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ABSTRACT 

 

In this research, micropolar fluid flow of a porous plate due to Linear stretching is analyzed. The basic partial 
differential equations are reduced to nonlinear ordinary differential equations which are solved using 

Homotopy Perturbation Method (HPM). Comparison between results of Flex-PDE software and analytical 

method of the issue illustrates excellent precision in solving the nonlinear differential equation. Furthermore, 

impact of injection and suction velocity (∅), coupling parameter between velocity field and micro-rotation 

field (ε), vortex viscosity parameter (β) on micro-rotation, and fluid velocity profiles are examined. 
Conclusions indicate that: by increasing the ε parameter, the f'(η) value decreases. Also, the shear stress F''(0) 

values are gradually reduced with increasing β, while the opposite trend is observed in H' (0) variations. 

Keywords: Micropolar fluid flow, injection and suction, homotopy perturbation method (HPM), porous plate. 
 

 

1. INTRODUCTION 

 

Micropolar fluids are a model of standard ordinary fluid with nonsymmetric and 

microstructure stress tensor. In fact, deformation of the fluids is neglected and includes rigid 

which related to spherical particles in a cohesive medium. Eringen [1] was the first to introduce 

the micro plastic fluid model. This model is an important simplified model of Navier–Stokes 

equations in two areas of application and theory, which offers a lot of scientific phenomena than 

ordinary states. The field of micropolar fluid is a vital field that has many applications, including 
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laboratory on chip, oil extraction, refining industry, heat transfer issues, paper industry, 

lubrication, surface coating, material science, bio sciences, and so on. Considering these 

important applications, the world's most acclaimed universities, including MIT, Cornell, and 

others, have set up an independent laboratory of the same name. Even in some countries, such as 

Germany, an independent institute of the same name has been created. Many researchers have 

considered various problems in micropolar fluids, such as Hassanien and Gorla [2] investigated 

on non-isothermal stretching plate heat transfer using micropolar fluid flow with blowing and 

suction. Their results showed that heat transfer rate and friction parameter were affected by mass 

transfer rate. Vajravelu [3] studied viscous fluid heat transfer rate and convection fluid flow on a 

vertical, infinite and porous stretching sheet. His research is compatible with this truth that by 

increment in Prandtl number the thermal boundary layer will reduce. Salleh et al. [4] carried out a 

mathematical theory for a micropolar fluid flow boundary layer because of moving flat sheet. The 

outcomes of this study illustrated that in the range of 0 ≤ n ≤ 1 by the increment in the n, wall 

shear stress decreases and gyration factor increases, where k is constant and n is a ratio of wall 

shear stress of fluid flow. There are many studies that have been used mathematical and 

numerical solutions to model nanofluid flow [5-14]. Also, effect of several parameters of 

micropolar fluid flow including magneto hydrodynamic convective flow and heat transfer rate on 

moving vertical porous sheet studied by Rahman and Sattar [15]. Their results indicated that by 

increasing in coupling factor (K), Richardson factor (γ), prandtl number (Pr) and suction factor 

(Fw), heat transfer rate will increase steadily. Rahman and Sultana [16] studied the micropolar 

fluid flow radiative heat transfer rate with variable heat flux passing porous flat sheet. Their 

results showed that Darcy factor increases the angular velocity and temperature, while it causes to 

decrease in velocity. Sheikholeslami et al. [17] used Fe3O4 –water ferrofluid flow in a porous 

cavity in order to examine the effects of non-uniform magnetic field on it. Their outcomes 

indicated that heat transfer rate and velocity of nanofluid decreased by increasing in Hartmann 

number. The factors of micropolar fluid flow including the non-uniform sink and electric 

conductivity passing an inclined flat sheet with heat flux of the surface investigated by Rahman et 

al. [18]. They illustrated that the effect of Newtonian fluid is greater than non-uniform heat 

production and electric conductivity in a micropolar fluid flow. Alomari et al. [19] demonstrated 

the micropolar fluid flow heat transfer rate and uniform boundary layer flow on an isothermal 

moving sheet surface. The outcomes obtained from the research indicated that HAM method has a 

very high accuracy and is also very useful for solving nonlinear equations. Sheikholeslami also 

applied HAM method in his investigations [20,21]. Investigation on nanoparticles behavior 

around the heated cylinder is conducted by using Response Surface Methodology (RSM) in order 

to discover the best profile of wavy-wall for an enclosure by Hatami [22]. According to the 

conclusions, it was observed that Nusselt number will decrease by increasing in cylinder diameter 

of more than 1.0, while heat transfer will improve when the diameter is less than 1.0. Using 

THAM method for solving nonlinear systems in the semi-infinite domain for micropolar fluid 

flow passing porous stretching plate studied by Kazem and Shaban [23]. Their results showed that 

in THAM method, in contrary with HAM method the rule of solution explanation and ergodicity 

are out of work. Ahmad et al. [24] investigated on heat transfer rate passing a nonlinearly 

stretching sheet by considering viscous loss for micropolar fluid. They showed that by increasing 

in K and keeping constant of n, the local Nusselt number and skin friction coefficient will 

decrease. In addition, these parameters will increase with the nonlinear stretching parameter of n. 

By considering Lorentz forces, nanofluid flow behavior under the effect of melting heat transfer 

has been studied by Sheikholeslami et al. [25]. Based on their conclusions, increasing in melting 

parameter results in an increase in velocity and decrease in temperature. Also, by increasing in 

melting and porosity parameters, Nusselt number will be increased. The heat transfer rate of 

micropolar fluid using AGM method in a permeable channel studied by Mirgolbabaee et al. [26]. 

Their outcomes represented the fact that Péclet number has inverse relation with Sherwood 

number and Nusselt number, while Reynolds number has direct relation with them. Hatami and 
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Ganji [27] applie d differential quadrature method (DQM) and differential transformation method 

(DTM) in order to study particle movement coupled equations in a fluid enforced vortex. Their 

results showed that although the particle angular velocity increases, its radial velocity decreases 

when the particle recedes from the vortex center. Recently, Sui et al. [28] Studied the 

viscoelasticity based on micropolar fluid in a slip flow. They illustrated that the influence of 

particle thermophoresis on convection heat transfer and mass transfer. Moreover, Kataria et al. 

[29] Studied the unsteady natural convective flow of a micropolar fluid between two vertical 

walls under the effect of magnetic field. There are lots of investigations that have been conducted 

about heat transfer in porous media [30-37]. 

At the center of all engineering sciences, various phenomena show themselves in a 

mathematical relationship modeled in the form of differential equations. Most of these 

mathematical relationships are in nonlinear form. Among the nonlinear relationships used in fluid 

mechanics, micropolar fluid problems are interesting. Because of the nonlinear nature of 

micropolar fluids, we need a strong analytical tools. For this reason, resolving these difficult 

problems has been a controversial issue for mathematicians, physicists and engineers. In recent 

years, some newly developed manners have been proposed to achieve an approximate solution of 

nonlinear equations, such as Adomian decomposition method (ADM) [38,39], Differential 

Transformation Method (DTM) [40-42], Optimal Homotopy Asymptotic Method (OHAM) 

[43,44]. Since there are lots of semi-analytical methods for solving nonlinear equations, 

consideration of all of them in this study is so extensive. One of the semi-analytical methods 

which does not need small parameters is Homotopy Perturbation Method (HPM). This method in 

most cases provides fast convergence to solve series. It is worth mentioning that the small number 

of errors in this method leads to an achievement to high precision solutions. Sheikholeslami 

[45,46] also used HPM method in his studies. 

In this study, we have used HPM to find the approximate solutions of nonlinear problem 

governing the Micropolar fluid flow of porous plate due to lineal stretching.  As well as, the effect 

of injection and suction velocity (∅), coupling parameter between velocity field and micro-

rotation field (ε), vortex viscosity parameter (β) on micro-rotation, and fluid velocity profiles are 

analyzed. It should be noted that comparison between results of Flex-PDE software and analytical 

method of the issue illustrates excellent precision in solving the nonlinear differential equation. 

 

2. PROBLEM DESCRIPTION  

 

As illustrated in figure 1, an incompressible micropolar fluid in two-dimensional steady 

motion which is passing over a flat sheet and is linearly stretching away from a fixed point has 

been considered. The micro-rotation is σ and the velocity components (u, v) are in (x, y) 

directions, respectively. Governing boundary layer expressions for present flow characteristics 

are:[47] 
 

u v
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u x, v , 0 at y 0

u 0
as y

0

    






                                                                                      (3) 

 

Where κ, ν, Φ, α and 𝛾 are skew-symmetric deformation, kinematic viscosity coefficients to 

joined with the rates of symmetric deformation, suction velocity through the porous surface, the 

stretching parameter and rotation, respectively. Eq. (2) can be rephrased as follows: 
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                                                (4) 

 

As systems of nonlinear ordinary differential equation are given as [47]: 
 

2

2 2

F FF F H ,

1
H H F

2

      

   
                                                 

(5) 
 

F(0) , F (0) 1, F ( ) 0,

H(0) 0, H( ) 0,

     

  
                                               (6) 

 

Where ‘prime’ denotes differentiation with respect to x; the similarity coordinate measuring 

distances normal to the sheet F', H, ε, β and ∅ are velocity, micro-rotation, coupling parameter, a 

constant characteristic of the fluid and suction velocity through the porous surface. 

 

3. MATHEMATICAL PROCEDURES 

 

In this section HPM method have been investigated: 

 

3.1.  Default Homotopy Perturbation Method (HPM) 

 

To explain the basic ideas of this manner, we consider the following nonlinear differential 

equation: 
 

A(u) f(r) 0, r ,                                                                                                         (7)  
 

With the boundary condition of: 
 

u
B(u, ), r ,

n





                                                                                                                     (8) 
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Figure 1. Geometry of the considered problem. 

 

Where f (r) is a known analytical function, A is a general differential operator, B is a boundary 

operator, (∂u/∂n) denotes differentiation along the normal drawn outwards from (Ω) and (Γ) is the 

boundary of the domain (Ω). 

A can be divided into two parts which are L and N, where L is linear part and N is nonlinear 

part. Eq. (7) can therefore be rewritten as follows: 
 

L(u) N(u) f(r) 0,                                                                                                            (9) 
 

Homotopy perturbation structure is shown as follows: 
 

0 0H( ,p) L( ) L(u ) pL(u ) p(N( ) f(r)) 0,                                                       (10) 
 

Where 
 

(r,p): [0,1] R,                                                                                                          (11) 
 

In Eq. (10), 𝑢0 is the first approximation that satisfies the boundary condition and p∈ [0, 1] is 

an embedding parameter. We can assume that the solution of Eq. (10) can be written as a power 

series in P, as following: 
 

2
0 1 2p p ...                                                                                                                (12) 

 

and the best approximation for solution is: 
 

p 1 0 1 2u lim ...


                                                                                               (13) 

 

4. APPLICATION OF DESCRIBED MANNERS IN THE ISSUE 

 

4.1. Homotopy Perturbation method 

 

In this section, we will apply the HPM to nonlinear ordinary differential Eq. (5). According to 

the HPM, we have created a homotopy assumption for the solution of Eq. (5): 
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2

2 2 2

H(f ,p): (1 p)(f (x) f (x)) p(f (x) f(x)f (x) f (x) h (x),

H(h,p): (1 p)(h (x) h(x)) p(h (x) h(x) 0.5 f (x)),

           

        
            (14) 

 

We consider h(x), f(x) as Following: 
 

2
0 0 2

2
0 1 2

f(x): f (x) pf (x) p f (x),

h(x): h (x) ph (x) p h (x),

  

  
                                                                        (15) 

 

By substituting Eq. (15) into Eq. (14) and some simplification and rearranging on powers of P 

terms, we have: 
 

3 2

0 03 2
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2
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0 02

d d
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dx dx
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
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                                                                            (16) 

 

The boundary conditions for Eqs. (16) are: 
 

0

0

0

f (x) 0,

f (0) 1,

f ( ) 0,



 

   

                                                                                                  (17) 
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For ε=0.1, β=1 and ∅=0 
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The boundary conditions for Eq. (20) are 
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1
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1
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For ε=0.1, β=1 and ∅=0 
 

 

10. 1. 10. 1. 9 2
1

210. 1. 1.

0.6 0.6 1.
1

( ) 45.004.e 7.0006.e 1.0306 .

0.50.e 10. 1. 0.99.e 0.00004. 1.0001

( ) 0.28.e 0.000001.e 0.28.e

    

  

 

   

     




  

x x

x x

x x x

f x x x

x x

h x

                             (23) 

 

In the same manner, the rest of components are obtained by using the Maple package and we 

obtained 15 parameters of it. According to HPM, we can conclude: 
 

j

j 1 2 3 4 5
i 0

j

j 1 2 3 4 5
i 0

f(x) f (x) f f f f f .........

h(x) h (x) h h h h h .........





      

      





                                              (24) 

 

Maple is used to solving the linear equations up to first few orders. Also, j must be 

sufficiently large. In practice, we decided to stop the calculations at j = 5 (at 5th-order) having 

realized that a sufficiently small tolerance has been met. 

 

4.2. Solution with Flex-PDE software 

 

In this research, at first we introduce the Flex-PDE software. Flex-PDE software is simple 

modeling software based on finite element method for coding. This means that Flex-PDE 

converts written codes and partial differential equations to a finite element model. This software 

is a powerful tool for making connection among mathematical model, numerical solution and 

graphical results. Also, this software has ability to analyze the wide range of engineering 

problems such as tension, chemical reaction kinetic and modeling of real mathematical problems. 

The steps of solving the problem in this software are as below:  
 

 Initial analysis of equations. 

 Formation of derivations, integrals and functions with Galerkin finite element method. 

 Construction of coupling matrix and solving it. 

 Response graphical presentation. 
 

In this paper, we compare the results of HPM with obtained results from Flex-PDE software. 

 

5. RESULTS AND DISCUSSIONS 

 

In this section, we illustrate the analytical study of the boundary layer flow of a micropolar 

fluid with suction and injection due to a linearly stretching of porous surface by HPM (see figure 
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1). Comparison between the HPM results with numerical software (Flex-PDE) for different 

values of active parameter are shown in Table (1). The slight error in this tables indicates that 

HPM is a high accuracy method to solve these issues.  

 

Table 1. Comparison between the HPM and Flex-PDE results for F' (left) and H (Right). 
 

 β=0.4, ∅=0.0, ε=0.1 β=1, ∅=0.1, ε=0.2 

η HPM Flex- Error HPM Flex- Error 

0.0 1.0000 1.0000 0.0002 0.0000 0.0000 0.0000 

1.0 0.3646 0.3541 0.0105 0.9902 0.9832 0.0070 

2.0 0.1208 0.1107 0.0101 0.6918 0.6922 0.0004 

3.0 0.0301 0.0311 0.0010 0.3280 0.3292 0.0012 

4.0 0.0001 0.0001 0.0000 0.0295 0.0284 0.0011 

5.0 0.0000 0.0000 0.0000 0.0009 0.0009 0.0000 

6.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

7.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 
 

Figure 2.  Effect of β on micro-rotation (H(η)). 
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Figure 3.  Effect of ∅ on velocity (F'(η)) profile. 

 

 
 

Figure 4.  Effect of ∅ on micro-rotation (H(η)). 
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Figure 5.  Effect of ε on velocity (F'(η)) profile. 

 

 
 

Figure 6.  Effect of ε on micro-rotation (H(η)). 
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Figure 7. Variation of the F''(0) with ∅ and β for ε =0.1 

 

 
 

Figure 8. Variation of the H'(0) with ∅ and β for  ε =0.5 
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Figure 9. Contour plots of H (η) for various amounts of active parameters. 

 

 
 

Figure 10. Contour plots of F' (η) for various amounts of active parameters. 
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bottom plate. Also, the micro-rotation profile (H(η)) changes near the bottom of the page in β<1 

are more than β>1. Figure 3 and 4, illustrate the effect of injection and suction velocity parameter 

(∅) on the velocity and rotational profiles (when injection (∅<0) and suction (∅>0)). In Fig.3, the 

velocity (F'(η)) profile has an increasing trend in injection ∅<0 and decreasing trend in suction 

∅>0. In Figure 4, the micro-rotate profile increases to its peak value and then has a decrease trend. 
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The changes of the micro-rotate profile in η<ηm and ηm<η is one of the most important points. ηm 

is the location of meeting of curves for different ∅ at the same time. With increasing in ∅, the 

micro-rotational profile in η<ηm has an increasing trend and then by passing ηm has a decreasing 

trend. Figures 5 and 6 display H(η) and F'(η) profiles variations for different micro-rotation field 

(ε) values. In Figure 5, by increasing the ε parameter, the f'(η) value decreases. Unlike that by 

increasing the ε, the H(η) value increases near the bottom plate in η< ηm. In the following by 

passing the ηm the H profile has a decreasing trend. Plus, As shown in paper, with increase of e 

the value of wall shear stress and  velocity boundary layer thickness decreases. Figures 7 and 8 

show the effect of ∅ and β parameters on H' (0) and shear stress (F''(0)). As shown in Fig. 7, the 

F''(0) values are gradually reduced with increasing β, while in Figure 8 the opposite trend is 

observed in H' (0) variations. It should also be noted that the injection phenomenon reduces F''(0) 

and H' (0). This is while the scenario is in reverse in suction state. In this study, in order to better 

understanding of the F'(η) and H profiles, contours plots are illustrated for various values of the 

active parameter in different intervals. 

 

6. CONCLUSIONS 

 

In this study, we illustrated the analytical study of the boundary layer flow of a micropolar 

fluid with suction and injection due to a linearly stretching of porous surface by HPM. The 

comparison of the results of Homotopy Perturbation Method (HPM) and Flex-PDE software 

indicates excellent complying in solving this nonlinear issue. Moreover, the effect of injection and 

suction velocity (∅), the coupling parameter between the velocity field and micro-rotation field 

(ε), vortex viscosity parameter (β) on micro-rotation (H(η)), and fluid velocity (F'(η)) profiles are 

analyzed. Main outcomes are displayed: 
 

 By the increment of vortex viscosity parameter, the micro-rotate profile increases.  

 Velocity profile has an increasing trend in injection of ∅<0 and a decreasing trend in 

suction of ∅>0. 

 With increasing ∅, the micro-rotational profile in η<ηm has an increasing trend and then 

by passing ηm has a decreasing trend. 
 

Finally, it can be concluded that HPM is an excellent analytical method due to its efficiency in 

solving different problems.  
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