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ABSTRACT 

 

The purpose of this work is obtain the numerical approximate solutions of the nonlinear modified Burgers’ 
equation (MBE) via the modified cubic B-spline (MCB) differential quadrature methods (DQMs). The 

accuracy and effectiveness of the methods are measured and reported by finding out error norms 𝐿2 and  𝐿∞. 
The present numerical results have been compared with some earlier studies and this comparison clearly 

indicates that the method is an outstanding numerical scheme for the solution of the MBE. A stability analysis 

has at the same time been given. 
Keywords: Differential quadrature method, modified Burgers’ equation, B-spline, Runge-Kutta method. 

AMS classification: 65M99, 65M012, 65D07, 65L06, 65L20.  

 

 

1. INTRODUCTION 

 

The nonlinear Burgers’ equation (BE) first was first launched by Bateman [1] and then 

handled by Burgers’ [2], has the following form 
 

𝑢𝑡 + 𝑢𝑢𝑥 − 𝜗𝑢𝑥𝑥 = 0,                                                                                        (1) 
 

in which 𝜗 is a positive parameter which may be indicate the viscosity and the subscripts 𝑡 
and 𝑥 show time and space derivatives, respectively. The viscosity parameter serves as a regulator 

the balance between the convection and diffusion terms. When the viscosity parameter is taken 

zero (𝜗 = 0) the Burgers’ equation is turns into inviscid Burgers’ equation, which is the model for 

evaluation of shock waves that has a great importance in physical applications [3]. Seydaoğlu [4] 

is presented numerical solution of the Burgers’ equation via splitting methods for small value of 

viscosity parameter. BE is very important in fluid dynamics especially for turbulence problems, 

gas dynamics, heat conduction, continuous stochastic processes and theory of shock waves [5]. 

The modified Burgers’ equation (MBE) discussed in the present study depends on the 

Burgers’ equation (BE) of the following form 
 

𝑢𝑡 + 𝑢
2𝑢𝑥 − 𝜗𝑢𝑥𝑥 = 0.                                                                                        (2) 
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The MBE has the strong non-linear behaviours and also has widely been utilized in physical 

problems, for example for example turbulence transport, non-linear waves in a medium having 

low-frequency pumping or absorption, wave process in thermoelastic media, dispersion and 

transport of pollutants inside rivers and also sediment transportation, ion reflection available at 

quasi-perpendicular shocks [6]. Recently, some numerical studies of the equation have been 

presented: Bratsos [6] has used a finite difference scheme for calculating the numerical solution 

of the MBE. Ramadan and Danaf [8] and Ramadan et al. [7] have used the quintic and the septic 

B-spline collocation methods, respectively. A special lattice Boltzmann model is developed by 

Duan et al. [9]. Saka et al. [10] have developed a Galerkin FEM solution of the MBE. A solution 

bas ed on sextic B-spline collocation method is proposed by Irk [11]. Roshan et al. [12] has 

applied a Petrov-Galerkin method. A discontinuous Galerkin method is presented by Zhang 

Rong-Pei et al. [13]. Başhan et al. [14] have utilized quintic B-spline DQM to solve it 

numerically and Karakoç et al. [15] have solved the problem via two different methods namely, 

subdomain FEM and DQM and used quartic B-spline base functions at the both of the methods. 

Aswin and Awasthi [16] are investigated numerical solution of the MBE via iterative differential 

quadrature algorithms. Lakshmi and Awasthi [17] researched solution of the MBE numerically 

via quintic spline collocation method and Crank-Nicolson scheme. 

Bellman et al. [18] has firstly introduced DQM for solving the differential equations easily, in 

1972 where partial derivative of a function in terms of a space direction is mentioned as a linear 

weighted sum of all of the values of the function for every grid point on the space direction [19]. 

DQM has widely been popular in recent years thanks to the easy usage of the method for many 

applications. Several authors have used different types of DQMs by using different test problems 

[20–33]. 

In the past few decades, DQM has become a very efficient and effective method for obtaining 

approximate solutions for different types of partial differential equations due to its simplicity for 

application. The DQM has several advantages over the other conventional techniques, basically, it 

prevents linearization and perturbation for finding better solutions of present nonlinear equations. 

Since MCB-DQM do not need transformation for solving the equation, the method has been 

preferred. 

In the present work, we have applied a MCB-DQMs for obtaining numerical solutions of the 

MBE. To illustrate the outstanding advantages of the MCB-DQMs and make a comparison of 

numerical solutions we have taken different values of 𝜗. A stability analysis has also been given. 

 

2. MODIFIED CUBIC B-SPLINE BASED DIFFERENTIAL QUADRATURE METHOD 

 

First, we will handle the Eq.(2) having the following initial condition 
 

𝑈(𝑥, 0) = 𝑓(𝑥),  𝑎 ≤ 𝑥 ≤ 𝑏,                                                                               (3) 
 

and boundary conditions 
 

𝑈(𝑎, 𝑡) = ℎ1(𝑡),     𝑈(𝑏, 𝑡) = ℎ2(𝑡),     𝑡 ∈ [0, 𝑇]                                              (4) 
 

in which ℎ1(𝑡) and ℎ2(𝑡) are constants. 

Let us take the grid distribution 𝑎 = 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 = 𝑏 of the closed interval [𝑎, 𝑏]. In 

case a predefined function 𝑈(𝑥) is smooth enough on the solution region of the problem, its 

derivatives with regard to 𝑥 at a nodal point 𝑥𝑖 may also be approximated by a linear combination 

the values of the function over the solution region, that is, 
 

𝑈𝑥
(𝑟)
=

𝑑(𝑟)𝑈

𝑑𝑥(𝑟)
|
𝑥𝑖
= ∑ 𝑤𝑖𝑗

(𝑟)𝑁
𝑗=1 𝑈(𝑥𝑗),   𝑖 = 1, 2,… , 𝑁, 𝑟 = 1, 2, … ,𝑁 − 1                  (5) 

 

in which 𝑟 is used to denote the order of derivative, 𝑤𝑖𝑗
(𝑟)

 are used to represent the weighting 

coefficients of the 𝑟 - th order derivative approximation, and 𝑁 is used to denote the number of 

Y. Uçar, N.M. Yağmurlu, A. Başhan     / Sigma J Eng & Nat Sci 37 (1), 129-142, 2019 



131 

 

nodal points over the solution region. In this equation, the index 𝑗 is used to denote the fact that 

𝑤𝑖𝑗
(𝑟)

 is the related weighting coefficients for the values of function 𝑈(𝑥𝑗). 

In the present study, we are going to need the first and the second order derivatives of he 

function 𝑈(𝑥). So, we will find the value of the equation (5) for the values of 𝑟 = 1, 2. 

Let Κ𝑖(𝑥)  denote the cubic B-splines having meshes at the points 𝑥𝑖 in which the uniformly 

scattered 𝑁 nodal points are taken as 𝑎 = 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 = 𝑏 on the real axis. Next, the 

cubic B-splines {Κ0, Κ1, … , Κ𝑁+1} constitute a basis for functions described over [𝑎, 𝑏]. Those 

cubic B-spline basis functions Κ𝑖(𝑥) are given by the following equalities: 
 

Κ𝑖(𝑥)   =
1

ℎ3

{
 
 

 
 
(𝑥 − 𝑥𝑖−2)

3                                                                , [𝑥𝑖−2, 𝑥𝑖−1]

(𝑥 − 𝑥𝑖−2)
3 − 4(𝑥 − 𝑥𝑖−1)

3                                      , [𝑥𝑖−1, 𝑥𝑖]

(𝑥𝑖+2 − 𝑥)
3 − 4(𝑥𝑖+1 − 𝑥)

3                                      , [𝑥𝑖 , 𝑥𝑖+1]

(𝑥𝑖+2 − 𝑥)
3                                                               , [𝑥𝑖+1, 𝑥𝑖+2]

0                                                                                        , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

where ℎ = 𝑥𝑖 − 𝑥𝑖−1 for all 𝑖 [34]. Table 1 shows the values of cubic B-spline functions and 

their derivatives given at the nodal points. 

 

Table 1. The values of cubic B-spline functions and their derivatives. 
 

X 𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 

Κ𝑖 0 1 4 1 0 

Κ𝑖
′ 0 3 ℎ⁄  0 −3 ℎ⁄  0 

Κ𝑖
′′ 0 6 ℎ2⁄  −12 ℎ2⁄  6 ℎ2⁄  0 

 

A matrix system of equations which is dominant in diagonal is obtained by using the modified 

cubic B-splines. This structure of diagonally dominant matrix is also great value to the stability 

analysis. The modification process of cubic B-spline functions can also be performed in a 

different way. We used the modification which is presented by Mittal and Jain [36] as given 

below 
 

Ψ1(𝑥) = Κ1(𝑥) + 2Κ0(𝑥) 
Ψ2(𝑥) = Κ2(𝑥) − Κ0(𝑥) 
Ψ𝑠(𝑥) = Κ𝑠(𝑥), for 𝑠 = 3,4, … , 𝑁 − 2                                                      (6) 

Ψ𝑁−1(𝑥) = Κ𝑁−1(𝑥) − Κ𝑁+1(𝑥) 
Ψ𝑁(𝑥) = Κ𝑁(𝑥) + 2Κ𝑁+1(𝑥) 
 

where Ψ𝑡, (𝑡 = 1, 2, … ,𝑁) constitutes a basis functions on the [a, b] domain. 

 

2.1.  Obtaining the Weighting Coefficients Related to First Order Derivative 

 

Firstly, to obtain weighting coefficients of the first order the value of 𝑟 = 1 is used in Eq.(5). 

So, 
 

Ψ𝑡
′(𝑥𝑖) = ∑ 𝑤𝑖𝑗

(1)𝑁
𝑗=1 Ψ𝑡(𝑥𝑗)  for 𝑖 = 1, 2,… , 𝑁;  𝑡 = 1, 2, … , 𝑁                            (7) 

 

equation is obtained. In the first place, for the first nodal point 𝑥1 (7), we get form as 
 

Ψ𝑡
′(𝑥1) = ∑ 𝑤1𝑗

(1)𝑁
𝑗=1 Ψ𝑡(𝑥𝑗)  for   𝑡 = 1, 2, … , 𝑁                                                     (8) 

 

and utilizing the modified cubic B-spline basis functional values 
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[
 
 
 
 
 
 
6 1
0 4 1

1 4 1
⋱ ⋱ ⋱

1 4 1
1 4 0

1 6 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 𝑤1,1

(1)

𝑤1,2
(1)

𝑤1,3
(1)

⋮

𝑤1,𝑁−1
(1)

𝑤1,𝑁
(1)

]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
−6 ℎ⁄

6 ℎ⁄
0
⋮

0
0 ]

 
 
 
 
 
 
 

                                       (9) 

 

equation system is obtained. In a similar way, utilizing the functional values of the modified 

cubic B-spline basis function at the 𝑥𝑖, (2 ≤ 𝑖 ≤ 𝑁 − 1) grid points, respectively, 
 

[
 
 
 
 
 
 
6 1
0 4 1

1 4 1
⋱ ⋱ ⋱

1 4 1
1 4 0

1 6 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 𝑤𝑖,1

(1)

⋮

𝑤𝑖,𝑖−1
(1)

𝑤𝑖,𝑖
(1)

𝑤𝑖,𝑖+1
(1)

⋮

𝑤𝑖,𝑁
(1)
]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
0
⋮
0

−3 ℎ⁄
0
3 ℎ⁄
0
⋮
0 ]

 
 
 
 
 
 
 
 

                                     (10) 

 

a system of equations is found. Finally, for the last nodal point 𝑥𝑁 
 

[
 
 
 
 
 
 
6 1
0 4 1

1 4 1
⋱ ⋱ ⋱

1 4 1
1 4 0

1 6 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 𝑤𝑁,1

(1)

𝑤𝑁,2
(1)

⋮

𝑤𝑁,𝑁−2
(1)

𝑤𝑁,𝑁−1
(1)

𝑤𝑁,𝑁
(1)

]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0
0
⋮

0
−6 ℎ⁄

6 ℎ⁄ ]
 
 
 
 
 
 
 

                                     (11) 

 

a system of equations is found. So, weighting coefficients 𝑤𝑖,𝑗
(1)

 which are related to the 

𝑥𝑖  (𝑖 = 1, 2,… , 𝑁) are going to be found out by the solution of Eqs. (9), (10) and (11) equation 

systems by an algorithm known as Thomas. 

 

2.2.  Obtaining the Weighting Coefficients Related to Second Order Derivative (Method I) 

 

The calculation of the second order derivatives’ weighting coefficients is independently 

carried out from that of the first order ones. By using the value of 𝑟 = 2, in Eq.(5) 
 

Ψ𝑡
′′(𝑥𝑖) = ∑ 𝑤𝑖𝑗

(2)𝑁
𝑗=1 Ψ𝑡(𝑥𝑗)  for 𝑖 = 1, 2,… , 𝑁;  𝑡 = 1, 2,… , 𝑁                          (12) 

 

equation is obtained. In the first place, for the first nodal point 𝑥1 (12), we easily obtain the 

following form 
 

Ψ𝑡
′′(𝑥1) = ∑ 𝑤1𝑗

(2)𝑁
𝑗=1 Ψ𝑡(𝑥𝑗)  for   𝑡 = 1, 2, … , 𝑁                                                   (13) 

 

and utilizing the functional values of the modified cubic B-spline basis functions 
 

Y. Uçar, N.M. Yağmurlu, A. Başhan     / Sigma J Eng & Nat Sci 37 (1), 129-142, 2019 



133 

 

[
 
 
 
 
 
 
6 1
0 4 1

1 4 1
⋱ ⋱ ⋱

1 4 1
1 4 0

1 6 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 𝑤1,1

(2)

𝑤1,2
(2)

𝑤1,3
(2)

⋮

𝑤1,𝑁−1
(2)

𝑤1,𝑁
(2)

]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0
0
⋮

0
0 ]
 
 
 
 
 
 
 

                                            (14) 

 

equation system is obtained. In a similar way, utilizing the functional values of the modified 

cubic B-spline basis functions 𝑥𝑖, (2 ≤ 𝑖 ≤ 𝑁 − 1) grid points, respectively, 
 

[
 
 
 
 
 
 
6 1
0 4 1

1 4 1
⋱ ⋱ ⋱

1 4 1
1 4 0

1 6 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 𝑤𝑖,1

(2)

⋮

𝑤𝑖,𝑖−1
(2)

𝑤𝑖,𝑖
(2)

𝑤𝑖,𝑖+1
(2)

⋮

𝑤𝑖,𝑁
(2)
]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

0
⋮
0

6 ℎ2⁄

−12 ℎ2⁄

6 ℎ2⁄
0
⋮
0 ]

 
 
 
 
 
 
 
 

                                     (15) 

 

a system of equations is found. Again for the last nodal point 𝑥𝑁 
 

[
 
 
 
 
 
 
6 1
0 4 1

1 4 1
⋱ ⋱ ⋱

1 4 1
1 4 0

1 6 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 𝑤𝑁,1

(2)

𝑤𝑁,2
(2)

⋮

𝑤𝑁,𝑁−2
(2)

𝑤𝑁,𝑁−1
(2)

𝑤𝑁,𝑁
(2)

]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0
0
⋮

0
0 ]
 
 
 
 
 
 
 

                                            (16) 

 

equation system is found out. Therefore, weighting coefficients 𝑤𝑖,𝑗
(2)

 related to the  𝑥𝑖  (𝑖 =

1, 2, … , 𝑁) are obtained easily by solving (14), (15) and (16) equation systems using the widely 

used Thomas algorithm. 

 

2.3.  Obtaining the Weighting Coefficients Related to Second Order Derivative (Method II) 

 

The present method is depending on utilizing the first order weighting coefficients in order to 

obtain the weighting coefficients of the second order derivatives. When the Shu’s iterative 

formulae is used, the second order weighting coefficients are found out for 𝑖 = 1, 2,… , 𝑁 and 

𝑗 = 1, 2, … , 𝑁 as below [19]: 
 

𝑤𝑖,𝑗
(2)
= 2𝑤𝑖,𝑗

(1)
(𝑤𝑖,𝑖

(1)
−

1

𝑥𝑖−𝑥𝑗
),  for 𝑖 ≠ 𝑗 

𝑤𝑖,𝑖
(2)
= − ∑ 𝑤𝑖,𝑗

(2)

𝑁

𝑗=1,𝑗≠𝑖

 

 

3. NUMERICAL DISCRETIZATION PROCESS 

 

The modified Burgers’ equation of the form 
 

𝑈𝑡 + 𝑈
2𝑈𝑥 − 𝜗𝑈𝑥𝑥 = 0,                                                                                      (17) 
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having the initial condition (3) and the boundary conditions (4) is rewritten as, 
 

𝑈𝑡 = −𝑈
2𝑈𝑥 + 𝜗𝑈𝑥𝑥 = 0.                                                                                  (18) 

 

After that the differential quadrature approach have been used in Eq. (18) 
 

𝑑𝑈(𝑥𝑖)

𝑑𝑡
= −𝑈2(𝑥𝑖 , 𝑡)∑ 𝑤𝑖𝑗

(1)𝑁
𝑗=1 𝑈(𝑥𝑗 , 𝑡) + 𝜗∑ 𝑤𝑖𝑗

(2)𝑁
𝑗=1 𝑈(𝑥𝑗 , 𝑡), 𝑖 = 1, 2,… , 𝑁                   (19) 

 

and ODE (19) is obtained. Next, ODE in Eq. (19) is integrated in terms of time via a suitable 

method. In this manuscript, we have chosen strong stability preserving low storage Runge-

Kutta4(3)5[3S∗] method [37] thanks to its outstanding characteristics such as accuracy, stability 

and the allocated memory storage. 

 

4. NUMERICAL RESULTS AND STABILITY ANALYSIS 

 

In the present section, we will find out the numerical solutions of the MBE via MCB-DQM. 

The efficiency of the present method has been controlled via the error norms 𝐿2 and 𝐿∞, 

respectively: 
 

𝐿2 = ‖𝑈
𝑛 − 𝑢𝑛‖2 ≅ √ℎ∑|𝑈𝑗 − 𝑢𝑗|

2
𝑁

𝑗=1

, 

𝐿∞ = ‖𝑈𝑛 − 𝑢𝑛‖∞ ≅ max
𝑗
|𝑈𝑗 − 𝑢𝑗|,  𝑗 = 1,2, …𝑁 − 1. 
 

Calculation of the eigenvalues for the coefficient matrices is a requirement for the stability 

analysis of a numerical technique used for a differential equation which is nonlinear. With the 

application of DQM to the MBE, the equation becomes an ODE. 

The stability of a time-dependent problem: 
 

𝜕𝑈

𝜕𝑡
= 𝑙(𝑈),                                                                                      (20) 

 

having the appropriate initial and boundary conditions, in which 𝑙 is a spatial differential 

operator. When discretized via DQM, Eq. (20) turns into a group of ODEs in time as follows 
 

𝑑{𝑈}

𝑑𝑡
= [𝐴]{𝑢} + {𝑏}                                                                        (21) 

 

in which {u} is a vector consisting of the unknown values of the function nodal points except 

for the both boundary points, {b} is a vector containing the non-homogenous part and the 

boundary conditions and A is the coefficient matrix. The stability of ODE given by Eq.(21) also 

determines that of numerical scheme for numerical integration of Eq.(21). When ODE given in 

Eq.(21) is not stable, it is possible that the numerical methods do not generate convergent 

solutions. It is obvious that the stability of Eq. (21) depends on the eigenvalues of matrix 𝐴, for its 

analytical solution is directly given by the eigenvalues of this matrix. When all 𝑅𝑒(𝜆𝑖) ≤ 0 for all 

𝑖 is enough to illustrate the stability of the analytical solution of {𝑢} as 𝑡 → ∞  in which 𝑅𝑒(𝜆𝑖) 
denotes the real part of the eigenvalues 𝜆𝑖 of the matrix 𝐴. The matrix 𝐴 at Eq.(21) is evaluated as 

𝐴𝑖𝑗 = −𝛼𝑖
2𝑤𝑖,𝑗

(1)
+𝜗𝑤𝑖,𝑗

(2)
   where 𝛼𝑖 = 𝑈(𝑥𝑖 , 𝑡) [19]. It is necessary that the eigenvalues of matrix 𝐴 

be inside the stability domain illustrated in Figure 1 [38].  
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Figure 1. SSP-Runge-Kutta method stability regions. 

 

The analytical solution of MBE is given in [35] as: 
 

𝑈(𝑥, 𝑡) =
(𝑥 𝑡⁄ )

1+(√𝑡 𝑐0⁄ )𝑒𝑥𝑝(𝑥2 4𝜗𝑡⁄ )
                                                                 (22) 

 

where 𝑐0 is a constant and 0 < 𝑐0 < 1 . For our numerical calculations, we take 𝑐0 = 0.5. We 

use the initial condition for the Eq.(22) evaluating at 𝑡 = 1 and the boundary conditions are taken 

as 𝑈(0, 𝑡) = 0 and 𝑈(1, 𝑡) = 0 .  

For the numerical simulation, we have chosen the various viscosity parameters ranging from 

𝜗 = 0.01, to 𝜗 = 0.0005 and time step ∆𝑡 = 0.01, ∆𝑡 = 0.001 over the interval 0 ≤ 𝑥 ≤ 1. The 

behaviors of the numerical solutions for different values of viscosity are illustrated in Figure 2. As 

it is observed from the Figure 2, when we select the solution domain 0 ≤ 𝑥 ≤ 1 by the decreasing 

values of viscosity parameters 𝜗, the amplitude of waves have decreased, the waves became steep 

and both of the solutions with Method 1 and Method 2 have became indistinguishable. Also, we 

have seen from the Figure 2 that when the time increases the curve of the the numerical solution 

decay. With smaller viscosity value, the decay of numerical solution has become faster. 

In Figure 3 absolute errors are drawn at time 𝑡 = 10 for various viscosity parameters from 

𝜗 = 0.01, to 𝜗 = 0.0005 by both methods, respectively. As it seen from Figure 3 error norms 

have similar values for Method 1 and Method 2. Maximum error occurs at the right hand 

boundary when greater value of viscosity 𝜗 = 0.01 is taken and with smaller value of viscosities 

𝜗 = 0.005, 𝜗 = 0.001 and 𝜗 = 0.0005 maximum error has been monitored near the point at 

which the shock wave has its highest amplitude. 
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Figure 2. Behaviour of numerical solutions at various time for 𝜗 = 0.01, 𝜗 = 0.005, 𝜗 = 0.001 

and 𝜗 = 0.0005, respectively. 
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The computed values of the error norms 𝐿2 and 𝐿∞ are presented at some selected times up to 

𝑡 = 10. The obtained results are tabulated in Tables [2−5]. As it is seen from the Table 2, the 

error norms 𝐿2 and 𝐿∞  are sufficiently small and satisfactorily acceptable. Also, it is clearly 

observed from these tables that from comparison of present solutions with earlier works that 

MCB-DQMs using less number of grid points solutions are better than quintic B-spline DQM. 

[20] and septic collocation FEM [7]. When we have extended the solution domain from 0 ≤ 𝑥 ≤
1 to 0 ≤ 𝑥 ≤ 1.3 present numerical results that compared and tabulated with earlier work [14] at 

Table 3 are acceptable. In Tables 4 and 5 clearly seen that if the value of viscosity 𝜗 decrease, the 

value of the error norms will decrease, too. We have obtained the better results if the value of 

viscosity parameter is get smaller. In Table 5 numerical results for 𝜗 = 0.005 and 𝜗 = 0.0005 

are given. Also, at Table 5 the error norms of 𝐿2 and 𝐿∞ obtained by the present methods are 

enough small for acceptance. 

 

Table 2. 𝐿2 and 𝐿∞ error norms for 𝜗 = 0.01, ∆𝑡 = 0.01 at 0 ≤ 𝑥 ≤ 1. 
 

  Method 1 N = 11  Method 2 N = 11 Quin. DQM.[20]N = 51 Sep. Coll. [7] N = 51 

𝑡 𝐿2 × 10
3 𝐿∞ × 10

3 𝐿2 × 10
3 𝐿∞ × 10

3 𝐿2 × 10
3 𝐿∞ × 10

3 𝐿2 × 10
3 𝐿∞ × 10

3 

2 0.520872 1.265996 0.744386 1.497042 0.688316 1.406116 0.790430 1.703092 
3 0.547643 1.079945 0.622754 1.210896 0.611194 1.228470 0.655193 1.183270 

4 0.535512 0.998953 0.543888 0.988942 0.551891 1.047041 0.557679 0.996452 

5 0.519949 0.858252 0.505238 0.888133 0.524368 0.911470 0.510562 0.856134 

6 0.521119 0.799671 0.502769 0.772025 0.536004 0.814737 0.516723 0.761053 

7 0.548745 0.734032 0.532253 0.762053 0.583793 1.014095 0.567744 1.065455 

8 0.598388 0.962144 0.582727 0.995931 0.652737 1.301495 0.642754 1.358111 

9 0.659246 1.181440 0.642355 1.203811 0.727927 1.545607 0.723643 1.604831 

10 0.722110 1.368425 0.702863 1.380314 0.800131 1.742584 0.800256 1.802394 

 

Table 3. 𝐿2 and 𝐿∞ error norms for 𝜗 = 0.01, ∆𝑡 = 0.01 at 0 ≤ 𝑥 ≤ 1.3. 
 

  Method 1 N = 11  Method 2 N = 11 Quin. DQM.[14]N = 51 Quar. DQM. [14]N = 51 

𝑡 𝐿2 × 10
3 𝐿∞ × 10

3 𝐿2 × 10
3 𝐿∞ × 10

3 𝐿2 × 10
3 𝐿∞ × 10

3 𝐿2 × 10
3 𝐿∞ × 10

3 

2 0.575145 1.399995 0.855814 1.814488 0.647514 1.418692 0.888636 1.842686 

3 0.585931 1.087017 0.667538 1.163823 0.603831 1.248161 0.783980 1.273734 

4 0.563132 1.027359 0.545585 0.924348 0.559737 1.074432 0.684999 1.040082 

5 0.534899 0.905242 0.475804 0.841016 0.524882 0.939394 0.594035 0.897385 

6 0.507374 0.782472 0.432537 0.727781 0.496279 0.834173 0.507332 0.772407 

7 0.482391 0.731187 0.403642 0.632487 0.472949 0.751101 0.427485 0.662413 
8 0.461106 0.675984 0.384467 0.593127 0.455623 0.685356 0.357823 0.567976 

9 0.444932 0.620800 0.373711 0.549625 0.445747 0.631350 0.301899 0.489850 

10 0.435297 0.569807 0.371088 0.508189 0.444390 0.587301 0.263822 0.424509 

 

Table 4. 𝐿2 and 𝐿∞ error norms for 𝜗 = 0.001, ∆𝑡 = 0.01 at 0 ≤ 𝑥 ≤ 1. 
 

  Method 1 N = 11  Method 2 N = 11 Quin. DQM.[20]N = 166 Sep. Coll. [7] N = 201 

𝑡 𝐿2 × 10
3 𝐿∞ × 10

3 𝐿2 × 10
3 𝐿∞ × 10

3 𝐿2 × 10
3 𝐿∞ × 10

3 𝐿2 × 10
3 𝐿∞ × 10

3 

2 0.127939 0.402897 0.186973 0.651824 0.127227 0.457137 0.183549 0.818521 

3 0.122057 0.432444 0.138003 0.457424 0.110849 0.389233 0.144142 0.523483 
4 0.112170 0.366878 0.105227 0.303682 0.098569 0.333200 0.114411 0.356354 

5 0.103869 0.302373 0.086320 0.241783 0.090234 0.288512 0.094787 0.254979 

6 0.096985 0.266505 0.074980 0.207681 0.084073 0.254679 0.081418 0.213485 

7 0.091180 0.247102 0.067703 0.193589 0.079187 0.228346 0.071898 0.188005 

8 0.086203 0.225710 0.062680 0.176297 0.075126 0.207124 0.064837 0.168260 

9 0.081876 0.205377 0.058969 0.159393 0.071646 0.190023 0.059412 0.152408 

10 0.078068 0.187063 0.056064 0.144157 0.068599 0.175928 0.055115 0.139431 
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Figure 3. Absolute errors at region 0 ≤ 𝑥 ≤ 1, 𝑡 = 10, 𝑁 = 51 for various value of 𝜗 = 0.01, 

𝜗 = 0.005, 𝜗 = 0.001 and 𝜗 = 0.0005, respectively. 
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Table 5. 𝐿2 and 𝐿∞ error norms at various time for ∆𝑡 = 0.001 at 0 ≤ 𝑥 ≤ 1. 
 

 𝜗 = 0.005, N = 11 𝜗 = 0.0005, N = 11 

  Method 1  Method 2  Method 1  Method 2 

𝑡 𝐿2 × 10
3 𝐿∞ × 10

3 𝐿2 × 10
3 𝐿∞ × 10

3 𝐿2 × 10
3 𝐿∞ × 10

3 𝐿2 × 10
3 𝐿∞ × 10

3 

2 0.375651 1.019073 0.551859 1.366950 0.056145 0.252287 0.083951 0.373187 

3 0.368724 0.886011 0.418319 0.890476 0.059030 0.257393 0.067899 0.258396 
4 0.347760 0.694557 0.331494 0.644805 0.057538 0.214512 0.057624 0.226150 

5 0.326879 0.655047 0.281799 0.558450 0.055043 0.199802 0.051556 0.187015 

6 0.307983 0.587321 0.251519 0.506531 0.052420 0.177984 0.047540 0.171625 
7 0.291229 0.520186 0.231408 0.447099 0.049923 0.159320 0.044581 0.153390 

8 0.276497 0.469593 0.217136 0.392948 0.047622 0.148779 0.042227 0.136386 

9 0.263755 0.441707 0.206833 0.364836 0.045525 0.137607 0.040258 0.126996 
10 0.253180 0.412211 0.199821 0.342825 0.043619 0.126915 0.038557 0.118341 

 

An analysis about the stability of the matrix is also carried out for the MCB-DQM. For 

software, MATLAB R2013b program is used in order to calculate the eigenvalues of the 

coefficient matrix of single soliton problem. Eigenvalues of the suggested method for varying 

number of nodal points are demonstrated in Figure 4. The eigenvalues for N = 11, N = 21 and N = 

31 have also imaginary parts for both methods. When grid points are chosen N = 41 and N = 51 

eigenvalues that are obtained by Method 1 have only real parts but eigenvalues that are obtained 

by Method 2 have imaginary parts again. It is seen that all of the eigenvalues lie in the stability 

criteria region [38]. 

Also, maximum absolute value of the eigenvalues for different number of nodal points are 

tabulated in Table 6. Method 1 produces pure real eigenvalues when the grid numbers greater 

than 41 but method 2 produces pure real eigenvalues from 101. As it is seen from Table 6 when 

the number of the nodal points are taken higher since absolute value of eigenvalue grows, time 

step should be decreased to obtain the stable solution. 

In this study, an ordinary PC Intel(R) Core(TM) i7 − 4770 CPU @ 3.40 GHz Windows 10 

Home is used for calculations. CPU time of the both methods are computed and reported at Table 

7. Those results show that the present methods are practicable and speedy. 

 

Table 6. Eigenvalues for different number of nodal points. 
 

Method 1: 𝜗 = 0.001 

Grid Number 11 21 31 41 51 101 201 

𝑀𝑎𝑥|𝑅𝑒(𝜆)| 1.08 4.68 10.68 19.68 29.88 119.88 479.88 

𝑀𝑎𝑥|𝐼𝑚(𝜆)| 0.74 1.40 0.52 0.00 0.00 0.00 0.00 

Method 2: 𝜗 = 0.001 

Grid Number 11 21 31 41 51 101 201 

𝑀𝑎𝑥|𝑅𝑒(𝜆)| 0.59 2.54 5.84 10.45 16.39 65.83 263.58 

𝑀𝑎𝑥|𝐼𝑚(𝜆)| 0.84 2.15 3.23 3.90 4.09 0.00 0.00 

 

Table 7. CPU time(sec.) for various value of 𝜗 at solution domain 0 ≤ 𝑥 ≤ 1. 
 

𝜗 ∆𝑡 N Method 1 Method 2 

0.01 0.01 11 0.015625 0.015625 

0.001 0.01 21 0.031250 0.031250 

0.005 0.001 11 0.234375 0.218750 

0.0005 0.001 41 0.765625 0.703125 
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Figure 4. Eigenvalues for various number of grid points: 𝜗 = 0.001. 

 

5. CONCLUSION 

 

Throughout this manuscript, we have tried to apply DQMs depending on the modified cubic 

B-spline basis functions for approximate solutions of the MBE. The accuracy and efficiency of 

the new method have been demonstrated by calculating the error norms 𝐿2 and 𝐿∞. The 

outstanding feature of the methods is its ability to obtain acceptable good approximations despite 

of using even less number of nodal points. This can be easily seen from the tables present in this 

article. As it can be observed by the comparison between the calculated values of the error norms 

𝐿2 and 𝐿∞ by this method and previous works, MCB-DQMs results are acceptable good. The 
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stability analysis of the numerical approximation by the eigenvalues has also been made. The 

obtained results show that MCB-DQMs may be used to obtain reasonable accurate numerical 

solutions of the MBE. So, MCB-DQMs is a reliable one to obtain the approximate solutions some 

physically important nonlinear partial differential equations. 
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