 

Received: 02.07.2018   Revised: 12.10.2018   Accepted: 09.11.2018 

 

  

ABSTRACT 

 

The risk factors associated with road accident are directly related to the characteristics of the roadway, the 
vehicle type and the behavior of the driver, among others. For that reason, such traffic elements are 

intensively investigated and analysed in the field of road safety. Among the techniques and methods 

developed, those based on statistical analysis have demonstrated a high degree of susceptibility to the problem 
and have been applied in several studies of traffic accidents. In this perspective, this work presents a 

theoretical and applied discussion of the technique of Principal Component Analysis (PCA), in the study of 

road accidents. The main objective is to contribute to the discussion and theoretical foundation of the 
statistical techniques, used in the multivariate analysis of highway databases, generated by roadway 

concessionaries. The database used for this study is from the Dom Pedro I Highway, located in the urban area 

of the Campinas city in Brazil, during the period of four years from 2009 to 2012. 
Keywords: Principal Component Analysis (PCA), roadway database, traffic accident. 

 

 

1. INTRODUCTION 

 

The Principal Component Analysis (PCA) is a multivariate statistical technique based on 

factor analysis, which is a statistical method used to describe the variability among correlated 

variables, minimizing possible redundancies and enabling the findings of the principal 

components of a dataset. The technique was first described by Pearson, in 1901, and later 

implemented by Hotelling, in 1936. In short, it can be understood as a data reduction method, in 

which the maximum variance of a dataset can be explained by the classification of eigenvectors 

associated with the largest eigenvalues of the correlation matrix, allowing the original dataset to 

be analysed from a small number of independent and orthogonal components. 

The application of the PCA technique starts with the computation of eigenvalues and its 

corresponding eigenvectors, in function of the covariance matrix or the correlation matrix of the 

variables. An eigenvector is a direction, while an eigenvalue is a number, which expresses how 

much is the variance in the dataset in that direction. The eigenvector with the highest eigenvalue 
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is therefore the principal component. The number of eigenvectors and eigenvalues that exist in a 

dataset are equal to the number of dimensions the dataset has. The eigenvalues represent how 

much a factor explains a variable in factor analysis, what can be understood as the correlation 

between the original variables and the factors, and the key to understand the nature of a particular 

factor. They are used in deciding how many factors are to be extracted in the overall factor 

analysis. 

According to Hongyu et al. (2015), PCA is a multivariate statistical technique that can 

linearly transform an original set of variables, initially auto correlated, in a substantially smaller 

set of uncorrelated variables that contains most part of the original dataset, called the principal 

components, thus reducing the size of the problem under analysis. Geometrically, it can be 

described as a rotation of existing points in a multidimensional space to express them in a two-

dimensional space representing sufficient variability to indicate a pattern to be played. 

The main properties of the principal components are that: each principal component is a result 

of linear combinations of all original variables; they are independent of each other and estimated 

in order to retain maximum information, in terms of the total variation contained in the dataset 

(Johnson & Wichern, 1999; Hongyu et al., 2015). 

A set of " "n  original variables through its linear combinations, generate " "n  principal 

components, whose main property, beyond orthogonality, is that they are obtained in descending 

order of maximum variance, i.e., the first principal component detains more statistical information 

than the second principal component, which has more statistical information than the third one 

and so on. Therefore, although the statistical information presented in the " "n  original variables 

is the same as that of the " "n  principal components, in general, it is common to get 90% of the 

information in no more than 2 or 3 of the first principal components.  

The PCA technique also groups dataset on the basis of variation of its characteristics in a 

population, in other words, based on the similarities, what allows it to be applied in several areas 

of knowledge such as agronomy, biotechnology, ecology, biology, psychology, medicine, 

forestry, transportation, among others (Hongyu et al., 2015).  

In this context, the objective of this study is to provide a theoretical and applied discussion in 

the analysis and interpretation of multivariate dataset applied to traffic accidents, with the 

intention of contributing to the discussion of the choice and use of the PCA technique in analysis 

and interpretation of the results of such events. 

 

2. THE MATHEMATICS OF PRINCIPAL COMPONENTS 

 

Algebraically, the principal components are linear combinations of p  original variables 

1 2, , , pX X X , scalars, with averages and variances. The principal components are determined 

based on the covariance matrix ( )S  or on the correlation matrix ( )R . In general, ( )R  and ( )S are 

used when all of the original variables have similar scales since PCA is not invariant at scale. In 

practice, extracting principal components as eigenvectors of ( )R is equivalent to calculating the 

principal components of the original variables, after each one is standardized in order to have unit 

variance. The standardization must be done when the units of measurement of the observed 

variables are not the same (Mardia et al., 1979). 

It is noteworthy, that rarely there is any correspondence among the principal components 

obtained from ( )S  or ( )R , even if there are considerable differences amid its standard deviations. 

Therefore, the user must know the characteristic of its variables in the database in order to define 

which of the two matrices shall be used, once that choice is not an arbitrary process.  

The characteristic equation of the matrix ( )S  or ( )R  is as follows (Johnson & Wichern, 

1999):  
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det[ ] 0R I   or 0R I                                                                                                       (1) 
 

Where ( )I  is the identity matrix and  are the eigenvalues. The matrix ( )R  is described as: 
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Matrix ( )R  has full rank if its rank is equal to p , or in other words, if it presents the 

maximum number of rows or columns, linearly independent. Equation (1) will have p  roots, 

called eigenvalues or characteristic roots of the matrix ( )R . Thus, considering 
1 2 3, , , , p     the 

roots of Equation (1), we have: 
 

1 2 3 p                                                                                                                            (3) 
 

For each eigenvalue 
i  there will be an eigenvector 
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The eigenvectors la  are standardized, i.e., the sum of the squares of the coefficients are equal 

to one and mutually orthogonal. For that reason, they have the following properties: 
 

1
   1

p

ij kjj
a a


      with  '( ) 1l la a  ,                                                                                      (5) 

 

with la  ranging from 1 to p  and '

la  the transposed standardized eigenvector and 
 

1
0

p

ij kjj
a a


  with '( ) 0l ka a   for i k                                                                          (6) 

 

where i  and k  ranging from 1 to p . 

Thus, being la  the corresponding eigenvector of the eigenvalue i , the i th  principal 

component is obtained by the following linear combination: 
 

1 1 2 2i i i ip pY a X a X a X                                                                                       (7) 
 

or, Y AX .                                                                                                                                    (8) 
 

with variance 2

YS  maximized and conditioned to 
2

, 1

1
p

ij

i j

a


 .  

Where, 

1 2, , , pY Y Y = principal components not correlated 

ija = coefficients of the linear combination  the weight of the j th  variable with the i th - 

principal component, represented in the matrix A  of order p  

pY  = are designated as scores of the principal components 
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Geometrically, the linear combinations represent a selection of a new coordinate system, 

obtained by rotation of the original system, with axis 
1 2, , , pX X X . The new axis 

1 2, , , pY Y Y  

represent the directions with maximum variability, allowing a simpler interpretation of the 

structure of the covariance matrix. As a result, the principal components possess the following 

properties (Tran, 2008; Johnson & Wichern, 1999): 

The variance of the principal component 
iY  is equal to eigenvalue 

i : 
 

ˆ( )i iY                                                                                                                                          (9) 
 

The first component is the one with the largest variance among the possible combinations, 

and so on: 
 

1 2
ˆ ˆ ˆ( ) ( ) ( )pY Y Y                                                                                                            (10) 

 

The total variance of the original variables is equal to the sum of the eigenvalues, that is equal 

to the total variance of the principal components: 
 

ˆ ˆ( ) ( )i i iX Y                                                                                                          (11) 
 

The principal components are uncorrelated to each other: 
 

ˆ ( , ) 0i jCorr Y Y                                                                                                                           (12) 

 

2.1. Contribution of Each Principal Component and Number of Components to Retain 

 

The contribution iC  of each principal component 
iY  is obtained by dividing the variance of 

iY  

by total variance, expressed in percentage. The value of iC  makes it possible to evaluate how 

many components are required to perform the analysis, ensuring the maximum variance among 

the variables. In most of the application areas, the number of components used are the ones that 

accumulate 70% or more of the total variance, as indicated below (Solanas et al., 2011): 
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where  k p                                                                               (13) 

 

where k  is the sum of the first k  eigenvalues, that is, it represents the proportion of 

information retained in the reduction of p to k  dimensions. 

 

2.2. Interpretation and Scores of Each Principal Component 

 

This step is performed by identifying the degree of influence that each 
jX  has on the 

component iY , expressed by the correlation between each 
jX  and iY , that is being interpreted. 

The correlation between 
jX and 1Y  is expressed by: 

 

1

11
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j j
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In order to analyse the influence of 
1 2, , , pX X X  over  1Y , it is necessary to check the weight 

or loading of each variable over the component 1Y , calculated as follows: 
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where 
1w  is the weight of 

1X  (Johnson & Wichern, 1999). 

If the objective of the analysis is to obtain indexes, the process ends in the Equation (14). 

However, if the objective is to compare or group the individuals, the analysis extends to the 

calculation of scores (values) of each principal component. After reducing p  to k  dimensions, 

the k  principal components will be the new individuals and all analysis are made using the 

scores of these components (Johnson & Wichern, 1999). 

 

3. MATERIALS AND METHODS 

 

The database used in this article was obtained from the Rota das Bandeiras Concessionaire. It 

describes the history of accidents in the urban section of the Campinas city, Brazil, along the 

kilometre 125 to 145 of Dom Pedro I Highway (SP-065). It considers the period of four years 

from 2009 to 2012, when the planned infrastructure improvements were not yet implemented. The 

Dom Pedro I Highway has an extension of 145.5 km and it connects the Paraíba Vale to the 

metropolitan region of Campinas. Its layout begins at the city of Jacareí, at the intersection with 

the Carvalho Pinto Highway (SP-070), and finishes at the intersection with the Anhanguera 

Highway. All statistical analysis of this article was made by computational routines implemented 

in the software SPSS - Statistical Package for Social Science for Windows. 

In order to illustrate the application of the PCA technique, a database of 14 variables has been 

studied. They are the: date of occurrences; type of data acquisition; time of the occurrence; 

mileage (meters); number of vehicles involved in the accidents; number of victims not informed; 

number of uninjured, mild, moderate, severe and fatal victims; and, latitude and longitude of each 

accident. The amount of data corresponds to 5,744 samples for each of the variables. 

 

4. RESULTS AND DISCUSSION 

 

Applying PCA technique resulted in to five principal components, explaining 72.35% of the 

total variance of the original database, slightly above the minimum in the literature which is 70% 

(Solanas et al, 2011). Thus, an acceptance threshold of 0.3 was defined for the commonalities 

which is the total number of variances (correlations) of each variable, i.e., which can be extracted 

from the original variable. The higher the commonalities, the greater will be the capacity of 

explanation of the variable by factor, which culminates in the discarding of the variables which 

present values below threshold. 

Table 1 shows the values obtained for commonalities of each variable analysed. Note that the 

original database was reduced to nine variables. 

 

Table 1. Commonalities. 
 

Variables Extraction 

N° de Vehicles 0.715 

Uninjured victims 0.699 

Mild victims 0.829 

Severe victims 0.554 

Latitude 1.000 

Longitude 1.000 

Data of Occurrence 0.736 

Fatal victims 0.541 

Moderate victims 0.437 
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Table 1 also shows that all analysed variables have communality values higher than 0.3. The 

variables such as, serious, fatal and moderate victims were those that had the lowest communality 

values, which shows that these factors are not 100% suitable to explain the original variable. In 

contrast, the other variables presented values as expected, which indicate the possibility of 

extracting information from the principal components. 

For studies of this type, it is also recommended to apply the Kaiser-Meyer-Olkin (KMO) and 

Bartlett´s Sphericity tests, which indicate the degree of susceptibility or adjustment of the 

database for factor analysis, i.e., whose confidence level can be expected from the database after 

applying PCA technique. The KMO method presents normalized values (in the range from 0 to 

1.0) and shows the proportion of variation due to common factors. To interpret the results, values 

near to 1.0 indicate that the factor analysis method is perfectly suitable for this kind of database 

analysis. On the other hand, values lower than 0.6 (adopted as limen), indicate the inadequacy of 

the method. In this study, the result was 0.499, what indicate the inadequacy of using the PCA 

technique for this kind of analysis. 

Bartlett´s sphericity test examines the null hypothesis, that an original correlation matrix is an 

identity matrix. If the variables are perfectly correlated, only one factor is sufficient. In this case, 

the correlation matrix came out the same as the identity matrix. Hence, the PCA technique cannot 

be applied, since it can only be applied if the null hypothesis is rejected. 

In order to measure the overall relation between the variables, we first compute the 

determinant of the correlation matrix - R . Under null hypothesis 0H , 1R  ; if the variables are 

highly correlated, 0R . The test of significance is performed based on the following formula: 
 

2 2 5
1 ln

6

p
n R

 
     

 
                                                                                          (16) 

 

Where,  
 

n  = number of events 

p  = number of variables 

 

Under 0H , it follows a 2  distribution with a  ( 1) / 2p p   degree of freedom. We reject 

the null hypothesis at a level of significance of 5% if P-value (probability) is less than 0.05. In 

this case, we can perform efficiently a PCA technique on the related database. In this paper, 

Bartlett´s test resulted in a value of 
2  equal to 67,387.243 with 36 degrees of freedom, what 

gives Sig = 0.00, which indicates that the null hypothesis must be rejected. 

Table 2 shows the total variance explained by the latent root criterion from 9 original 

variables, resulting in 5 components with eigenvalues greater than or equal to 1, that are 

considered significant. These components result in a cumulative variance of 72.35%, slightly 

above the recommended minimum of 70%, wherein, the first component showed the highest 

variance (22.542%). 
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Table 2. Total variance explained. 
 

Component 

Initial Eigenvalues Rotation Sum of Squared Loading 

Total % variance % cumulative Total 

% 

variance % cumulative 

1 2.029 22.542 22.542 2.029 22.542 22.542 

2 1.386 15.398 37.940 1.386 15.398 37.940 

3 1.068 11.872 49.812 1.068 11.872 49.812 

4 1.021 11.346 61.158 1.021 11.346 61.158 

5 1.007 11.192 72.350 1.007 11.192 72.350 

6 0.955 10.611 82.962    

7 0.933 10.366 93.328    

8 0.601 6.672 100.000    

9 4.812E-6 5.347E-5 100.000    

 

Another option to verify the usefulness of the PCA technique is through a screen plot, which 

allows to determine the appropriate number of principal components. Screen plot shows the 

eigenvalues versus the number of principal components. It always displays a downward curve. 

The point where the slope of curve is clearly levelling out (the elbow) indicates the number of the 

principal components that should be generated by the analysis. 

The Screen Plot presented in Figure 1, shows first five components to be above the line of the 

eigenvalue one.  In relation to the selection of the number of components as a function of the 

"elbow", one should select only the factors located before the "elbow" (Catell, 1966) and observe 

the value of the "elbow". If the eigenvalue corresponding to the "elbow" is high, it should be 

included in the analysis, otherwise it should be neglected (Catell, 1977). 

Thus, the selection of the quantity of the principal components was based on the truncation 

criterion of Kaiser that considers the most significant eigenvalues the ones with values higher 

than 1.0. In this study, value of 0.4 was considered as the minimum acceptable value of the 

variable to be included as the principal component. The variables presented factor loading 

significantly higher, ranging between 0.50 and 0.90.  

In Table 3 it is possible to verify which variables have more influence on each component. 

 

Table 3. Principal Component matrix. 
 

 Variables 

Component 

1 2 3 4 5 

N° of Vehicles 0.215 0.753 0.137 0.172 0.232 

Uninjured victims 0.189 0.807 0.107 0.028 0.008 

Mild victims -0.033 -0.202 -0.260 0.443 0.723 

Severe victims -0.009 -0.182 0.565 0.170 0.416 

Latitude 0.986 -0.162 -0.038 0.007 -0.022 

Longitude 0.986 -0.163 -0.038 0.007 -0.022 

Date of Occurrence -0.027 -0.014 0.088 0.725 -0.449 

Fatal victims 0.045 -0.096 0.614 -0.377 0.106 

Moderate victims -0.009 -0.177 0.514 0.313 -0.208 
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Figure 1. Scree Plot. 

 

Considering the threshold of 0.40, the variables with the highest factor loadings in each 

component were:  
 

1C  - the latitude and longitude variables with factor loadings equal to 0.986; 

2C  - the variables such as, numbers of vehicles with factor loadings equal to 0.753 and, 

uninjured victims with factor loadings equal to (0.807); 

3C  - the variables such as: severe victims with factor loadings equal to 0.565, fatal victims with 

factor loadings equal to 0.614 and moderate victims with factor loadings equal to 0.514;  

4C  - the variable of date of occurrence with factor loadings equal to 0.725;  

5C  - the variable of mild victims with factor loadings equal to 0.723. 
 

Table 4 presents the principal components extraction applying the axis rotation with 

Quartimax (a) and Varimax (b), both with normalization of Kaiser, and with the objective of 

minimizing possible redundancies between the variables represented by each component. In the 

rotation by the Quartimax method, the weights are elevated to a reduced number of components 

and near to zero for the remaining. In the Varimax method, some weights are significant and the 

rest are close to zero. 
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Table 4. Matrix of rotation. 
 

Variables 

Quartimax (a) Varimax (b) 

Component Component 

1 2 3 4 5 1 2 3 4 5 

N° 

Vehicles 
0.048 0.838 0.033 0.101 -0.002 0.048 0.838 0.033 0.099 -0.003 

Uninjured 

victim 
0.020 0.819 -0.060 -0.154 -0.022 0.020 0.819 -0.059 -0.155 -0.024 

Mild 

victims 
0.000 -0.050 -0.014 0.907 -0.053 0.001 -0.049 -0.014 0.907 -0.054 

Severe 

victims 
-0.014 0.014 0.665 0.311 0.120 -0.013 0.014 0.664 0.312 0.126 

Latitude 0.999 0.039 0.008 -0.001 -0.003 0.999 0.039 0.008 -0.002 -0.003 

Longitude 0.999 0.039 0.008 -0.001 -0.003 0.999 0.039 0.009 -0.002 -0.003 

Data of 

Occurrence 
-0.010 0.026 -0.179 0.022 0.839 -0.010 0.027 -0.187 0.023 0.837 

Fatal 

victims 
0.027 -0.020 0.668 -0.256 -0.168 0.027 -0.021 0.670 -0.256 -0.161 

Moderate 

Victims 
0.008 -0.075 0.383 -0.089 0.526 0.008 -0.075 0.378 -0.088 0.529 

 

In the Quartimax rotation, Table 4 (a), an increase in the factor loadings is observed in 1C  

for both the latitude and longitude variables, both equals to 0.999. For 2C , same behaviour was 

identified, where the variable number of vehicles is equal to 0.838 and uninjured victims is equal 

to 0.819. For 3C , the variable of moderated victims (0.383) presented a factor loading lower than 

expected and, therefore, it was deleted from 3C . Then, for 3C only variables considered were the 

ones that had a considerable increase in its load factor, which are: severe victims (0.665) and fatal 

victims (0.668). For 4C , there was an increase in loading factor for the mild victims, but the 

same was not observed for the variable severe victims that reached the unsatisfactory index of 

0.311. This variable was therefore excluded from this component. For 5C , the variables that had 

the highest factor loadings were the date of occurrence (0.839) and moderated victims (0.526). 

In the Varimax rotation, Table 4 (b), the results are strictly similar to the Quartimax method, 

introducing slight variations to the factor loadings for the components that were excluded in the 

Quartimax method. The Varimax rotation grouped variables identically to the Quartimax rotation. 

After the application of both methods, one can conclude that the latitude and longitude variables 

can be grouped as 1C  and named as geographic location of the accident. Due to the high 

correlation shown by the variables such as number of vehicles and uninjured victims, the 2C  can 

be named as vehicular use and number of uninjured victims. By grouping the variables like: 

severe, fatal and moderated victims, for 3C , it can be named as degree of accidentally of the 

accidents. The 4C , can then be named as the number of uninjured victims and the component 

5C  as the date of occurrence of the accident. 

 

5. CONCLUSION 

 

Based on the results obtained, the PCA technique showed effectiveness on the database 

reduction and multicollinearity elimination among the variables, contributing to the removal of 

five variables that showed a low variability or redundancy because they were correlated with 

more than one principal component. Thereby, results have shown that it is possible to work with 

fewer variables to explain the total variation of the database, and in this way optimizing the future 

analysis without significant loss of information. 
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One of the goals of the PCA use, in this case, was achieved since a relatively small number of 

components could be extracted (
1C ,

2C ,
3C ,

4C  and 
5C ) with the capability to explain the 

variability in the original database (72.35%). It is important to notice that the technique has not 

shown effectiveness in the adjustment of the database considering the KMO test, although it has 

been accepted by the Sphericity test, indicating an ambiguity on the analysed tests.  

We made the PCA technique possible to be applied for the related database, without 

significant loss of information. It also allowed to group the variables in an array of components 

for categorizing data on statistical order of significance, what, of course, facilitates the study of 

this type of information. 

It should be noted that the PCA technique is indicated for reducing the dimensionality of the 

database or for simplifying a problem, as long as the data are without any experimental or 

statistical delineation. Otherwise, other techniques should be applied, such as canonical analysis, 

track analysis, and correlation network analysis. In addition, the PCA technique can be applied for 

visualizing the structure and distribution of data in the two-dimensional or three-dimensional 

space. 

 

REFERENCES 

 

[1]  Abdi, H.; Williams, L. J. Principal component analysis, Wiley Interdisciplinary Reviews: 

Computational Statistics, 2, 2010.] 

[2]  Cattell, R. B. The data box: Its ordering of total resources in terms of possible relational 

systems. In R. B. Cattell (Ed.), Handbook of multivariate experimental psychology (pp. 

67–128). Chicago, IL: Rand-McNally, 1966.  

[3]  Cattell, R. B. The grammar of science and the evolution of personality theory. In R. B, 

1977.] 

[4]  Hotelling, H. Simplifield calculation of principal components. Psychometrika, 

Williamsburg, v.1, p.27-35, 1936.] 

[5]  Hongyu, K.; Sandanielo, V. L. M.; Oliveira Junior, G. J. Principal Component Analysis: 

theory, interpretations and applications. E&S - Engineering and Science, Volume 1, 

Edição 5:1, 2015.] 

[6]  Johnson, R. A.; Wichern, D. W. Applied multivariate statistical analysis. 4th ed. Upper 

Saddle River, New Jersey: Prentice-Hall, 1999, 815 p.] 

[7]  Mardia, K. V.; Kent, J. T.; Bibby, J. M. 1979. Multivariate Analysis. New York: 

Academic Press. 

[8]  Pearson, K. 1901. On Lines and Planes of Closest Fit to Systems of Points in 

Space. Philosophical Magazine [S.l.: s.n.] 2 (6): 559–572. 

[9]  Solanas, A.; Manolov, R.; Leiva, D. Retaining principal components for discrete 

variables. Anuario de Psicología, Facultat de Psicologia, Universitat de Barcelona, vol. 

41, nº 1-3, 33-50, 2011. 

[10]  Wilks, D. S. Statistical Methods in the Atmospheric Sciences, 2nd Ed. v. 91 p. 463-507, 

2006.  

M.L. Chuerubim, I.D. Silva     / Sigma J Eng & Nat Sci 36 (4), 1023-1032, 2018 

https://pt.wikipedia.org/wiki/Karl_Pearson
http://stat.smmu.edu.cn/history/pearson1901.pdf
http://stat.smmu.edu.cn/history/pearson1901.pdf

