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ABSTRACT 

 

Nowadays, microgrids have attracted much attention in developed countries. The protection of DC systems, 

unlike conventional AC systems, is a highly challenging task.  The acquaintance on fault location in 

distribution network causes for quick restoration, maintenance and decrease unnecessary power outage period. 

Neural Networks (NNs) are among the powerful, reliable approaches and are used in many different 

engineering applications. Also, Multi-Layer Perceptron (MLP) NNs are used for different estimating 

problems. This paper presents an accurate protection method for Low-Voltage DC (LVDC) ring-bus 

microgrid systems based on MLP NN. The aim of the proposed method is precise fault location estimation in 

microgrids, irrespective of the type and magnitude of fault, current, and the power supply quantity, by 

instantaneous current monitoring of each segment of the microgrid. Simulation results demonstrate the NN 

fault location estimation in percent of line length are in a suitable range. The results show that the estimation 

error is small and is within the permissible range. According to the results, efficiency and accuracy of MLP 

NN are confirmed. To do so, an LVDC ring-bus microgrid is used that utilizes solid-state bidirectional 

switches along with master and slave controllers 

Keywords: Fault location, neural network (NN), multi-layer perceptron (MLP), low voltage DC (LVDC) 

microgrids, solid-state circuit breaker. 

 

 

1. INTRODUCTION 

 

A great number of studies have recently been conducted to develop and arrive at favorable 

conditions of utilizing renewable energy resources for instance wind and solar energy in the 

electrical energy distribution networks. Additionally, distributed generation systems have 

advantages over traditional power generation procedures at centralized power plants due to their 

higher reliability and performance, environmental compatibility and easier controllability [1], [2]. 

Microgrid systems are small-scale power grids that consist of renewable energy resources and 

loads [3]– [5]. 

Microgrids can be utilized in two modes, islanded and grid-connected modes. Microgrids may 

generally be categorized into DC and AC systems. The advantage of AC microgrids is the 
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possibility of using distributed generation sources directly which are based on AC voltages; 

however, synchronization, reactive power control, and voltage stability are among their 

disadvantages. Nevertheless, DC microgrids are considered to be a feasible solution, since they 

are small grids with less transmission losses. Moreover, they lack the defects of AC systems, and 

the size of AC-DC-AC converters used may be significantly reduced. 

 

 
 

Figure 1.  Conceptual scheme of an LVDC ring bus microgrid. 

 

Fig. 1 shows a conceptual scheme of an LVDC ring-bus microgrid. LVDC systems, contrary 

to HVDC ones, are the more recent concept in power distribution networks. For small-scale 

systems, LVDC microgrids offer plenty privileges over AC classical networks. AC and DC 

microgrids need power electronic converters and are used to link loads and resources to a 

common bus. Therefore, the use of DC microgrids requires less converters [6] - [8]. In addition, 

cables utilized in power systems are chosen depend on the peak voltage of the system. The 

maximum transferred power in AC systems depends on the rms value, whilst in DC systems it is 

based on maximum voltages. Therefore, the DC system can transfer √2 times more than one AC 

system with the same cable. The DC system is not affected by the phenomenon of skin effect and 

can use the entire cable, which decreases transmission power losses [8], [9].  

Despite their significant advantages, the protection of DC microgrids poses many challenges 

and, as well as, no written standards, solutions, or experience exist in regard to this topic [7]. In 

the distribution system, the capability of precise fault location provides advantages such as quick 

repair, maintenance, and restoration, leading to reduced duration of power interruptions [6], [10]. 

The DC systems boost power flow, power quality and equipment size and weight using power 

electronic converters. Attendance of power electronic equipment controls current to a certain 

extent during fault conditions, which intern make fault location difficult [11]. 

It is not common to set up protection devices at the DC section of microgrids and, circuit 

breakers (CBs) in the AC system are activated in the fault condition. Accordingly, a procedure 

has been suggested in [12] to separate the faulted section. Notwithstanding, this scheme entirely 

de-energizes the DC section. This method is suitable for HVDC and MVDC systems that work as 
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link interconnecting two AC systems. This method causes an unnecessary outage of sources and 

loads in DC microgrids. Various fault protection solutions have been proposed for LVDC 

distributed systems including overcurrent protection [7]– [9], derivatives of current [7], under-

voltage and directional protection [8]. Nevertheless, the dynamics of voltage and current in the 

faulted segment were not considered. A fault detection method based on traveling waves was 

proposed in [13] for multi-terminal DC (MT-DC) systems. 

A differential method of fault detection and isolation in LVDC bus microgrids was proposed 

in [14]. The disadvantage with this method is the use of a specific threshold for fault detection, 

meaning that the fault occurs when line current exceeds the threshold. Obviously, fault detection 

speed depends on this threshold value, which is a defect. 

The present research aims at correcting the aforementioned defect of the [14], so that human 

actions and considerations would not affect fault detection. The advantage of the present paper is 

that the protective algorithm does not depend on human actions and consideration and is fully 

intelligent. In this paper firstly, multilayer perceptron (MLP) neural network (NN) is employed to 

estimate the fault location distance. 

 

2. LV DC MICROGRID 

 

LVDC networks, contrary to HVDC ones, are the more recent approach in distribution networks. 

Stable, versatile protection is the current challenge of DC systems. Compared to DC systems, 

more experience and various standards are available concerning the protection of AC systems. 

Fuse and CBs are the available protection equipment for DC systems [8]. CB mechanisms used in 

AC systems operate when fault current crosses zero. However, this mechanism is not applicable 

to DC systems. More importantly, the circuit breaker is activated after a longer period of time, 

causing a fault to exist for a longer duration, that this is highly catastrophic for DC systems. 
 

2.1. Faults in DC Microgrids 
 

Two types of faults may occur in DC microgrids as demonstrated in Fig.  2: 
 

1) Line to line fault   

2) Line to ground fault.  
 

A line to line (or pole to pole) fault is one where short-circuit occurs between positive and 

negative lines in a system, while a line (or pole) to ground fault is one where a short circuit occurs 

between one line (or pole) of the system, positive or negative, and the ground. This is the most 

usual kind of faults in distribution systems [15]. 
 

 

 

Figure 2. Two feasible faults in DC microgrids. 
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2.2. Available protection equipment for DC systems 

 

In this section, available protection equipment for DC systems is mentioned. Because of the 

restrictions of fuses and AC Circuit Breakers (CBs) in DC systems, a solid-state CB is considered 

as an appropriate choice for DC system protection. There exist different options including GTO, 

IGBT, and IGCT, among which IGCTs offer effective and better performance [16]- [19]. 

In DC microgrid bus, due to that let power flow in bi-side, the aforementioned CBs must be 

bidirectional. Another equipment to protect the network from extra fault currents is taking 

advantage of fault current limiters (FCLs) in fault condition. Advantages of FCLs include the 

higher capability to ride-through for temporary faults, reduction of short circuit level of CBs, 

network losses and costs. Various limiters have been proposed so far including superconductors 

[20], saturated inductors [21] and power electronic equipment [22]. 

 

3. THE PROPOSED FAULT LOCATION SCHEMES USING MLP NN 

 

In this section, the proposed controller and fault location based on MLP NN are presented. 

 

3.1. The proposed controller 

 

In this paper instead of a complete system shutdown or DC-bus current limiting, the fault is 

first detected and then isolated from the system and to allow the rest of the system to keep 

operating. To this end, a loop-type common DC bus is employed to make the microgrid robust in 

faulted condition (Fig. 1 and Fig. 6). It was also shown that loop-type systems were more 

efficient, particularly when transmission lines were not very long [14]. The total loop type bus is 

segregated into a series of sections. Every segment includes a section of the bus and a segment 

controller. A schematic of the protection method is depicted in Fig.  3. The suggested protection 

scheme contains one master controller, two slave controllers and freewheeling branches between 

all pole and the ground. Slave controllers measure current values at the two ends of the bus 

section and transmit them to the master controller. The slave controllers were also responsible for 

the execution of control commands sent from the master controller for the switching of 

freewheeling branches. In regular circumstances, measurements at each end of bus section must 

be identical, and the master controller sets the pole CBs in close mode. 
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Figure 3. Schematic of the suggested protection structure (similar controllers also exist in 

segments B and C). 

 

3.2. Implementation of MLP NN 

 

In this section, the objective is fault location of the respective zone after fault detection. NNs 

are among the powerful and reliable approaches and are also used in many different engineering 

applications and problems to estimate promising results [23]. Since fault location is an estimated 

problem, the estimating tools were used to estimate the fault location. Neural networks with their 

high ability to deduce results from complex data can be used to extract patterns. There are 

different neural networks such as RBF, RNN, MLP, DNN, etc. For which the structural 

differences between the neural networks, and both the nature and structure of the problem should 

be taken into account. Multilayer perceptron (MLP) neural networks are able to make a nonlinear 

mapping with an excellent accuracy by choosing the appropriate number of layers and neural 

neurons, which is what we are seeking for. 

As stated, the amplitude of the fault current is inversely correlated with the impedance of the 

fault current path, i.e. if the impedance increases, the fault current decreases and vice versa. 

Therefore, the relationship between the fault location and the fault impedance path can be 

expressed by a nonlinear mapping. Because the MLP neural network performs nonlinear 

mappings with lower computational bulk and complexity as well as with sufficient accuracy, the 

MLP neural network is used to estimate fault location. 

What is an ANN? ANN is a data progressing system inspired by biological neural systems, 

e.g. human brain, to analyze information. The system is comprised of fully integrated processing 

elements known as neurons that cooperate in parallel to solve a problem. In other words, ANNs 

are novel computational systems used in machine learning applications to find a way to represent 

and eventually implement knowledge in order to predict output responses of complicated systems. 

ANNs, along with programming knowledge, are used to design a data structure simulating nerve 

cells in the brain. 

Why do we use ANNs? Relying on their outstanding capabilities in inferring results from 

complicated data, ANNs can be used to extract and identify patterns that humans and computers 

find difficult to identify. 
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3.2.1. Properties of NNs 

 

Properties of NNs include adaptive training, self-organizing, real-time operators, fault 

tolerance, and, generalization [23].  
 

 Transfer (stimulus) functions 
 

The transfer function f () is determined based on the specific requirements of a problem. The 

transfer function may either be linear or nonlinear. Some important instances of transfer functions 

are pointed out as follows: 
 

a) Linear transfer function: As demonstrated in Fig. 4(a), the function output is equal to its 

input. 

b) Sigmoid transfer function: The sigmoid function is generally represented by the following 

equation [20]: 
 

𝐹(𝑥) =  
1

1+ 𝑒−𝑐𝑥
   . 𝑐 > 0                                                                                                                 (1) 

 

For c=1, the figure of the function is demonstrated in Fig. 4(b). The value c determines the 

extent of the linear region.  
 

c) Hyperbolic tangent transfer function: It is an odd and asymmetric function. Experience has 

shown fast training of NNs with this function. The function equation is as follows: 
 

𝐹(𝑥) =  𝑎0 tan 𝑏𝑥                                                                                                                           (2) 

 

 
 

Figure 4.  Linear transfer function(a), Sigmoid transfer function(b). 

 

MLP NNs are often formed by a number of single layers cascaded together, where the output 

of each layer is fed into the next. Every layer contains a specific weight matrix ‘w’, a bias vector 

‘b’, a net input vector ‘n’, and an output vector ‘a’. A 3-layer feedforward MLP NN is 

demonstrated in Fig. 5. As can be seen, the number of inputs and neurons in the first layer of the 

3-layer MLP feedforward NN are ‘R’ and ‘S’, respectively. 
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Figure 5.  3-layer MLP feedforward NN. 

 

3.2.2. The selected structure based on NN 

 

The selected structure of MLP is a 3-layer network, which has a lower computational bulk and 

complexity as well as sufficient accuracy in fault location estimation: 
 

a) Input layer: This layer is responsible for processing input signals to the NN and uses 

interlayer coefficients to send output signals to the next layer. The number of neurons in this layer 

is equal to the number of input variables (Iin and Iout).  

b) Hidden layer: In this paper, to cover all possible states, the hyperbolic tangent transfer 

function is used in analyzing system conditions and making appropriate decisions accordingly. 

The number of neurons in this layer may change, and the larger the number of neurons the more 

the processing power of the NN. There is always a trade-off between duration and computational 

costs, as well as the required accuracy. In this study, 12 neurons are considered for the hidden 

layer. 

c) Output layer: The processed data in the hidden layer is sent to the output layer after it is 

transformed into the appropriate commands and signals. In this paper, the output of the hidden 

layer is the length percentage of the transmission line, where a fault has occurred. A linear 

transfer function is employed in this layer. 

 

3.2.3. Training MLP NN 

 

In order to train the NN for achieving the suitable estimation accuracy, a database is first 

prepared. To this end, the microgrid in the previous section is simulated with different faults at 

different locations. Short circuit fault is applied to different line segments, from d=5% to d=95% 

(in steps of 5%) of the line length, and the corresponding fault currents are measured to be stored 

in a database matrix. Then the prepared database is used to train the NN. For the fault location 

using MLP NN, Iin and Iout currents are selected from each segment as a database. Then, it was 

used for offline training. The offline training of the MLP is carried out with the Error Back 

Propagation (EBP) method by the Levenberg-Marquardt (LM) algorithm. As well as, in the 

training epoch the number of iteration is considered 1000. 

Many efforts have been made to speed up EBP algorithm. All of these methods lead to little 

acceptable results. The Levenberg-Marquardt (LM) algorithm [24], [25] ensued from 

development of EBP algorithm dependent methods. It gives a good exchange between the speed 
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of the Newton algorithm and the stability of the steepest descent method [26], that those are two 

basic theorems of LM algorithm. 

In the EBP algorithm, the performance index F(w) to be minimized is defined as the sum of 

squared errors between the target outputs and the network's simulated outputs, namely: 
 

𝐹(𝑤) = 𝑒𝑇𝑒                                                                                                                                    (3) 
 

Where w = [w1, w2, …., wN] consists of all weights of the network, e is the error vector 

comprising the error for all the training examples. When training with the LM method, the 

increment of weights Δw can be obtained as follows: 
 

∆𝑤 =  [𝐽𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒                                                                                                                  (4) 
 

Where J is the Jacobian matrix, μ is the learning rate which is to be updated using the β 

depending on the outcome. In particular, μ is multiplied by decay rate β (0<β<1) whenever F(w) 

decreases, whereas μ is divided by β whenever F(w) increases in a new step. The standard LM 

training process can be illustrated in the following pseudo-codes, 
 

1. Initialize the weights and parameter μ (μ=.01 is appropriate). 

2. Compute the sum of the squared errors over all inputs F(w). 

3. Solve (2) to obtain the increment of weights Δw 

4. Recomputed the sum of squared errors F(w) 
 

Using w + Δw as the trial w, and judge 

IF trial F(w) < F(w) in step 2 THEN 
 

w = w + Δw 

μ = μ ⋅β (β = .1) 

Go back to step 2 
 

ELSE 
 

μ = μ / β 

go back to step 4 
 

END IF 

 

4. SIMULATION RESULTS 

 

A case study microgrid is depicted in Fig. 6. The simulation circuit includes the exact model 

of wind turbine, exact model of photovoltaic cell, short line model with dispersed capacitors, 

freewheeling branches for fault current damping, bi-directional IGBT switches, antiparallel 

diodes of the IGBT switches, RCD snubber circuit to suppress voltages overshoot due to the line 

inductance effect, model of DC and AC loads, energy storage model, two-level VSC and DC/DC 

converters, the power electronics converters’ DC link capacitors, VSC-based DC/AC converter, 

etc. Different segments are named as segA, segB, and segC. The voltages of DC supply sources in 

all segments are assumed to be 240V, and the simulated network is TN grounded. Each segment 

of the DC bus is a 0.2km cable and specification of the simulated sample are exploited from [14], 

[27]. The snubbers employed are of RCD type [28]. In the simulations, the delays of switching 

and communication were neglected but the effect of these delays has been considered in the 

practical implementation section. 
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Figure 6. LVDC ring-bus microgrid architecture considered in this study. 

 

4.1. Fault location estimation using MLP NN 

 

In this section, an MLP NN model is added to the microgrid simulation. The model uses 

normal distribution function to normalize the input data. The normal distribution function is 

defined according to the mean value and variance of data as follows: 
 

𝑓(𝑥. 𝜇. 𝜎2) =  
1

𝜎√2𝜋
exp (−

(𝑥−𝜇)2

2𝜎2
)                                                                                                  (5) 

 

After simulating the MLP NN, it is trained with the prepared database of different microgrid 

faults. Root Mean Square Error (RMSE) criterion is used to assess the training efficiency of the 

NN. The RMSE represents the error between real values from the database and the estimated 

values in each training epoch. In other words, the estimation error of all the data is equal to 

RMSE percentage: 
 

𝑅𝑀𝑆𝐸% = 100 ×  √
1

𝑁
∑ (𝑦𝑖

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑦𝑖
𝑟𝑒𝑎𝑙)2𝑁

𝑖=1                                                                        (6) 
 

Where N is the whole number of training data. Smaller RMSE values mean higher accuracy 

of the NN in estimating objective function and the appropriate efficiency of the training process. 

Fig. 7 shows the convergence graph of the NN training. 

As can be seen in Table 1, in the training epoch the correlation between the estimated values 

and real value is 97.5%, and the maximum error between them is 5%. Following the training 

epoch, no real values are provided to the NN, and outputs are estimated based on the input values. 

The test algorithm then updates NN weights according to the estimation error.  In the next epoch, 

the NN is only assessed by receiving inputs that are not previously provided to the NN. Then, the 

estimated outputs are assessed based on the corresponding inputs, but no weights are updated in 
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this epoch. If the NN performance is not approved, training should be performed again from the 

beginning. The performance of NN in the assessment epoch is very promising. The MLP NN 

estimates fault location with a maximum error of 1.6%. Fig. 8 demonstrates the correlation graph 

between the real values and the estimated results. As can be observed, the maximum estimation 

error of 1.6% may only happen if the fault occurs in the first and last 20% of the transmission line 

length; whereas in other regions of the line, fault location is estimated almost accurately. 

 

 
 

Figure 7. Convergence graph of the training algorithm. 

 

Table 1. Accuracy and Validation Results of Assessing the MLP NN 
 

Epoch Correlation coefficient Maximum calculation error 

Training 97.5% 5% 

Test 98.3% 3.8% 

Assessment 98.9% 1.6% 

 

Simulated model of MLP neural network in “MATLAB/Simulink” software is demonstrated 

in Fig. 9. The detailed description of the neural network is as follows. 

 

 
 

Figure 8. Correlation between real and estimated results. 
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Figure 9. Simulated model of MLP neural network in “MATLAB/Simulink” software. 
 

 Section 1: In this section, the input and output current are measured at each instant and the 

maximum value is extracted by comparison with the pre-current size. 

 Section 2: After extraction of the maximum error of current in the two sides of the line, 

data is normalized with the help of "mux" and "sigmax" values. This function is written as a 

function in blocks f (u). 

 Section 3: After the current values normalizing, along with the Bias, a network input 

vector is formed, using the "mux" the three values in a vector as output is considered. 

 Section 4: By using the matrix multiplication in the Gain block, the coefficient weight 

matrix between the input and the hidden layer is multiplied by the input vector and the sigmoid 

tangent transfer function is applied to it. 

 Section 5: The output of the hidden layer is multiplied by the weight matrix between the 

hidden layer and the output layer and passes through the linear transfer function. The output of 

this section is estimated value of the neural network. 

 Section 6: The estimated value of the hidden layer is removed from the normal 

distribution space by the "muy" and "sigmay" vectors and converted to the amplitude of the 

power system. 
 

 
 

Figure 10. Estimation of LL short circuit fault location in 17%, 57% and 87% of the line 

length(a)and estimation of LG short circuit fault location in 23%, 73% and 93% of the line 

length(b). 
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  For a better representation of NN capabilities, 6 different simulation conclusions are 

demonstrated in Fig. 10. Fig. 10(a) depicts calculations of the fault location estimation for an LL 

fault occurring at 17%, 57% and 87% of the line length measured from the source side, 

respectively using the MLP NN. As can be seen from the Fig. 10(a), the designed NN estimated 

the fault at 18.16%, 57.42% and 87.46% of the line length, respectively. The estimation errors for 

both states are calculated as 1.16%, 0.42%, and 0.46 %.  

Fig. 10(b) shows the estimation of the NN for an LG short circuit when the assumed fault is 

applied to a 46m, 146m and 186m distance from the source side in segA, respectively. The 

designed NN estimated the fault at 22.55%, 73.57% and 92.43% of the line length, respectively. 

In other words, the MLP estimation was 45.1m, 147.14m and 184.86m distance from the source 

side, respectively. The estimation error was calculated as 0.45%, 0.57% and 0.57% or 0.9m, 

1.14m and 1.14m, respectively. 

For further assessment of proposed MLP NN, Table 2 is provided. Table 2 is the result of 

fault location estimation using MLP NN for LG and LL short circuit. The results show that the 

estimation error is small and is within the permissible range. According to the results, efficiency 

and accuracy of MLP NN are confirmed. 

 

Table 2. Fault location Estimation 
 

Fault distance in % of 

line length from 

the source (Fault type) 

Fault distance 

from 

the source(m) 

Distance 

estimation in % of 

line length 

Distance 

estimation(m) 

Estimation 

error 

0.02 (LL) 4 0.0151 3.02 0.0049 

0.08 (LG) 16 0.07912 15.824 0.00088 

0.1 (LG) 20 0.09296 18.696 0.00702 

0.19 (LL) 38 0.1989 39.78 0.0089 

0.21 (LG) 42 0.2069 41.38 0.0031 

0.26 (LL) 52 0.2599 51.98 0.0001 

0.32 (LL) 64 0.313 62.6 0.007 

0.38 (LG) 76 0.3843 76.86 0.0043 

0.43 (LL) 86 0.4277 85.54 0.0023 

0.49 (LG) 98 0.4871 97.42 0.0029 

0.51 (LG) 102 0.5085 101.7 0.0015 

0.56 (LL) 112 0.563 112.6 0.003 

0.63 (LL) 126 0.6325 126.5 0.0025 

0.66 (LG) 132 0.6615 132.3 0.0015 

0.72 (LG) 144 0.7217 144.34 0.0017 

0.79 (LL) 158 0.7926 158.52 0.0026 

0.84 (LG) 168 0.8409 168.18 0.0009 

0.88 (LL) 176 0.8863 177.26 0.0063 

0.98 (LL) 196 0.9813 196.26 0.0013 

 

5. CONCLUSION 

 

This research proposed a novel fault location scheme for LVDC ring-bus microgrids. The 

proposed protection method is based on NN which are able to estimate fault locations more 

quickly as soon as possible. According to the results, the accuracy and efficiency of fault location 

method based on MLP NN are proved. Precise fault location is the advantage of the presented 

MLP NN method, which causes quick restoration, maintenance and decrease unnecessary power 
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outage period. The results show that the estimation error is small and is within the permissible 

range. The proposed approach could be implemented in different LVDC systems. 
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