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ABSTRACT 

 

In order to stay an actual competitor in today’s environment, it is essential for manufacturing organizations to 
make decisions promptly and correctly. In the real-time manufacturing decision making problems, some 

alternatives are more likely to be evaluated with respect to multiple conflicting criteria. Several multi-criteria 

decision-making (MCDM) methods have been available to help decision makers in choosing the best decisive 
course of actions. The aim of the study is to apply an efficient and relatively new method called Evaluation 

based on Distance from Average Solution (EDAS) as an applicable and useful MCDM method for robot 

selection problem (RSP). In order to examine the feasibility and effectiveness of the presented method, several 
numerical examples from the literature are considered. Comparing with other methods especially MCDM 

methods given in the literature for the industrial RSPs, the Spearman’s rank correlations analysis indicates that 

this method is capable of accurately ranking selected robots. 
Keywords: Industrial robot, robot selection problem, manufacturing, MCDM, EDAS. 

 

 

1. INTRODUCTION  

 

A competitive environment enforces managers to make immediate decisions. These decisions 

should be made accurately with high precision in a reasonable amount of time. In the 

manufacturing sector, managers usually face problems such as the selection of product design, 

manufacturing process, machine tool, industrial robot, material handling equipment, and etc. 

while evaluating some alternatives and selecting the best one based on conflicting criteria [1]. 

One of the challenging problems confronted by managers (decision makers) in a given industrial 

application is to select the most suitable industrial robot in order to achieve the desired output 

with minimum cost and specific application ability [2].  

Robots are used extensively in many manufacturing companies since they are useful 

automated and reprogrammable machines with different features improved for handling specific 

tasks to increase efficiency and quality. The capability of moving on two or more axes and 

responding to various sensory inputs are the extensive features of robots. Many tasks such as 

assembly, welding, material handling, loading, packaging, inspection, and testing that require 
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high endurance, speed, and precision are included in the applications of robots. Using and 

adapting inappropriate robots could decrease productivity and benefit, thus, it is crucial to decide 

the most appropriate robot for a particular task. Therefore, several attributes (criteria) including 

objective or  subjective features in nature have to be considered for selecting a robot effectively. 

While the objective criteria are those that are quantitative in nature (such as load capacity, 

repeatability, memory capacity, manipulator reach, and degree of freedom, etc.), the subjective 

criteria are those that are qualitative in nature (such as service quality of vendor, and 

programming flexibility of a robot, etc.). 

Due to the objective and/or subjective criteria in the selection of industrial robots, the robot 

selection problem (RSP) can be considered as a Multi-Criteria Decision-Making (MCDM) 

problem involving a large number of criteria with several alternative robots. Therefore, it is 

necessary to use an efficient MCDM method for selecting the best alternative robot. A number of 

MCDM methods are presented for solving different decision-making problems including RSP in 

the manufacturing environment. These methods are Graph Theory and Matrix Approach 

(GTMA), Simple Additive Weighting (SAW), Weighted Product Method (WPM), Analytic 

Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS), Data Envelopment Analysis (DEA), Preference Ranking Organization Method for 

Enrichment Evaluations (PROMETHEE), ELimination Et Choix Traduisant la REalité 

(ELECTRE), COmplex PRoportional ASsessment (COPRAS), Gray Relational Analysis (GRA), 

UTility Additive (UTA), VIšekriterijumsko KOmpromisno Rangiranje (VIKOR), Multi Objective 

Optimization by Ratio Analysis (MOORA), Ordered Weighted Averaging (OWA), and the 

Weighted Euclidean Distance Based Approach (WEDBA) [1, 3]. 

In this study, an efficient and relatively new MCDM method called Evaluation based on 

Distance from Average Solution (EDAS), firstly introduced by Keshavarz Ghorabaee et al. [4] to 

solve multi-criteria inventory ABC classification problem, is presented to apply for robot 

selection problem (RSP). This method has been recently applied to some engineering problems 

[5, 6]. The aim of this paper is to apply the EDAS method to show its applicability and 

effectiveness on RSPs which are one of the most important engineering problems as in other 

MCDM methods. In addition, it has been extended to handle MCDM problems in different 

uncertain environments [7-12]. The significant property of the EDAS method is to find the best 

alternative based on the distance from the average solution that makes it different from the 

compromise MCDM methods (e.g. VIKOR and TOPSIS). EDAS needs two measures to evaluate 

alternatives. These measures are positive distance from average (PDA) with its higher values and 

negative distance from average (NDA) with its lower values. Accordingly, a solution (alternative) 

is better than the average solution with respect to higher values of PDA and/or lower values of 

NDA. In the present study, some RSP examples from the related literature are taken into 

consideration to show the applicability of EDAS as an effective and suitable MCDM method by 

comparing with the results of other MCDM or various methods applied for the same examples. 

To the best of our knowledge, EDAS is firstly applied to industrial robot selection in this study. 

This paper unfolds as follows. A brief literature review including various MCDM methods and 

their applications to industrial robot selection problems is given in Section 2. EDAS method with 

its calculation steps an MCDM tool is presented in Section 3. Four robot selection examples are 

illustrated to provide a comparative analysis between the EDAS method and some relevant 

methods in Section 4. Finally, conclusions are given in the last section of the paper. 

 

2. LITERATURE REVIEW 

 

Since the existing robot selection literature is quite extensive over the last three decades, a 

brief literature review, especially including conventional MCDM methods and other some 

different methods, are provided in this section of the study. Seidmann et al. [13] implemented the 

AHP method in order to solve the complicated problem of robot selection. Jones et al. [14] 
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developed a decision support system (DSS) for RSP considering 22 numerical and seven discrete 

attributes. Nnaji [15] pres ented a mathematical model consisting of critical factors, objective 

factors (such as velocity, load capacity, repeatability error), and subjective factors (reliability) for 

the selection and evaluation of robots for any robot implementation. Nnaji and Yannacopoulou 

[16] used the utility theory for robot evaluation by specializing and referring to the case of 

electronic circuits industry, and introduced the concept of interaction among different parameters 

in RSPs by considering utility independence and mutual utility independence. 

Agrawal et al. [17] proposed a decision making approach for RSP by using an expert system, 

which defines the set of the most important attributes for the particular situation once the user has 

identified the required application. Then, they engaged an MCDM module (TOPSIS) to rank the 

feasible robot alternatives according to their closeness to the ideal solution. Boubekri et al. [18] 

developed an expert system containing most common robot attributes and applications, and 

determined the performance requirements by depending on the type of applications. Khouja and 

Offodile [19] reviewed comprehensive literature on RSP by referring to the publications in the 

field, categorizing the models by application, solution approach, robot attributes, and selection 

criteria. They categorized the robot selection models including MCDM, performance 

optimization, statistical, and computer-assisted models. Khouja [20] presented a two-phase robot 

selection model that involved the application of DEA to decide the technologies of robots 

according to their efficiencies and select efficient robots for the further phase in the first phase, 

and a multi-attribute decision-making model to select the best robot in the second phase. Baker 

and Talluri [21] used the DEA approach for technology selection by addressing some of the 

shortcomings in the methodology suggested in the study of Khouja [20] and presented a more 

robust analysis based on cross efficiencies in DEA. Goh et al. [22] proposed a revised weighted 

sum model including the values assigned by a group of experts on different factors for RSP. Goh 

[23] applied the AHP method to RSP under the evaluation of three different decision makers. 

Karsak [24] proposed a two-phase methodology for RSP that includes using DEA to determine 

the technically efficient robot alternatives, considering cost and technical performance parameters 

in the first phase, and applying a fuzzy robot selection algorithm to rank the technically efficient 

robots based on both predetermined objective criteria and additional vendor-related subjective 

criteria in the second phase. Parkan and Wu [25] presented TOPSIS as a decision-making model 

and Operational Competitiveness Rating Analysis (OCRA) performance measurement model with 

applications to robot selection. They made a final selection based on rankings obtained by 

averaging the results of TOPSIS, OCRA, and a utility model. They did not consider the subjective 

factors in these models and did not give any explanation about assigning of the weightings to 

various robot selection factors. Braglia and Petroni [26] proposed the DEA method for the 

selection of industrial robots to be able to identify optimal robot in a cost/benefit perspective by 

measuring the relative efficiency through the resolution of linear programming problems for each 

robot. 

Talluri and Yoon [27] utilized a cone-ratio DEA method for robot selection by considering 

the preferences of decision makers. Ghrayeb et al. [28] used TOPSIS considering the assembly 

cycle time to replace the maximum speed of a robot as an attribute in the evaluation process. 

Bhangale et al. [29] illustrated a coded scheme for manipulator as an example and applied the 

TOPSIS method to find the weights of attributes of robot selection. They demonstrated the 

selected robots and their specifications on line graph plot and spider diagram polygon. Karsak and 

Ahiska [30] proposed a practical common weight MCDM method to evaluate the relative 

efficiency of decision-making units with respect to multiple outputs and a single exact input. 

Bhattacharya et al. [31] represented an integrated model combining AHP and Quality Function 

Deployment (QFD) for the industrial RSP. Their proposed integrated approach also identified the 

technical requirements followed by customer requirements. They also illustrated the performance 

of the integrated model with a case study including seven technical requirement factors. Rao and 

Padmanabhan [32] proposed a methodology based on digraph and matrix methods and solved two 
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RSPs and suggested a robot selection index to evaluate and rank the robots for a given industrial 

application. Rao (2007) used GTMA, SAW, WPM, AHP, TOPSIS, and their applications to 

different decision making situations of the manufacturing environment including RSP. Shih [33] 

evaluated the performance of candidate robots based on an incremental benefit-cost ratio model 

while ranking the robots using group TOPSIS method. 

Kumar and Garg [34] proposed a distance-based approach for evaluation, selection, and 

ranking of robots. Chatterjee et al. [2] used two MCDM methods (VIKOR and ELECTRE II) for 

RSP, and applied these methods to two real cases and compared their results with respect to 

relative performance. Chakraborty [35] used the MOORA method for solving different common 

decision-making problems in the real-time manufacturing environment such as an industrial robot 

selection, a flexible manufacturing system selection, etc. Kentli and Kar [36] presented an 

MCDM model for an RSP using satisfaction function to convert various robot attributes into a 

unified scale and tested the model with an example case from the literature. Rao et al. [37] applied 

a subjective and objective-integrated MCDM method for the purpose of robot selection. 

Alinezhad et al. [38] integrated MCDM and DEA methods in order to evaluate the relative 

efficiency of alternative robots with respect to multiple outputs and a single input. Athawale and 

Chakraborty [39] compared the ranking performance of ten most popular MCDM methods for an 

industrial RSP. It was concluded that for a given RSP, more attention should be given on the 

proper selection of criteria and alternatives, not on choosing the most appropriate MCDM method 

to be employed. Koulouriotis and Ketipi [40] developed a digraph model for the evaluation of 

alternative robots and selection of the most appropriate one from the feasible alternatives. Bairagi 

et al. [41] proposed a novel multiplicative model of multi-criteria analysis (MMMCA) for RSP. 

Mondal and Chakraborty [42] applied four models of DEA to identify the feasible robots having 

the optimal performance measures, simultaneously satisfying the organizational objectives with 

respect to cost and process optimization. Furthermore, they also applied the weighted overall 

efficiency ranking method of multi-attribute decision-making theory for arriving at the best robot 

selection decision from the short-listed competent alternatives. In their study, they solved two real 

time industrial robot selection problems to demonstrate the relevance and distinctiveness of the 

adopted DEA-based approach. Chakraborty and Zavadskas [43] and Chakraborty et al. [44] have 

attempted to prove and validate the applicability of WASPAS method while considering different 

real time manufacturing problems including RSP in their examples. Koulouriotis and Ketipi [45] 

presented an extensive, aggregate, and detailed review for RSP, including a wide variety of 

models, ranging from the first attempts that have been developed in order to approach the issue to 

the most contemporary and flexible decision methodologies. 

Keeping in view the above research works on robot selection, a novel MCDM method 

recently popular in the literature of multi-criteria analysis is presented in this paper for robot 

selection by giving four examples solved different MCDM methods and other mathematical 

methods in the literature. The purpose of this study is to show the effectiveness and applicability 

of the EDAS method in terms of the existing MCDM methods for the solution of the selection 

problems of industrial robots. In this respect, the most commonly used four sample problems in 

the literature were solved and the results obtained from the EDAS method were compared with 

the methods used in the solution of these samples. 

 

3. EVALUATION BASED ON DISTANCE FROM AVERAGE SOLUTION (EDAS) 

METHOD 

 

One of the most well-known branches of decision making, multi-criteria decision making 

(MCDM) can be described as a decision-making problem under the existence of a set of decision 

criteria [46]. EDAS method, one of the applicable MCDM methods, depends on the average 

solution for appraising the alternatives by considering two measures that are PDA (positive 

distance from average) and NDA (negative distance from average). In other words, this method 
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determines the best alternative using the distance from average solution (AV) instead of 

calculating the distance from ideal and negative ideal solutions as in the compromise MCDM 

methods such as VIKOR, TOPSIS, etc. In this method, PDA and NDA are the two key necessary 

measures for the desirability of the alternatives since the higher values of PDA and/or lower 

values of NDA represent that the solution (alternative) is better than average solution. In this 

method, all the alternatives of a decision making problem can be evaluated according to multiple 

criteria often conflicting with each other in the presence of higher values of PDA and lower 

values of NDA. 

Assuming n alternatives and m criteria, the calculation steps of EDAS method are given 

below [4]: 
 

Step 1: Selecting the most important criteria that describe alternatives. 

Step 2: Construct the decision-making matrix (
ij mxn

X X   
), shown as follows: 

 

1 2

1 11 12 1

2 21 22 2

1 2

n

n

n

m m m mn

C C C

A x x x

X A x x x

A x x x

 
 


 
 
 
 

                                                                                                       (1) 

 

where 
ijX  denotes the performance value of ith alternative on jth criterion. 

 

Step 3: Determine the average solution according to all criteria, shown as follows: 
 

1j xn
AV AV   

                                                                                                                          (2) 
 

where, 
 

1

m

iji
j

x
AV

m




                                                                                                                          (3) 

 

Step 4: Calculate the positive distance from average (PDA) and the negative distance from 

average (NDA) matrixes according to the type of criteria (benefit and cost), shown as follows: 
 

ij mxn
PDA PDA                                                                                                                              (4) 

 

ij mxn
NDA NDA                                                                                                                              (5) 

 

if jth criterion is beneficial, 
 

  max 0,
,

ij j

ij

j

x AV
PDA

AV


                                                                                                        (6) 

 

  max 0,
,

j ij

ij

j

AV x
NDA

AV


                                                                                                        (7) 

 

if jth criterion is cost, 
 

  max 0,
,

j ij

ij

j

AV x
PDA

AV


                                                                                                        (8) 
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  max 0, ij j

ij

j

x AV
NDA

AV


                                                                                                        (9) 

 

where 
ijPDA  and 

ijNDA  denote the positive and negative distance of ith alternative from 

average solution in terms of jth criterion, respectively. 
 

Step 5: Determine the weighted sum of PDA and NDA ( iSP and iSN ) for all alternatives, 

shown as follows: 
 

1

n

i j ij

j

SP w PDA


                                                                                                                         (10) 

 

1

n

i j ij

j

SN w NDA


                                                                                                                       (11) 

 

where 
jw  is the weight of jth criterion. 

 

Step 6: Normalize the values of SP and SN for all alternatives, shown as follows: 
 

,
max ( )

i
i

i i

SP
NSP

SP
                                                                                                                  (12) 

 

1 ,
max ( )

i
i

i i

SN
NSN

SN
                                                                                                             (13) 

 

Step 7: Calculate the appraisal score (AS) for all alternatives, shown as follows: 
 

1
( ),

2
i i iAS NSP NSN                                                                                                             (14) 

 

where 0 1iAS  . 

 

4. ILLUSTRATIVE EXAMPLES 

 

In this paper, an attempt is made to prove and validate the applicability of the EDAS method 

while considering the following four examples taken from the literature of industrial robot 

evaluation and selection problems. 

 

4.1. Example 1 

 

The first robot selection example is quoted from Agrawal et al. [17] who proposed TOPSIS as 

an MCDM technique for the selection of a robot for an industrial application. This problem 

considers four robot performance criteria that are load capacity (LC), repeatability error (R), 

vertical reach (VR), and degrees of freedom (DF), and five alternative robots. The quantitative 

data related to these criteria for alternative robots are shown in Table 1. Among these four 

criteria, LC, VR, and DF are beneficial (i.e. higher values are desirable), one criterion (R) is a 

non-beneficial (i.e. lower value is desirable). 
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Table 1. Quantitative data for example 1 [17] 
 

Robot LC (kg) R (mm) VR (cm) DF 

1 60 0.40 125 5 

2 60 0.40 125 6 

3 68 0.13 75 6 

4 50 1.00 100 6 

5 30 0.60 55 5 

AVj 53.6 0.51 96 5.6 

 

While solving the same example by the EDAS method, the quantitative data (decision matrix) 

given in Table 1 is used for steps 1 and 2. Then, the corresponding average solution (AV) for all 

evaluation criteria is calculated for step 3 which can be seen at the last row of Table 1. The results 

of the remaining steps (4 to 7) and the ranking of the robots are given in Table 2. 

 

Table 2. Results of calculation steps and ranking of EDAS method for example 1 
 

Step 4 

Robot 
PDA 

j =1 

PDA 

j =2 

PDA 

j =3 

PDA 

j =4 

NDA 

j =1 

NDA 

j =2 

NDA 

j =3 

NDA 

j =4 

1 0.1194 0.2095 0.3021 0.0000 0.0000 0.0000 0.0000 0.1071 

2 0.1194 0.2095 0.3021 0.0714 0.0000 0.0000 0.0000 0.0000 

3 0.2687 0.7431 0.0000 0.0714 0.0000 0.0000 0.2188 0.0000 

4 0.0000 0.0000 0.0417 0.0714 0.0672 0.9763 0.0000 0.0000 

5 0.0000 0.0000 0.0000 0.0000 0.4403 0.1858 0.4271 0.1071 

 Step 5 Step 6 Step 7   

Robot SPi SNi NSPi NSNi ASi Ranking   

1 0.2109 0.0017 0.3883 0.9974 0.6929 3   

2 0.2121 0.0000 0.3904 1.0000 0.6952 2   

3 0.5432 0.0381 1.0000 0.9436 0.9718 1   

4 0.0084 0.6762 0.0155 0.0000 0.0077 5   

5 0.0000 0.2585 0.0000 0.6177 0.3088 4   

 

Rao and Padmanabhan [32] also used this same example to demonstrate and validate the 

proposed procedure of robot selection through digraph and matrix methods. They used the AHP 

method to determine the relative normalized weight (wi) of each criterion. The criteria weights 

were obtained as follows: wLC = 0.0963; wR = 0.5579; wVR = 0.0963; and wDF = 0.2495. Kumar 

and Garg [34] employed Distance Based Approach (DBA) method using these normalized 

weights of the criteria and suggested same the robot rankings. Rao et al. [37] solved the same 

example using their proposed MCDM method considering objective criteria weights obtained 

from statistical variance. Chakraborty et al. [44] applied WASPAS method for this robot selection 

problem by varying λ values to exhibit the ranking performance of the method. To show the 

calculation steps of the EDAS method for this example, the same aforementioned subjective 

criteria weights are used. 

In order to demonstrate the aptness of using EDAS method as an MCDM tool, the results 

drawn by EDAS are compared with those obtained by the proposed methods in the literature 

(Table 3). Based on the results attained through EDAS method-based analysis, the rank ordering 

of robots is derived as 3-2-1-5-4 with respect to all different criteria weights. When the rank 

orderings are compared, the Spearman’s rank correlation coefficient (rS) value 0.90 proves the 

applicability of EDAS method as a well-known decision tool for solving complex decision-

making problems. 
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4.2. Example 2 

 

Bhangale et al. [29] used TOPSIS and graphical methods as comparatively to select the most 

suitable robot for some pick-n-place operations and illustrated the comparison of the methods 

with an example. This example problem including five criteria that are load capacity (LC), 

repeatability (RE), maximum tip speed (MTS), memory capacity (MC) and manipulator reach 

(MR), and seven robot alternatives are shown in Table 4. Among these five criteria of robot 

selection, four criteria (LC, MTS, MC and MR) are beneficial, and only one (RE) is non-

beneficial. 

 

Table 3. Ranking results of EDAS and other methods for example 1 
 

Author(s) 
Different criteria 

weights 

Ranking results 
rS 

Method EDAS 

Agrawal et al. 

[17] 

wLC = 0.0963,  

wR = 0.5579, 

wVR = 0.0963,  

wDF = 0.2495 

TOPSIS 3-2-1-4-5 

3-2-1-5-4 

0,90 

Rao and 

Padmanabhan 

[32] 

Digraph and 

matrix 

methods 

3-2-1-4-5 0,90 

Kumar and 

Garg [34] 
DBA 3-2-1-5-4 1,00 

Rao et al. [37] 
A proposed 

MCDM 
3-2-1-4-5 0,90 

Chakraborty et 

al. [44] 
WASPAS 

3-2-1-5-4 

(λ<0,5) 

3-2-1-4-5 

(λ>=0,5) 

1,00 

 

0,90 

Rao et al. [37] 

wLC = 0.1257,  

wR = 0.6840,  

wVR = 0.1742,  

wDF = 0.0161 

A proposed 

MCDM 

3-2-1-4-5 3-2-1-5-4 0,90 

wLC = 0.1198,  

wR = 0.6588,  

wVR = 0.1586,  

wDF = 0.0628 

3-2-1-4-5 3-2-1-5-4 0,90 

wLC = 0.1139,  

wR = 0.6336,  

wVR = 0.1431,  

wDF = 0.1094 

3-2-1-4-5 3-2-1-5-4 0,90 

wLC = 0.1110,  

wR = 0.6209,  

wVR = 0.1353,  

wDF = 0.1328 

3-2-1-4-5 3-2-1-5-4 0,90 

wLC = 0.1081,  

wR = 0.6083,  

wVR = 0.1275,  

wDF = 0.1561 

3-2-1-4-5 3-2-1-5-4 0,90 

wLC = 0.1022,  

wR = 0.5831,  

wVR = 0.1119,  

wDF = 0.2028 

3-2-1-4-5 3-2-1-5-4 0,90 
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Table 4. Quantitative data for example 2 [29] 
 

Robot  

no. 
Robots 

LC 

(kg) 

RE 

(mm) 

MTS 

(mm/s) 
MC 

MR 

(mm) 

1 ASEA-IRB 60/2 60 0.40 2540 500 990 

2 Cincinnati Milacrone T3-726 6.35 0.15 1016 3000 1041 

3 CybotechV15Electric Robot 6.8 0.10 1727.2 1500 1676 

4 Hitachi America Process Robot 10 0.20 1000 2000 965 

5 Unimation PUMA500/600 2.5 0.10 560 500 915 

6 United States Robots Maker 110 4.5 0.08 1016 350 508 

7 Yaskawa Electric Motoman L3C 3 0.10 177 1000 920 

 

In the related literature, several MCDM methods for different combinations of criteria weights 

applied to the robot selection problem were shown in Table 5. In this example, Bhangale et al. 

[29] determined the weights of the relative importance of the criteria weights as wLC = 0.1761, 

wRE = 0.2042, wMTS = 0.2668, wMC = 0.2430, and wMR=0.2286 using AHP method, but the sum of 

these criteria weights exceeded one. The weights of these five criteria were renormalized by 

Chakraborty [35] as wLC = 0.1574, wRE = 0.1825, wMTS = 0.2385, wMC = 0.2172, and wMR = 0.2043 

to select these seven robots by using MOORA method. 

 

Table 5. Ranking results of EDAS and other methods for example 2 
 

Author(s) 
Different 

criteria weights 

Ranking results 
rS 

Method EDAS 

Bhangale et al. 

[29] 

wLC = 0.1761, 

wRE = 0.2042, 

wMTS = 0.2668  

wMC = 0.1243, 

wMR = 0.2286 

TOPSIS 2-5-3-1-7-6-4 

2-3-1-5-7-6-4 

0,571 

Sen et al. [47] 
PROMETHEE 

II 
1-3-2-4-6-7-5 0,857 

Rao [3] 

wLC = 0.0360, 

wRE = 0.1920, 

wMTS = .3260, 

wMC = 0.3260, 

wMR = 0.1200 

AHP 4-2-1-5-7-6-3 

5-1-2-4-7-6-3 

0,929 

Chatterjee et 

al. [2] 
VIKOR 5-2-1-4-7-6-3 0,964 

Chatterjee et 

al. [2] 
ELECTRE II 3-2-1-5-7-6-4 0,857 

Rao et al. [37] 
A proposed 

MCDM 
4-2-1-5-7-6-3 0,929 

Chakraborty 

and Zavadskas 

[43] 

WASPAS 5-2-1-4-7-6-3 0,964 

Rao et al. [37] 

wLC = 0.6282,  

wRE = 0.1264,  

wMTS =0.0615,  

wMC = 0.1532,  

wMR=0.0307 

A proposed 

MCDM 

1-2-3-4-7-5-6 1-4-3-2-7-6-5 0,821 

wLC = 0.5098,  

wRE = 0.1395, 

wMTS = 0.1144, 

wMC = 0.1877,  

wMR=0.0486 

1-2-3-4-7-5-6 1-4-3-2-7-6-5 0,821 

wLC = 0.3913,  

wRE = 0.1527, 

wMTS = 0.1673, 

wMC = 0.2223,  

wMR = 0.0664 

1-3-2-4-7-5-6 1-3-2-4-7-6-5 0,964 
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wLC = 0.3321,  

wRE = 0.1592,  

wMTS = 0.1938,  

wMC = 0.2396,  

wMR = 0.0753 

1-3-2-5-7-6-4 1-3-2-4-7-6-5 0,964 

wLC = 0.2729,  

wRE = 0.1658,  

wMTS = 0.2202,  

wMC = 0.2569,  

wMR=0.0843 

1-3-2-5-7-6-4 1-3-2-4-7-6-5 0,964 

wLC = 0.1544,  

wRE = 0.1789,  

wMTS = 0.2731,  

wMC = 0.2914, 

wMR = 0.1021 

3-2-1-5-7-6-4 3-1-2-4-7-6-5 0,929 

Chakraborty 

[35] 

wLC = 0.1574, 

wRE = 0.1825, 

wMTS = 0.2385, 

wMC = 0.2172, 

wMR = 0.2043 

MOORA 2-3-1-4-7-5-6 

3-2-1-4-7-6-5 

0,929 

Athawale and 

Chakraborty 

[39] 

SAW 2-3-1-5-7-6-4 0,929 

WPM 2-3-1-4-7-6-5 0,964 

AHP 3-2-1-5-7-6-4 0,964 

TOPSIS 1-3-2-5-7-6-4 0,857 

GTMA 2-3-1-5-7-6-4 0,929 

VIKOR 4-3-1-5-7-6-2 0,786 

ELECTRE II 2-3-1-6-7-5-4 0,857 

PROMETHEE 

II 
3-2-1-5-6-7-4 0,964 

GRA 2-3-1-5-7-6-4 0,929 

ROV 3-2-1-5-6-7-4 0,929 

Rao [11] 

wLC = 0.5515, 

wRE = 0.1370, 

wMTS = 0.0792, 

wMC = 0.1932,  

wMR = 0.0391 

WEDBA 

1-2-3-4-7-5-6 1-3-4-2-7-6-5 0,857 

wLC = 0.1391,  

wRE = 0.1810,  

wMTS = 0.2766,  

wMC =0.2994,  

wMR = 0.1038 

3-2-1-5-7-6-4 3-1-2-4-7-6-5 0,929 

wLC = 0.2422,  

wRE = 0.1700,  

MTS = 0.2273, 

wMC = 0.2729, 

wMR = 0.0877 

1-2-3-5-7-6-4 1-2-3-4-7-6-5 0,964 

wLC = 0.2937, 

wRE = 0.1645, 

wMTS = 0.2026, 

wMC = 0.2596, 

wMR=0.0796 

1-2-3-5-7-6-4 1-2-3-4-7-6-5 0,964 

wLC = 0.3453, 

wRE = 0.1590, 

wMTS = 0.1779, 

wMC = 0.2463, 

wMR=0.0715 

1-2-3-4-7-6-5 1-2-3-4-7-6-5 1,000 
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wLC = 0.4484, 

wRE = 0.1480, 

wMTS = 0.1285, 

wMC = 0.2198, 

wMR=0.0553 

1-2-3-4-7-6-5 1-3-4-2-7-6-5 0,893 

wLC = 0.4484, 

wRE = 0.1480, 

wMTS = 0.1285,  

wMC = 0.2198, 

wMR=0.0553 

5-1-3-2-7-6-4 4-1-2-3-7-6-5 0,929 

Sen et al. [47] 

wLC = 0.2000, 

wRE = 0.2000, 

wMTS = 0.2000, 

wMC = 0.2000, 

wMR=0.2000 

PROMETHEE 

II 
1-3-2-4-6-7-5 2-3-1-4-7-6-5 0,929 

 

Athawale and Chakraborty [39] also used the same renormalized criteria weights and solved 

the example using SAW, WPM, AHP, TOPSIS, GTMA, VIKOR, ELECTRE II, PROMETHEE 

II, GRA and Range of Value (ROV) methods. Rao [1] used the Weighted Euclidean Distance 

Based Approach (WEDBA) with different criteria weights. Sen et al. [47] applied the 

PROMETHEE II for the same example by considering the equal criteria weights. 

In this study, all different criteria weights are used in the calculation procedure of the EDAS 

method and the ranking results are given in Table 5. The Spearman’s rank correlation (rS) 

coefficients calculated between EDAS and each method are quite high to confirm the applicability 

of EDAS. 

 

4.3. Example 3 
 

Rao and Padmanabhan [32] developed a methodology based on digraph and matrix methods 

to evaluate alternative industrial robots. In their study, a robot selection index evaluating and 

ranking robots for a given industrial application was proposed and two examples were solved. 

One of these examples presented by Agrawal et al. [17] is also used in the present study as the 

first example. The other example of their study is handed here and its related data is illustrated in 

Table 6. 

 

Table 6. Quantitative data for example 4 [32] 
 

Robot 
PC 

($×1000) 
LC (kg) R (mm) MI PF SC 

1 70 45 0,16 AA (0,6818) H (0,8636) VH (1) 

2 68 45 0,17 AA (0,6818) VH (1) AA(0,6818) 

3 73 50 0,12 H (0,8636) H (0,8636) AA (0,6818) 

 

As can be seen in Table 6, three robot alternatives are evaluated with six criteria. These 

criteria are classified into beneficial and non-beneficial. While load capacity (LC), man–machine 

interface (MI), programming flexibility (PF), and vendor’s service contract (SC) are beneficial 

criteria, purchase cost (PC) and repeatability error (R) are non-beneficial. In addition, while three 

criteria (PC, LC and R) have quantitative information, the remaining three criteria (MI, PF and 

SC) have qualitative information. In the related literature, Rao and Padmanabhan [32] solved the 

same example by using AHP to assign the subjective weights to the criteria. In addition, Rao et al. 

[37] used these same subjective weights and the integrated weights of the criteria obtained from 

the statistical variance for different weightings. 
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Table 7. Ranking results of EDAS and other methods for example 3 
 

  Ranking results  

Author(s) 
Different criteria 

weights 
Method EDAS rS 

Rao and 

Padmanabhan 

[32] 

wPC = 0.1830, 

wLC = 0.1009, 

wR = 0.3833, 

wMI = 0.0555,  

wPF = 0.1027, 

wSC = 0.1745 

Digraph and matrix 

methods 
2-3-1 

2-3-1 

1,00 

Rao et al. [37] A proposed MCDM 2-3-1 1,00 

Rao et al. [37] 

wPC = 0.0159, 

wLC = 0.0474, 

wR = 0.3854, 

wMI = 0.1029,  

wPF = 0.0768, 

wSC = 0.3716 

A proposed MCDM 

1-3-2 1-3-2 1,00 

wPC = 0.0503, 

wLC = 0.0611, 

wR = 0.4097, 

wMI = 0.0875,  

wPF = 0.0787, 

wSC = 0.3127 

1-3-2 2-3-1 0,50 

wPC = 0.0835, 

wLC = 0.0711, 

wR = 0.4031, 

wMI = 0.0795,  

wPF = 0.0847, 

wSC = 0.2781 

1-3-2 2-3-1 0,50 

wPC = 0.1001, 

wLC = 0.0761, 

wR = 0.3998, 

wMI = 0.0755,  

wPF = 0.0877, 

wSC = 0.2609 

2-3-1 2-3-1 1,00 

wPC = 0.1167, 

wLC = 0.0810, 

wR = 0.3965, 

wMI = 0.0715,  

wPF = 0.0907, 

wSC = 0.2436 

2-3-1 2-3-1 1,00 

wPC = 0.1498, 

wLC = 0.0910, 

wR = 0.3899, 

wMI = 0.0635, 

wPF = 0.0967, 

wSC = 0.2090 

2-3-1 2-3-1 1,00 

 

The ranking results of three alternative robots with respect to different criteria weights 

obtained by various methods and EDAS are given in Table 7. According to Spearman’s rank 
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correlation values given in Table 7, the ranking results show that the EDAS method can find 

similar solutions compared with other methods. 

 

4.4. Example 4 

 

The last illustrated example for RSP in this study is the robot selection example of Khouja 

[20] who was taken this sample from the study of Imany and Schlesinger [48] which contains four 

specifications for 27 industrial robots (Table 10). The specifications of this example are Cost (C), 

Load Capacity (LC), Velocity (V) and Repeatability (R) that are the criteria taken into account to 

determine the most suitable robot. The quantitative decision data involving beneficial criteria (LC 

and V) as well as non-beneficial criteria (C and R) is depicted in Table 8. 

This example was solved through various different methods by some authors in the literature. 

Imany and Shlesinger [48] used the least square and linear goal programming methods. Khouja 

[20] explored DEA for solving a particular RSP and solved this example by using the criteria 

weights as wC = 0.20, wLC = 0.15, wV = 0.30, wR = 0.35. Parkan and Wu [25] applied four different 

methods using TOPSIS, OCRA, Khouja’s two-phase model and the single utility model for the 

same problem, and thus generated four different sets of preference ranks for the 27 robots. Sen et 

al. [47] solved this problem by using PROMETHEE II method considering two different criteria 

weights (unequal criteria weights determined by Khouja [20] and equal criteria weights) to rank 

the alternative robots. 

 

Table 8. Quantitative data for example 3 [48] 
 

Robot 

no. 

C 

($10,000) 

LC 

(kg) 

V 

(m/s) 

R 

(mm) 

Robot 

no. 

C 

($10,000) 

LC 

(kg) 

V 

(m/s) 

R 

(mm) 

1 7.20 60.0 1.35 0.150 15 3.68 47.0 1.00 1.000 

2 4.80 6.0 1.1 0.050 16 6.88 80.0 1.00 1.000 

3 5.00 45.0 1.27 1.270 17 8.00 15.0 2.00 2.000 

4 7.20 1.5 0.66 0.025 18 6.30 10.0 1.00 0.200 

5 9.60 50.0 0.05 0.250 19 0.94 10.0 0.30 0.050 

6 1.07 1.0 0.3 0.100 20 0.16 1.50 0.80 2.000 

7 1.76 5.0 1.00 0.100 21 2.81 27.0 1.70 2.000 

8 3.20 15.0 1.00 0.100 22 3.80 0.90 1.00 0.050 

9 6.72 10.0 1.10 0.200 23 1.25 2.50 0.50 0.100 

10 2.40 6.0 1.00 0.050 24 1.37 2.50 0.50 0. 100 

11 2.88 30.0 0.90 0.500 25 3.63 10.0 1.00 0.200 

12 6.90 13.6 0.15 1.000 26 5.30 70.0 1.25 1.270 

13 3.20 10.0 1.20 0.050 27 4.00 205.0 0.75 2.030 

14 4.00 30.0 1.20 0.050      

 

In this paper, this problem has been solved here considering equal criteria weights and 

different criteria weights determined by Khouja [20] to demonstrate the applicability and 

effectiveness of the EDAS method as an MCDM tool. The ranking results of the 27 industrial 

robots with respect to equal and different criteria weights obtained by various methods and EDAS 

are given in Table 9. According to Spearman’s rank correlation values given in Table 9, the 

ranking results show that the EDAS method could find similar solutions compared with especially 

other MCDM methods. 
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Table 9. Ranking results of EDAS and other methods for example 4 
 

 

Different criteria weight 

(wV = 0.3000, wLC = 0.1500, wC = 0.2000, wRE = 0.3500)  
(wV = wLC = wC = wRE = 

0.2500) 

 Ranking results  Ranking results 

Robot 

no. 
TOPSIS OCRA 

Khouja’s 

model 

Utility 

model 

PROMETHEE 

II 
EDAS  

PROMETHEE 

II 
EDAS 

1 1 1 5 6 4 1 
 

6 3 

2 7 9 10 7 7 7 
 

13 12 

3 23 23 22 21 19 23 
 

21 21 

4 17 20 7 18 21 18 
 

23 22 

5 18 22 19 25 25 22 
 

26 23 

6 16 15 23 16 17 14 
 

15 19 
7 6 6 3 3 1 5 

 
1 7 

8 5 7 13 5 6 6 
 

5 6 

9 10 16 25 14 11 16 
 

17 20 
10 4 5 4 4 5 4 

 
4 8 

11 15 14 15 13 10 15 
 

12 4 

12 26 25 27 27 27 26 
 

27 25 
13 3 4 2 2 3 3 

 
3 5 

14 2 2 1 1 2 2 
 

2 2 

15 20 19 17 17 18 20 
 

16 10 
16 19 18 18 20 20 19 

 
22 11 

17 25 27 24 26 24 25 
 

25 27 

18 14 17 26 15 12 17 
 

19 18 
19 13 8 6 12 15 9 

 
10 13 

20 27 26 9 24 26 27 
 

24 26 

21 24 24 11 22 22 24 
 

20 24 
22 8 10 12 9 8 8 

 
9 14 

23 11 11 14 10 13 11 
 

7 16 

24 12 13 16 11 14 12 
 

11 17 
25 9 12 21 8 9 10 

 
8 9 

26 22 21 20 19 16 21 
 

18 15 

27 21 3 8 23 23 13 
 

14 1 

rS 0.954 0.960 0.647 0.937 0.900 
  

0.792 
 

 

4.5. Results and Discussion 

 

In this paper, four decision-making problems are considered from the selection of industrial 

robots, which is a kind of real-time manufacturing environment issue. The decision matrices of 

these four problems are taken from the well-known published studies in the literature. These 

mentioned four problems have already been solved and approved using other mathematical 

approaches (especially different MCDM methods) by past researches. As stated in the calculation 

steps of the EDAS method, it requires criteria importance weights. In order to compare the 

ranking results of EDAS with other methods used to solve the same example, different sets of 

criteria weights is utilized as proposed by previous researchers in this study. It could be concluded 

that the ranking order may appear almost same for the four problems according to Spearman's 

rank-correlation test a technique for determining whether there is significant rank-correlation 

between two sets of values. As seen in the first example [17], when the EDAS is compared with 

the different MCDM methods (such as TOPSIS, WASPAS), the highest and the lowest rank-

correlation coefficients of 1.00 and 0.90, respectively. In the second example [29], when the 

EDAS is compared with the different MCDM methods (such as TOPSIS, VIKOR, ELECTRE), 

the highest and the lowest rank-correlation coefficients of 1.00 and 0.571., respectively. In this 

example, the lowest correlation coefficient belongs to the two sets of preference rankings 
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obtained by EDAS and TOPSIS. In the third example [32], when the EDAS is compared with the 

different methods (such as a proposed MCDM), the highest and the lowest rank-correlation 

coefficients of 1.00 and 0.50, respectively. In the third example, the lowest correlation coefficient 

belongs to the two sets of preference rankings obtained by EDAS and MCDM method proposed 

by the researches [37]. Since this problem has been solved with different criteria sets by the 

researchers, it can be said that different benchmark weights have an effect on the difference of 

ranking results. In the fourth example, when the EDAS is compared with the different methods 

(such as TOPSIS, PROMEETHE II), the highest and the lowest rank-correlation coefficients of 

0.960 and 0.647, respectively. In the fourth example, the lowest correlation coefficient belongs to 

the two sets of preference rankings obtained by EDAS and the two-phase model of Khouja [20] 

that involves the application of DEA. Considering all four examples, there is no so much 

difference in the ranking orders which may result from the difference in the working principle of 

different MCDM methods and also the assigning criteria weights. Accordingly, the four cited 

examples demonstrate the potentiality, applicability, efficiency, and simplicity of the EDAS 

method in solving industrial robot selection decision-making problems. 

 

5. CONCLUSION 

 

In today’s competitive market, managers have to make very important decisions for their 

organization, especially in the areas where the technical decision is required such as robot 

selection problem. When considering all sectors of the world, since customers are becoming more 

diverse in their demands and are putting more pressure on companies to produce products and 

services that respond to these demands, competition is getting more and more intense day by day. 

As manufacturing organizations face world-class intensified competition carried out by customers 

with more complex needs, manufacturers are constantly working to meet and balance customer-

focused performance measures. The managers applying advanced manufacturing technology in 

their organizations face difficulties in robot selection due to the number of robots with a wide 

range of performance with different technical features.  

In the selection of industrial robots, the selection criterion defined as a factor that influences 

the selection of a robot for a given industrial application. Therefore, the goal of a robot selection 

procedure is to identify the robot selection criteria and obtain the most appropriate combination of 

the criteria, which are objectively and subjectively considered, in conjunction with the real 

requirements. The selection of a suitable robot for a particular application is a critical process in 

manufacturing industries to improve product quality and increase productivity. Since several 

criteria have to be considered for selecting the best-suited robot from several alternative robots, 

RSP can be considered as an MCDM problem. Although a number of mathematical approaches 

have been proposed by past researchers to solve RSPs, a simple and systematic tool is needed for 

decision makers/managers to identify and select the most appropriate robot from a set of 

industrial robot alternatives. Since a wrong choice can often make a negative contribution to the 

efficiency and flexibility of the entire manufacturing process, managers have to be careful at this 

point.  

The purpose of this paper is to apply an efficient and relatively new method called Evaluation 

based on Distance from Average Solution (EDAS) as an applicable and useful MCDM method 

for the robot selection problem (RSP). In order to examine the feasibility and effectiveness of the 

presented method, several numerical examples from the literature are considered. Comparing the 

existing ranking results of various methods with the results of EDAS for the industrial RSPs, the 

Spearman’s rank correlations analysis indicate that EDAS is capable of accurately ranking 

selected robots. It is observed that in comparison to other MCDM methods (such as AHP, 

TOPSIS, VIKOR, ELECTRE, PROMETHEE, MOORA, WASPAS, GRA, ROV, OCRA), EDAS 

method is quite comprehensible and easy to apply in selection of industrial robots. In the light of 

the results obtained from the samples solved by using EDAS method in this study, this method 
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may be one of the methods expected to provide managers with good guidance and insight in robot 

selection problems as well as other MCDM methods. In summary, managers can think of the 

presented methodology as a robust alternative decision aid for RSPs that can be used with 

quantitative and also qualitative data on robot characteristics. However, the limitation of this 

study is that if the selection of robots contains a set of criteria that are inherently subjective, this 

problem cannot be solved by using this method. Therefore, it is necessary to use fuzzy-based 

MCDM tools for solving this kind of problem. Further research may compare the results obtained 

from the EDAS and other MCDM tools in a fuzzy environment. In addition, since this method is 

computationally very simple and easily comprehensible, it can be applied in a wider range of 

selection problems in real-time manufacturing environment for further research.  
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