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ABSTRACT 

 
In this paper, we define weighted variable exponent Sobolev space with zero boundary values and investigate 

some properties of this space with weighted variable Sobolev capacity. We obtain Poincaré inequality with 

respect to zero boundary values. We will introduce a capacity in sense to this defined space and, also, give 

several estimates. 
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1. INTRODUCTION 

 

The history of potential theory begins in 17th century. Its development can be traced to such 

greats as Newton, Euler, Laplace, Lagrange, Fourier, Green, Gauss, Poisson, Dirichlet, Riemann, 

Weierstrass, Poincaré. We refer to the book by Kellogg [22] for references to some of the old 

works. 

The study of variable exponent function spaces in higher dimensions was revealed in 1991 an 

article by Kovacik and Rakosnik [29]. They present some basic properties of the variable 

exponent Lebesgue space 
   p . nL  and the Sobolev space 

   k,p . nW  such as reflexivity and 

Hölder inequalities were obtained. 

The boundedness of the maximal operator was an open problem in 
   p . nL  for a long time. 

Diening [7] proved the first time this state over bounded domains if p(.) satisfies locally log-

Hölder continuous condition, that is, 
 

   
C

p x p y
ln x y

 
 

, x,y , 
1

x y
2

   

 

where Ω is a bounded domain. We denote by  log nP  the class of variable exponents which 

satisfy the log-Hölder continuous condition. Diening later extended the result to unbounded 

domains by supposing, in addition, that the exponent p(.)=p is a constant function outside a large 
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ball. After this study, many absorbing and crucial papers appeared in non-weighted and weighted 

variable exponent spaces, see [9], [13], [29] and [39]. Sobolev capacity for constant exponent 

spaces has found a great number of uses, see [12] and [34]. Moreover, the weighted Sobolev 

capacity was revealed by Kilpeläinen [23]. He investigated the role of capacity in the pointwise 

definition of functions in Sobolev spaces involving weights of Muckenhoupt's pA -class. 

Harjulehto et al. [18] introduced variable Sobolev capacity in the spaces 
   1,p . nW . Also, 

Aydın [3] generalized some results of the variable Sobolev capacity to the weighted variable 

exponent case. 

The variational capacity has been used extensively in nonlinear potential theory on n . Let 
n   is open and K   is compact. Then the relative variational p-capacity is defined by 

 

   
p

p
f

cap K, inf f x dx,


    

 

where the infimum is taken over smooth and zero boundary valued functions f in Ω such that 

f 1  in K. The set of admissible functions f can be replaced by the continuous first order Sobolev 

functions with f 1  in K. The p-capacity is a Choquet capacity relative to Ω. For more details 

and historical background, see [20]. Also, Harjulehto et al. [16] defined an another relative 

capacity. They studied properties of the capacity and compare it with the variable exponent 

Sobolev capacity. 

The classical Dirichlet boundary value problem come out a partial differential equation: If 
n   and h :  is a continuous function, then main problem is to find a continuous 

function f :  such that the Laplace equation f 0   is satisfied on Ω and f h  on ∂Ω. 

Here, the function h gives the boundary values of f. One approach to solving the classical 

Dirichlet boundary value problem is to determine a minimizer for the energy operator within a 

certain function space. The energy operator, however, is dependent on the boundary value 

function. It is known that the Dirichlet energy integral does not always have a minimizer. It can 

be seen in [[17], Example 3.4]. 

Shanmugalingam studied the Dirichlet energy integral over metric spaces in [40]. She 

established the Dirichlet boundary value problem and investigated some properties of solutions 

(e.g. uniqueness, maximum principle property) to such problems. 

In [1] and [6], the authors have explored some properties of the p(.)- Dirichlet energy integral 

 
 p x

f x dx


  over a bounded domain 
n  . They have discussed the existence and 

regularity of energy integral minimizers. As an alternative method the minimizers in one 

dimensional case have been studied by the authors in [17]. Moreover, Harjulehto et. al. [19] 

considered the Dirichlet energy integral, with boundary values given in the Sobolev sense, has a 

minimizer provided the variable exponent satisfies a certain jump condition. 

Our purpose is to investigate some results of the variable Sobolev capacity in weighted case 

in sense to [3]. Using this capacity, we define weighted variable exponent Sobolev spaces with 

zero boundary values. We will consider   p . , - Poincaré inequality with respect to the space 

   1,p .

0,W   . Also, we will investigate the  p . - Dirichlet energy integral and generalize some 

results of Harjulehto et. al. [19] to the weighted variable exponent case. Moreover, we introduce a 

capacity in sense to 
   1,p .

0,W    and give several estimates. 
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2. NOTATION AND PRELIMINARIES 

 

In this paper, we work on n  with Lebesgue measure dx. We denote by  nC  the space 

of all infinitely differentiable functions. Also, the elements of the space  n

0C  are the infinitely 

differentiable functions with compact support. The space  1 n

locL  is to be space of all 

measurable functions f on n  such that  1 n

Kf L   for any compact subset nK  . We 

denote the family of all measurable functions    np . : 1,   (called the variable exponent on 

n ) by the symbol  nP  
 

 
nx

p essin f p x



 ,                  
nx

p esssup p x



  

 

For each 
nA   we set 

 

 A
x A

p essin f p x


 ,                  A

x A

p esssup p x .



  

 

The exponent p(.) is log-Hölder continuous in an open set Ω if and only if there is a constant 

C 0  such that 
 

B Bp p
B C

 
 

                                                                                                                             (2.1) 
 

for every ball B   , see [7]. 

A measurable and locally integrable function  n: 0,    is called a weight function. The 

weighted modular is defined by 
 

   
n

p(x)

p . ,
(f ) f (x) x dx.


    

 

The weighted variable exponent Lebesgue spaces 
   p . nL  consist of all real-valued 

measurable functions f on ℝⁿ endowed with the Luxemburg norm 
 

 

 
 

n

p(x)

p . ,

f x
f inf 0 : x dx 1 .



  
     

  
  

 

When (x)=1, the space 
   p . nL  is the variable exponent Lebesgue space. The space 

   p . nL  is a Banach space with respect to 
 p . ,

.


. Also, some basic properties of this space were 

investigated in [2], [3], [28]. Moreover, it is known that the space  n

0C  is dense in 
   p . nL , 

see [3], [7], [28], [30]. 

Let 
n   is bounded and  is a weight function. It is known that a function  n

0f C  

satisfy Poincaré inequality in  1L   if and only if there is a constant c 0  such that the 

inequality 
 

         f x x dx c diam f x x dx
 

       

 

holds [20]. 
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In recent decades, variable exponent Lebesgue spaces 
 p .

L  and the corresponding the 

variable exponent Sobolev spaces 
 k,p .

W  have attracted more and more attention. Let 

 1 p p . p       and k . The variable exponent Sobolev spaces 
   k,p . nW  consist of 

all measurable functions 
   p . nf L  such that the distributional derivatives D f  are in 

   p . nL  for all 0≤|α|≤k where n

0  is a multiindex, 1 2 n...        , and 

1 2 n

1 2 nx x x

D .
...





  



  

 The spaces 
   k,p . nW  are a special class of so-called generalized Orlicz-

Sobolev spaces with the norm 

 

   k,p . p .
0 k

f D f .

  

   

 

Now, let  1 p p . p      , k  and 
   
1

p . 1 1 n

locL



  . We set the weighted variable 

exponent Sobolev spaces 
   k,p . nW  by 

 

            k,p . p . p .n n nW f L : D f L ,0 k

         

 

equipped with the norm 
 

   k,p . , p . ,
0 k

f D f .

 
  

   

 

Since the embedding 
     p . n 1 n

locL L  holds, then the weighted variable exponent 

Sobolev spaces 
   k,p . nW  is well-defined. Also, it is already known that 

   k,p . nW  is a 

reflexive Banach space, see [3]. 

In particular, the space 
   1,p . nW  is defined by 

 

            1,p . p . p .n n nW f L : f L .       

 

The function  
     1,p . n

1,p . ,
: W 0,

    is shown as            1,p . , p . , 1,p . ,
f f f

  
     . 

Also, the norm 
     1,p . , p . , p . ,

f f f
  
    makes the space 

   1,p . nW  a Banach space. The 

local weighted variable exponent Sobolev space 
   1,p . n

,locW  is defined in the classical way. More 

information on the classic theory of variable exponent spaces can be found in [29]. 

If the exponent p(.) satisfies locally log-Hölder continuous condition, then a lot of regularities 

for variable exponent spaces holds. Because, the space  n

0C  is dense in 
   1,p . nW  under 

the circumstances, see [3]. Therefore, it makes sense to define the space of zero boundary value 

Sobolev functions as the closure of  n

0C  in 
   1,p . nW . But we will give an alternative 

definition to zero boundary value Sobolev functions space. 
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For nx  and r 0  we denote an open ball with center x and radius r by B(x,r). For 

 1 n

locf L , the Hardy- Littlewood maximal operator Mf of f given by 

 
 

 
 r 0

B x,r

1
Mf x sup f y dy

B x,r

   where the supremum is taken over all balls B(x,r). 

Let  1 p .   . A weight  satisfies Muckenhoupt's  n

p pA A  condition, briefly 

pA , if there are positive constants 1C  and 2C  such that, for all ball nB , 
 

   

p 1
1

p 1
1

B B

1 1
x dx x dx C ,    1<p<

B B






  
       

  
  or 

 
 

2
B

B

1 1
x dx esssup C ,     p=1.

B x

  
        
  

 

The infimum over the constants 1C  and 2C  are called the pA  and 1A , respectively. Also it 

is known that p

1 p

A A

 

 . Let  1 p .   . Then it is known that pA  if and only if the 

Hardy-Littlewood maximal operator is bounded on 
   p . nL , see [37]. 

In [8], the class 
 p .

A  was defined to consist of weights  such that 
 

   
 

   

B p ' .

1 p .
p .

p 1

A L B L B
B

sup B
 



     
B

 

 

where B  denotes the family of all balls in 
n

, 
 

1

B

B

1 1
p dx

B p x



 
   
 

  and  p' .  is the 

conjugate exponent of p(.). 

Let      log np . ,q . P ,  1 p p . p       and  1 q q . q      . If the inequality 

   q . p .  is satisfied, then there exists a constant C 0  depending on the characteristics of p(.) 

and q(.) such that 
   p . q .A A

C   . Also, under these conditions, 
       p . p .n nM : L L   if and 

only if 
 p .

A , see [8]. We denote 
 

       
    n log n

p . , p . ,
p . P :1 p p . p , Mf C f , 

 
       P  

 

that is,  nP  is the set of the maximal operator M is bounded on 
   p . nL . 

Given a subspace  *Y,  of a topological space  X, , the closed subsets of the topological 

space  *Y,  are called relatively closed in Y of briefly relatively closed. In other words the 

relatively closed subsets are the restriction to Y of the closed subsets of X. For more details about 

the relatively closed subsets can find in [[35], Section 6]. 

We say that a property holds   p . , -quasieverywhere if it satisfies except in a set of 

capacity zero. Recall also a  function f is   p . , -quasicontinuous in 
n

 if for each 0   there 
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exists a set A with    p . ,
C A


   such that f restricted to n A  is continuous. If the capacity is 

an outer capacity, we can suppose that A is open. More detail can be found in [3]. 

Throughout this paper, we assume that    log np . P  with  1 p p . p       and 

   
1

p . 1 1 n

locL



  . We write that a b  for two quantities if there exists positive constants 1 2c ,c  

such that 1 2c a b c a  . Also, A⋐B means that A is a compact subset of B. We will denote 

   x dx.



     

Also, we use the abbreviations; a.e.,   p . , - q.e.,   p . , - q.c. for almost everywhere, 

  p . , -quasieverywhere,   p . , - quasicontinuous, respectively. 

 

3. THE SPACE 
   1,p .

0,W    

 

A capacity for subsets of n  was introduced in [3]. To define this capacity we denote 
 

        1,p . n

p . ,
S A f W : f 1 in an open set containing A .

    

 

The Sobolev   p . , - capacity of A is defined by    
       

p . ,
p . , 1,p . ,

f S E
C E inf f .


 


   

Thanks to meaning of the infimum, in case 
   p . ,

S A


 , we set 
   p . ,

C A


 . It is 

evident that the same number 
   p . ,

C A


 is obtained if the infimum in the definition is taken over 

   p . ,
f S A


  with 0 f 1  . The Sobolev   p . , - capacity has some basic properties such as 

outer measure, monotonicity, subadditivity, Choquet property etc. More details can be found in 

[3]. 

The proof of the following theorem can be easily shown with the same technique in [24]. 

Note that the second assertion of the theorem is a direct result of the first one, see [[25], Remark 

3.3]. 
 

Theorem 1. Let f and g be   p . , -q.c. in 
n

. Assume that nU  is open. Then 
 

(i) If f g  a.e. in U, then f g    p . , -q.e. in U. 

(ii) If f g  a.e. in U, then f g    p . , -q.e. in U. 
 

It is known that the space 
     1,p . n nW C

   is not dense in general. But Zhikov and 

Surnachev proved this denseness under some conditions in [41]. Note that, the denseness of 
     1,p . n nW C

   follows that the space 
     1,p . n nW C   is dense in 

   1,p . nW . 

From now, we will assume that the variable exponent p(.) is said to satisfy the density condition if 

the space 
     1,p . n nW C

   is dense in 
   1,p . nW . 

Let 
n   be an open set. The space 

   1,p .

0,W    is denoted as the set of all measurable 

functions f if there exists a   p . , - q.c. function 
   1,p .* nf W  such that 

*f f  a.e. in Ω and 
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*f 0    p . , -q.e. in n  . In other words, 
   1,p .

0,f W   , if there exist a   p . , - q.c. 

function 
   1,p .* nf W  such that the trace of f  vanishes. Moreover the weighted variable 

exponent Sobolev spaces with zero boundary values equipped with the norm 
 

       
1,p . 1,p . n
0,

*

W W
f f .

 

  

 

A   p . , - q.c. function 
   1,p .* nf W  is called a canonical representative of the function 

   1,p .

0,f W    if *f f  a.e. in Ω and *f 0    p . , -q.e. in n  . From the definition of the 

space 
   1,p .

0,W   , it is clear that 
       1,p . 1,p .n n

0,W W  . It can be shown that the space 

   1,p .

0,W    is a reflexive Banach space. 

We denote 
   1,p .

0,H    as the closure of  0C   in the space 
   1,p .

W  . More precisely, 

   1,p .

0,f H    if and only if there exists a sequence  k k
f


 of  0C   such that 

   
1,p .k W

f f 0
 

  . Because of the fact that the space 
   1,p .

W   is a Banach space and the 

inclusion 
       1,p . 1,p .

0,H W     holds, it is easy to see that the space 
   1,p .

0,H    is a Banach 

space, as well. 
 

Corollary 1. Let  x 1   for 
nx . If  1 p p . p      , then the inclusions 

           1,p . 1,p . 1,p .

0, 0,H W W        hold. 
 

If we consider the definition of the space 
   1,p .

W   instead of 
   1,p .

W   in the proof of 

[[19], Theorem 3.3] and [[19], Theorem 3.4], then we obtain Theorem 2 and Theorem 3. 
 

Theorem 2. Let  x 1  for 
nx . If the space 

     1,p .
W C

     is dense in 
   1,p .

W  , 

then 
       1,p . 1,p .

0, 0,H W    . 
 

Theorem 3. Let 1 q ,p    and    q x p x  for almost every 
nx . Suppose that 

n   is a bounded open set. Then 
       1,p . 1,q .

0, 0,W W   . 
 

The proofs of the following two theorems can be easily seen by considering the definition of 

the spaces 
   1,p .

0,W   and 
   1,p .

W   in [[10], Theorem 11.3.1] and [[10], Theorem 11.3.2], 

respectively. 
 

Theorem 4. Let  x 1   for 
nx . Assume that A   is a relatively closed subset. Then 

       1,p . 1,p .

0, 0,W W A     if and only if 
   p . ,

C A 0


 . 
 

Theorem 5. Assume that A   is a relatively closed subset. If 
   p . ,

C A 0


 , then 

       1,p . 1,p .
W W A    . 

 

Theorem 6. Let    np . P . Then 
       1,p . 1,p .

0,W W     if and only if    n

p . ,
C 0


  . 
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Proof. Assume that 
       1,p . 1,p .

0,W W    . We define a function f as    f x max 0,2r x  } 

for 0 r   . Then 
   1,p .

f W  . Indeed, suppose that  max 0,2r x 2r x   . In other 

case, the statement is clear. Since  1 n

locL , we have 
 

   
   

 
   

 
        p .

p x p x p p

L
f 2r x x dx 4r x dx max 4r , 4r x dx .

 

 
  

             

 

It is easy to see that    
 p .

L
f

 
    . This follows that 

       1,p . 1,p .

0,f W W     . Since the 

space  0C   is dense in 
   1,p .

W  , see [3], we can we can take the sequence  kf  such that 

kf f  in 
   1,p .

W   and have compact supports in Ω. Hence kf f  are test functions for the 

capacity of    n B 0,r   for k . Since p   , we find that 
   k1,p . ,

f f 0


   . If we 

take the infimum over       n

k p . ,
f f S B 0,r


    , then we get 

      n

p . ,
C B 0,r 0


   . Moreover, 

        n n n

r 1 r 1

B 0,r B 0,r
 

 

       . Therefore we obtain 

 

           n n

p . , p . ,
r 1

0 C C B 0,r 0.


 


       

 

To prove sufficient condition, suppose that    n

p . ,
C 0


  . It is known that 

       1,p . 1,p .n n

0,W W  . Moreover, it is easy to see that 
n   is relatively closed. Therefore, 

if we consider the Theorem 5 and Theorem 4, then we get 
 

                         1,p . 1,p . 1,p . 1,p . 1,p . 1,p .n n n n n n

0, 0, 0,W W W W W W .               
 

Now, we consider the Poincaré inequality in the space 
   1,p .

0,W   . Let 
nA  . We define 

 

 A
x A

p essin f p x

 
 ,  A

x A

p esssup p x

 

  

 

for    np . P . If p

    and if there exists r 0  such that every x  either  
 

 B x,r
p n   or 

 

 

 

B x,r

B x,r

B x,r

np
p

n p









 

 

is valid, then the variable exponent p(.) is said to satisfies the jump condition in Ω with 

constant r. Moreover we put 
 

 

 

 
 

   

B x,r

B x,r*
B x,rB x,r

B x,r B x,r

np
,      p n

n pp

p ,            p n







 


   




 

 

It is clear that if Ω is bounded and if p(.) is continuous in  , then p(.) satisfies the jump 

condition in Ω with some r>0, see [19]. 
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Remark 1. Let n   be a bounded set. Then, the claim of Proposition 2.4 in [31] satisfies 

even if  p . 1 . This yields that the embedding 
     p . 1L L    holds. 

 

Theorem 7. Suppose that n   be a bounded set. Let the exponent p(.) holds the jump 

condition in Ω with constant r>0. Then, for all 
   1,p .

0,f W   , the inequality 
 

       
p . p .

L L
f C f

  
   

 

is satisfied where the constant C depends on the exponent p(.),  , diam(Ω), r and the 

dimension n. 
 

Proof. Since Ω is a bounded set,   is compact. Then we can find 1 2 tx ,x ,...,x  such that 

 
t

m

m 1

B x ,r .


  By using the fact that 
   1,p .

0,f W   , the function 
*f  can be taken as the 

canonical representative of f. If we consider [[31], Proposition 2.4], then we have 
 

               
         

*pp . p . p . B x ,rn mp .1 m n
m m

t t
* * * *

B x ,r B x ,rL L L B x ,r L B x ,rL m 1 m 1

f f f ... f c f
   




 

        
     

 

              
*p* B x ,rmpB x ,rmm m m

m

t
* * *

B x ,r B x ,r L B x ,rL B x ,r
m 1

c f f f 1




 
   

 
                                                        (3.1) 

 

Here, the function 
 m

*

B x ,r
f  is average of *f  over the balls  mB x ,r  and defined as 

   
 

 
m

m

* *

B x ,r

m B x ,r

1
f f x dx

B x ,r
  , see [20]. It is clear that 

   
mB x ,r

p p .  . Moreover, if we use the 

Poincaré inequality over the balls [[20], Section 1] and the embedding 

         B x ,rm
pp .

m mL B x ,r L B x ,r


   [[31], Proposition 2.4], then we obtain 
 

      
             

* pp B x ,r p . p .mB x ,rmm
m mm

* * * * *

B x ,r L B x ,r L B x ,r LL B x ,r
f f cr f cr f cr f

  


        

 

for all m=1,2,...,t. Moreover, if we use the Poincaré inequality in  1L   and Remark 1, then 

we get 
 

                 
p .

m

*

B x ,r n n n L

C C C
f f x x dx diam f x x dx diam c f

r r r  

 

           

 

for all m=1,2,...,t. Since  1 n

locL , we have 
 

      
 

*
mB x ,rm

m

B x ,rp ,

B x ,r

x dx .


       

 

This yields that     
*pB x ,rm

mL B x ,r
1



 depends only on 
 m

*

B x ,r
p . Hence the claim follows from the 

inequality (3.1). 
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Corollary 2. By the previous theorem,    
p .

L
f

 
  and    

1,p .
W

f
 

 are the equivalents norms in 

   1,p .

0,W   . Hence, we can use the space 
   1,p .

0,W    equipped with the norm 

       
1,p . p .

0,W L
f f

  
   for all 

   1,p .

0,f W   . 

 

Now, we give an another capacity that has relationship with the Sobolev capacity. Let A 
. We denote 

 

        1,p .

0,p . ,
Ř A, f W : f 1 in an open set containing A ,

      

 

define 
 

   
   

 
 

 
p . ,

p x

p . ,
f Ř A,

C A, inf f x x dx



 



                                                                                (3.2) 

 

Before the presenting relationship between defined new capacity above and Sobolev   p . ,

- capacity we will give an assertion. 
 

Theorem 8. Let  0B x ,r    and 
 p .

A . For every 
    1,p .

0, 0f W B x ,r  with 

    
 p .

0L B x ,r
f 1



   , there exist a constant C such that 

 

 
 

 
 

 
 

    
 0 0

p x

p x

0

B x ,r B x ,r

f x
x dx C f x x dx B x ,r .

r


  
      

   
   

   

 

Proof. By Lemma 7.14 in [15], we obtain that  
 

 0

n 1

B x ,r

f y
f x C dy

x y






  for all 

  1,1

0, 0f W B x ,r  and for almost all  0x B x ,r . [[42], Lemma 2.8.3] shows us that the 

inequality 
 

 

 

  
0

n 1

B x ,r

f y
dy CrM f x

x y



 


  

 

holds. Thus we get 
 

  
f x

CM f x
r

  . This follows that 

 

 

 

 

     
 

 
 

0 0

p x

p x

B x ,r B x ,r

f x
x dx C M f x x dx.

r

 
    

 
 

   

 

If we consider the weighted version of [[7], Lemma 3.3] with     
 p .

0L B x ,r
f 1



   , then we 

obtain 
 

   
 

 
     

 

 

 

 
 

    
 

B

B
B

0 0

B B

0

p
p x

p x
p p

B x ,r B x ,r

p xp p 1

0

B x ,r

M f x x dx C M f x 1 x dx

C 2 f x x dx B x ,r
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where 
       p . p .n nM : L L   is bounded due to 

 p .
A . This follows the claim. 

 

Theorem 9. Let   n

0B B x ,r   be a ball with r 1  and let A B . Assume that  is a 

weight function such that  x 1   for all nx . Then there exists a constant C such that 
 

            0p x

p . , p . ,
C A Cr 1 C A,2B C 2B 

                                                                         (3.3) 

 

and 
 

         
0

p 1

p . , p . ,p x

C2
C A,2B C A .

r

 

 
                                                                                                (3.4) 

 

Proof. Suppose that f is an admissible function for 
   p . ,

C A,2B


, that is, 
   p . ,

f Ř A,2B .


  

Then 
   1,p .

0,f W 2B  such that f 1  in open set containing A. Therefore we have 
   p . ,

f S A .


  

By (2.1) we get 
   0p x p x

r r
 

  for every x 2B . If we consider the fact that  x 1   for all 

nx  and Theorem 8, then we have 
 

   
 

     
 

   02 B
p x p xp xp 1

A A 2B

A x dx f x x dx C2 r f x x dx 2B .
 



 
         

 
    

 

This follows that 
 

        
 

     0 02B 2B
p xp x p xp 1 p 1

p . ,

2B

C A C2 r 1 f x x dx C2 r 2B .
  


       

 

The inequality (3.3) is satisfied by taking the infimum over 
   p . ,

f Ř A,2B


  from the last 

inequality. 

Now, let 
   p . ,

f S A .


  Also, suppose that  0g C 2B  be a function such that 0 g 1  , 

g 1  on B, and 
C

g
r

  . Hence 
   p . ,

fg Ř A,2B


  and we get 

 

       
 

   
 

 

   
 

   
 

 

0

0

p x p xp 1

p . , p x

2B 2B

p 1
p x p x

p x

2B 2B

C
C A,2B 2 f x x dx f x x dx

r

C2
f x x dx f x x dx .

r











 
     

 

 
     

 

 

 

 

 

The claim (3.4) follows by the infimum over all 
   p . ,

f S A .


  
 

Corollary 3. Let 
n   be a bounded open set and A⋐Ω. Then 

   p . ,
C A 0


  if and only if 

   p . ,
C A, 0


  . 
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4. DIRICHLET ENERGY INTEGRAL 

 

Now, we will investigate Dirichlet energy integral as mentioned introduction. Assume that 
n   is an open set and let 

   1,p .
h W  . We define the energy operator corresponding to 

the boundary value function h on 
   1,p .

0,W    as 
 

       
 

 
p xp . ,

,hE f f x h x x dx.






     

 

Our main goal of this section is to investigate a function that minimizes values of the energy 

operator 
 p . ,

,hE



 on the space 

   1,p .

0,W   . 

The operator E is convex if for all  0,1  and each pair f ,g X  the inequality 

        E f 1 g E f 1 E g       is satisfied. Also, the operator E is said to be lower 

semicontinuous if    m
m

E f liminf E f


  whenever mf f  in X as m . Finally, the operator 

E is coercive if  mE f   whenever m X
f  . The proof of the following theorem was given 

by [[27], Theorem 2.1]. 
 

Theorem 10. Suppose that X is a reflexive Banach space. If E : X   is a convex, lower 

semicontinuous and coercive operator, then there exists an element in X that minimizes E. 
 

Now, we consider the existence of the minimizer for the energy operator 
 p . ,

,hE


  on the space 

   1,p .

0,W   . 
 

Theorem 11. Let 
n   be a bounded set. If the exponent p(.) satisfies the jump condition in 

Ω, then there is a function 
   1,p .

0,f W    such that 
 

   
   

   
1,p .

0,

p . , p . ,

,h ,h
g W

E f inf E g .


 

 
 

                                                                                                      (4.1) 

 

Proof. Our motivation to proof is the previous theorem. It is known that the space 
   1,p .

0,W    is a 

reflexive Banach space. Since the function 
 p .

t t  is convex, we have 
 

                
 

           
p xp . , p . , p . ,

,h ,h ,hE f 1 g f x h x 1 g x h x x dx E f 1 E g
  

  



               
 

for all  0,1 , and 
   1,p .

0,f ,g W   . Hence the energy operator 
 p . ,

,hE


  is convex. 

Now  m m
f


 be a sequence of functions in the space 

   1,p .

0,W    converging 
   1,p .

0,f W   . 

By the Corollary 2, we have 
 

       
   

1,p .p .
0 ,

m m WL
f h f h f f 0




        

 

as m . Since p   , we find that    
    p . mL
f h f h 0

 
       as m , see 

[31]. This follows that 
 

   
      

  p . p .mL L
f h f h
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as m , see [31]. Hence 
 

   
      

  p . p . mL Lm
f h liminf f h

  
        

 

that is the energy operator 
 p . ,

,hE



 is lower semicontinuous. 

By the Theorem 7, we get that    
p .m L

f
 

   whenever    
1,p .

0,
m W

f
 

 . If we consider 

the inequality 
 

           
p . p . p .m mL L L

f f h h
    

      , 

 

then we have    
p .m L

f h
 

    as m . Since p   , we obtain that 

   
  p . mL
f h

 
      as m . This implies that the energy operator 

 p . ,

,hE



 is coercive. The 

proof is completed by Theorem 10. 

We deals with quasilinear equations of the form 
 

 divÂ x, f 0    
 

where 
n n nÂ :    is a mapping satisfying the following assumptions for some 

constants 0  
 

(i) the mapping  x Â x,   is measurable for all 
n  and the mapping  Â x,   is 

continuous for a.e. 
nx . 

(ii)    
 p .

Â x, x     

(iii)    
 p . 1

Â x, x


     

(iv)       1 2 1 2Â x, Â x, 0        whenever n

1 2,   , 1 2    

(v)  
 

 
p . 2

Â x, Â x,


      whenever  , 0  . 
 

In particular, we give the growth condition    
 p .

Â x, x     . Now, we define the 

weighted  p . - Laplace equation as 
 

   
  p . 2

p . ,
div x f f 0




                                                                                                (4.2) 

 

for every 
   1,p .

0,f W   . 

Throughout this paper we assume that 
n   for n 2 , is an open set. We say that a 

function 
   1,p .

,locf W   is a (weak) weighted solution of (4.2) in Ω, if 
 

 
 

     
p x 2

f x f x g x x dx 0




      

 

whenever  0g C  . Moreover, a function 
   1,p .

,locf W   is a (weak) weighted 

supersolution of (4.2) in Ω, if 
 

 
 

     
p x 2

f x f x g x x dx 0




                                                                                        (4.3) 
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whenever  0g C   is nonnegative. A function f is a weighted subsolution in Ω if -f is a 

  p . , - supersolution in Ω, and a weighted solution in Ω. 

We recall the Dirichlet spaces as 
            1,p . 1,p . p .

,locD f W : f L         . Now we 

improve the definition of weighted solution and supersolution. 
 

Theorem 12. If 
   1,p .

f D   is a solution (respectively, a supersolution) of (4.2) in Ω, then 
 

 
 

     
p x 2

f x f x g x x dx 0




      (respectively, 0 ) 

 

for all 
   1,p .

g W   (respectively, for all nonnegative 
   1,p .

g W  ). 
 

Proof. Let the function 
   1,p .

0,g W    be given. Hence we may take a sequence of functions 

 i 0g C   such that ig g  in 
   1,p .

W  . By the variable case of Lemma 1.23 in [20], if g is 

nonnegative, then we may pick nonnegative functions ig  for each i. If we consider the 

assumption (iii) above, then we have 
 

 
 

       
 

       
 

     

 

       

p .

p . 1 p .

p x 2 p x 2 p x 2

i i

iL L

f x f x g x x dx f x f x g x x dx f x g x g x x dx

C f g g

 

  

  

 

              

    

  

 

by the variable exponent Hölder inequality. Since p   , we get    
p .i L

g g 0
 

    as 

i  . This follows that 
 

 
 

       
 

     
p x 2 p x 2

i
i

f x f x g x x dx lim f x f x g x x dx 0.
 


 

            

 

That is the desired result. 

The proof of previous theorem give us an important fact that if f is any solution (respectively, 

supersolution) in Ω, then (4.3) is satisfied for all (respectively, nonnegative) 
   1,p .

0,g W    with 

compact support. 
 

Remark 2. In 2003, Fan and Zhang obtained a weak solution in 
   1,p .

0W   to the Dirichlet 

problem of  p x - Laplacian 
 

    
p x 2

div u u f x,u ,      x

u 0,                                         x

    

  

 

 

where f :   is a Carathéodory function which satisfies the growth condition, see 

[14]. Moreover, in recent years,  p x - Laplacian equations and variational problems with  p x - 

growth conditions have been studied by several authors, see [4], [5], [11], [14], [21], [26], [32], 

[33], [36], [38]. Hence ,weak solutions of weighted  p x - Laplacian equations 
 

 
    

p x 2
div x u u f x,u ,      x

u 0,                                                   x
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can be found in 
   1,p .

0,W    by using variational and topological methods under suitable 

conditions for f and  functions. 
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