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ABSTRACT 

 
This paper investigates heat and mass transfer in a Magnetohydrodynamic flow over a moving vertical plate 

with convective boundary condition in the presence of thermal radiation. Similarity method is used to 

transform the system of coupled non-linear partial differential equations, governing the flow, heat and mass 
transfer problems to a system of coupled non-linear ordinary differential equations. The resulting equation is 

then solved, using Homotopy Analysis Method (HAM). The effect of thermal radiation, Magnetic Parameter 

and all other parameters encountered in the course of the investigation were examined on the fluid flow, heat 
and mass transfer. The results show among all other obtained that higher values of radiation parameter pioneer 

the dominance of conduction over radiation and consequently depressed the thermal boundary layer thickness. 

Keywords: Vertical plate, similarity solution, magnetic field, thermal radiation, heat and mass transfer, 
homotopy analysis method (HAM). 

 

 

1. INTRODUCTION     
 

In most of the practical transport processes, the heat transfer is always accompanied by the 

mass transfer. The study of magnetohydrodynamic (MHD) flow with heat and Mass transfer over 

a moving surface and the effect of thermal radiation has been of interest due to its wide 

application scientific and environmental process such as astrophysical flows and geothermal 

reservoir. As a result of the various application of this problem, it has attracted the attention of 

many researchers and extensively studied in the literature.  
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     Nomenclatures 

𝑔            𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑢𝑒 𝑡𝑜 𝑔𝑟𝑎𝑣𝑖𝑡𝑦     𝛼       𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 

𝐷           𝑀𝑎𝑠𝑠 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦                    𝛽𝑇      𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
(𝑥, 𝑦)    𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠                              ѵ        𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦    

ղ             𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒                 𝜌        𝐹𝑙𝑖𝑢𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

𝜓            𝑆𝑡𝑟𝑒𝑎𝑚 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛                   𝛽𝑐       𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 
𝜇            𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦             𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

 

Das (2010) and Seethamahalakshmi et’al. (2011) studied MHD free convection flow and 

Mass transfer near a moving vertical plate in the presence of thermal radiation. Their results 

showed that increase in thermal radiation parameter contributes to the decrease in velocity field. 

Ghara et’al (2012) reported the effect of radiation on MHD free convection flow past an 

impulsively moving vertical plate with ramped wall temperature, buttressed by Siva et’al (2016). 

It was reviewed that temperature profile increases the increase in thermal radiation and Eckert 

number. The radiation effect on the flow past a vertical plate with the mass transfer was examined 

by Rajput and Kumar (2012). Narahari and Ishaq (2011) reported the radiation effects of free 

convection flow near a moving vertical plate with Newtonian heating. Das et’al. (2015) and Nepal 

et’al. (2014) observed the free convection flo w past a vertical plate with heat and mass fluxes in 

the presence of thermal radiation and concluded that thermal boundary layer thickness increases 

with increase in radiation parameter. Attention has also been given to the hall effect as 

Mohammed et’al (2013) observed the heat and Mass transfer in MHD free convection flow over 

an inclined plate with hall current and reported that there is no effect of the Magnetic parameter 

and Schmidt number on the temperature field and concentration. However, Gnaneswara (2014) 

reported the effect of the hall parameter in the temperature is small and the magnetic and hall 

parameters have opposite effects on the velocity and temperature profiles while studying the 

effect of thermal radiation, viscous dissipation and hall current effects in the MHD convection 

flow over a stretched vertical flat plate.  

Several investigations were performed on porosity in a medium with different conditions. 

Sandeep et’al (2012), Salem and Rania (2012) studied MHD heat and mass transfer through a 

porous medium as well as Jhansi et al (2015). Other authors like Idowu et’al (2013), Lakshmi 

et’al. (2014) and Olubode et’al (2016) investigated MHD flow along a vertical porous plate. 

Recently, Opiyo and Alfred (2017) studied the effects of Magnetohydrodynamic (MHD) fluid 

flow on a two-dimension boundary layer flow of a steady free convection heat and Mass transfer 

in an inclined plane in which the angle of inclination is varied. It was found that the velocity 

increases with an increase in the thermal and Solutal Grashof numbers. The velocity and 

concentration of the fluid decrease with an increase in the Schmidt number. 

The objective of this present investigation is to extend the work in Makinde (2010) to include 

Heat and Mass transfer in Magnetohydrodynamic (MHD) flow over a moving vertical plate with 

convective boundary condition in the presence of thermal radiation. The governing equations are 

solved analytically via Homotopy Analysis Method (HAM), developed by Liao (2003) and effect 

of different Parameters on fluid flow are considered.  

 

2. MATHEMATICAL FORMULATION 

 

Consider a steady-state two-dimensional boundary layer flow of a stream of cold 

incompressible electrically conducting fluid along a vertical plate. The surface of the plate is 

assumed to be heated by convection from a hot fluid at temperature 𝑇𝑓 that produces a heat 

transfer coefficient ℎ𝑓. The cold fluid in contact with the surface of the plate generate heat 

internally at volumetric rate 𝑄0. A magnetic field 𝐵0 is placed in a transverse direction to the 

flow. The magnetic Reynolds number is assumed to be small therefore the induced magnetic field 

is neglected. The joule heating term in energy equation is assumed to be neglected as it really 
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very small in slow motion free convection flow. 𝑥 − 𝑎𝑥𝑖𝑠 is taken parallel to the plate direction 

and 𝑦 − 𝑎𝑥𝑖𝑠 normal to it (see fig.1). 𝐶𝑤 is the species concentration while 𝑇∞ and 𝐶∞ represent 

ambient temperature and concentration respectively. The fluid velocities in 𝑥 and 𝑦 dircetions are 

denoted by 𝑢 and 𝑣 respectively. The fluid temperature and concentration are respectively taken 

as 𝑇 and 𝐶.  
 

 
 

Figure 1. Flow configuration and coordinate system 

 

Under the assumption stated above, boundary layer approximation and usual Boussinesq's 

approximation, the governing equations the present problem can be expressed as  
 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                     (1) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= ѵ

𝜕2𝑢

𝜕𝑦2 −
𝜎𝐵0𝑢

𝜌
+ 𝑔 𝛽𝑇(𝑇 − 𝑇∞) + 𝑔 𝛽𝑐(𝐶 − 𝐶∞)                                                      (2) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2 +
ѵ

𝐶𝑝
(

𝜕𝑢

𝜕𝑦
)

2
−

1

𝜌𝐶𝑝

𝜕𝑞𝑟

𝜕𝑦
+

𝑄0(𝑇−𝑇∞)

𝜌𝐶𝑝
                                                                     (3) 

 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2                                                                                                                        (4) 
 

with the following boundary conditions 
 

𝑈(𝑥, 0) =  𝑈0, 𝑉(𝑥, 0) = 0, −𝑘
𝜕𝑇(𝑥,0)

𝜕𝑦
= ℎ𝑓[𝑇𝑓 − 𝑇(𝑥, 0)],  𝐶𝑤(𝑥, 0) = 𝐴𝑥𝜆 + 𝐶∞  

𝑈(𝑥, ∞) = 0, 𝑇(𝑥, ∞) = 𝑇∞,   𝐶(𝑥, ∞) = 𝐶∞                                                                               (5) 
 

where 𝜆 denotes the power index of the concentration and 𝑘 is the thermal conductivity 

coefficient.  

The radiative heat flux by Roseland is adopted and expressed as 
 

𝑞𝑟 =
−4𝜎

3𝐾∗

𝜕𝑇4

𝜕𝑦
                                                                                                                                    (6) 

 

where 𝜎 is the Sterfan-Boltzmann constant and 𝐾∗ is the mean of absorption coefficient. It is 

assumed that the temperature differences within the flow are such that the term 𝑇4 can be 

expressed as a linear function of temperature by expanding 𝑇4 in a Taylor series about 𝑇∞ as; 
 

 𝑇4 = 𝑇∞
4 𝑇 + 4𝑇∞

3 (𝑇 − 𝑇∞) − 6𝑇∞
2 (𝑇 − 𝑇∞)2 + .  .  .                                                                    (7) 

 

and neglecting higher order terms beyond the first degree in (𝑇 − 𝑇∞) gives 
 

𝑇4 ≈ 4𝑇∞
3 𝑇 − 3𝑇∞

4                                                                                                                           (8) 
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The substitution of equations (6) and (8) in equation (3) gives a modified equation of the form 
 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+

ѵ

𝐶𝑝
(

𝜕𝑢

𝜕𝑦
)

2
+

16𝜎𝑇∞

3𝐾∗𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2
+

𝑄0(𝑇−𝑇∞)

𝜌𝐶𝑝
                                                                (9) 

 

Following Makinde (2010) and Mohammed et’.al (2015), the continuity equation (1) is 

satisfied automatically by invoking the stream function defined by 
 

𝑢 =
𝜕𝜓

𝜕𝑦
     𝑎𝑛𝑑     𝑣 = −

𝜕𝜓

𝜕𝑥
                                                                                                           (10) 

 

and obtained similarity equations of the problem by introducing the following similarity 

transformation 
 

ղ = 𝑦√
𝑈0

ѵ𝑥
 ,    𝜓 = √ѵ𝑥𝑈0𝑓(ղ),   𝜃(ղ) =

𝑇−𝑇∞

𝑇𝑓−𝑇∞
,   ∅(ղ) =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
                                                (11) 

 

Where ղ is an independent similarity variable, 𝜃(ղ) and ∅(ղ) are dimensionaless temperature 

and concentration respectively, 𝑈0 is the velocity of the plate. Apply equation equations (10) and 

(11) into equations (2), modified equation (9) and equation (4), we have  
 

𝑓′′′(ղ) +
1

2
𝑓(ղ)𝑓′′(ղ) − 𝐻𝑎𝑓′(ղ) + 𝐺𝑟𝜃(ղ) + 𝐺𝑐∅(ղ) = 0                                                     (12) 

 

(1 +
4

3𝑅𝑎
) 𝜃′′(ղ) + 𝑃𝑟𝐸𝑐(𝑓′′(ղ))2 +

1

2
𝑃𝑟𝜃′(ղ)𝑓(ղ) + 𝑄𝜃(ղ) = 0                                           (13) 

 

 ∅′′(ղ) +
1

2
𝑆𝑐𝑓(ղ)∅′(ղ) = 0                                                                                                        (14) 

 

Which agreed with Makinde (2010), Rout et’al (2013), Lakshmi et’al.(2014), Hemalatha and 

Bhaskar (2015) where the prime symbol represents differentiation with respect to ղ and  
 

𝐻𝑎 =
𝜎𝐵0

2𝑥

𝜌𝑈0
,    𝐺𝑟 =

𝑔𝛽𝑇(𝑇𝑓−𝑇∞)𝑥

𝑈0
2 ,    𝐺𝑐 =

𝑔𝛽𝑐(𝐶𝑤−𝐶∞)𝑥

𝑈0
2  ,    𝐵𝑖 =

ℎ𝑓

𝑘
√

ѵ𝑥

𝑈0
 ,  

𝑃𝑟 =
ѵ

𝛼
 ,    𝑆𝑐 =

ѵ

𝐷
 ,    𝑄 =

𝑥𝑄0ѵ

𝑘∗𝑈0
  , 𝐸𝑐 =

𝑈0
2

𝐶𝑝(𝑇𝑓−𝑇∞)
 , 𝑅𝑎 =

4𝜎𝑇∞

𝐾𝐾∗  , 𝛼 =
𝑘∗

𝜌𝐶𝜌
                                 (15) 

 

For 𝐻𝑎 is the local magnetic field parameter, 𝐺𝑟 is the local thermal Grashof number, 𝐺𝑐 is 

the Solutal Grashof number, 𝐵𝑖 is the local convective heat transfer parameter, 𝑃𝑟 is the Prandtl 

number, 𝑆𝑐 is the Schmidt number, 𝑄 is the heat source, 𝐸𝑐 is the Eckert number and 𝑅𝑎 is the 

Radiation parameter. The corresponding boundary conditions are as follows 
 

𝑓(0) = 0,   𝑓′(0) = 1, 𝜃′(0) = 𝐵𝑖[𝜃(0) − 1], ∅(0) = 1                                                          (16) 
 

𝑓′(∞) = 0,   𝜃(∞) = 0,    ∅(∞) = 0                                                                                            (17) 
 

The local parameters 𝐵𝑖, 𝐻𝑎, 𝐺𝑟, Q and 𝐺𝑐 in (12-14) denotes the function of  𝑥. In an 

attempt to have similarity solution, we assume the following parameters 
 

ℎ𝑓 =
𝑝

√𝑥
 ,       𝜎 =

𝑞

𝑥
 ,       𝛽𝑇 =

𝑟

𝑥
 ,        𝛽𝑇 =

𝑠

𝑥
 ,      𝑄0 =

𝑡

𝑥
                                                            (18)  

 

Where 𝑝, 𝑞, 𝑟, 𝑥, and 𝑡 are constant under the appropriate dimension. The coupled equations 

(12-14) subject to the boundary conditions of equations (16) and (17) are solved analytically by 

Homotopy Analysis Method as shown in (3.0) below. For the purpose of Engineering application, 

we compute  the local skin friction coefficient, the Local Nusselt number, the Local Sherwood 

number and the plate surface temperature are considered interms of 𝑓′′(0), −𝜃′(0), −∅′(0) and 

𝜃(0) respectively and the results obtained are presented in the tabular form. 

 

3. HOMOTOPY ANALYSIS METHOD 

 

The set of coupled Non-linear differential equations are usually inevitable and has become a 

culture in mathematical modeling. They are solved by a different method, among which are; 
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Adomian Decomposition, Variation Iteration Method and so on. Homotopy Analysis Method 

(HAM), discovered by Liao (2003) was preferred over another method due to its efficiency in 

solving both Linear and non-linear differential equation particularly at infinite domain. We 

consider the differential equations 
 

𝐿[𝑓(ղ)] = 0     𝑎𝑛𝑑           𝑁[𝑓(ղ)] = 0                                                                                        (19) 
 

where 𝐿 and 𝑁 are called Linear and non-linear function respectively (for Algebra Equation) 

or Linear and Non-linear operator respectively (for differential Equations), ղ represents an 

independent variable, while 𝑓(ղ) is the solution of (19). 

Let 𝑓0(ղ) be initial guess for 𝑓(ղ)  and ℏ ≠0, 𝐻(ղ) ≠ 0 denote the auxillary parameter, 

auxiliary function respectively, we then construct a family equation of the form  
 

(1 − 𝑟)𝐿[𝑓(ղ; 𝑟) − 𝑓0(ղ)] = 𝑟ℏ𝐻(ղ)𝑁[𝑓(ղ; 𝑟)]                                                                        (20) 
 

where 𝑟 ∈ [0,1] is called an embedding parameter. When, 𝑟 = 0, we have 
 

𝑓(ղ; 0) = 𝑓0(ղ)   𝑎𝑛𝑑   𝑁[𝑓(ղ; 1)] = 0 𝑏𝑢𝑡 ℏ𝐻(ղ) ≠ 0     for, 𝑟 = 1                                       (21) 
 

Hence, in respect to the boundary conditions (16) and (17), 𝑓(ղ), 𝜃(ղ) and ∅(ղ) 

Can be expressed by the set of base functions 
 

{ ղ𝑗 exp(−𝑛𝑗) | 𝑗 ≥ 0, 𝑛 ≥ 0 }                                                                                                      (23) 
 

in the following form 
 

𝑓(ղ) = ∑ ∑ 𝑎𝑛,𝑘
𝑘 ղ𝑘 exp(−𝑛𝑗),  𝜃(ղ) = ∑ ∑ 𝑏𝑛,𝑘

𝑘 ղ𝑘 exp(−𝑛𝑗)  𝑎𝑛𝑑 ∅(ղ) =∞
𝑘=0

∞
𝑛=0

∞
𝑘=0

∞
𝑛=0

∑ ∑ 𝑐𝑛,𝑘
𝑘 ղ𝑘 exp(−𝑛𝑗)∞

𝑘=0
∞
𝑛=0                                                                                                          (24) 

 

where 𝑎𝑛,𝑘
𝑘  , 𝑏𝑛,𝑘

𝑘  and 𝑐𝑛,𝑘
𝑘  are coefficients. However, as long as such a set of base functions is 

determined, the auxiliary function 𝐻(ղ), initial approximation 𝑓0(ղ), 𝜃0(ղ),  ∅0(ղ), and the 

auxiliary linear operators 𝐿𝑓, 𝐿𝜃 , and 𝐿∅ must be chosen in such a way that solution of the 

corresponding high-order deformation exist (see Farooq et’al (2015) and Olubode et’al (2016)). 

The point raised above is essential in the framework of homotopy Analysis Method as its provide 

us with a basic rule called the rule of solution expression for 𝑓(ղ), 𝜃(ղ) and ∅(ղ). In accordance 

with the rule of solution and boundary conditions (16) – (17), we choose the initial guess  
 

𝑓0(ղ) = 1 − 𝑒𝑥𝑝(−ղ),     𝜃0(ղ) =
𝐵𝑖 𝑒𝑥𝑝(−ղ)

(1+𝐵𝑖)
,    ∅0(ղ) = 𝑒𝑥𝑝(−ղ)                                            (25)  

 

as the initial linear approximations of  𝑓(ղ), 𝜃(ղ) and ∅(ղ). The auxiliary linear operations 

𝐿𝑓, 𝐿𝜃 , and 𝐿∅ are; 
 

𝐿𝑓[𝑓(ղ; 𝑟)] =
𝜕3𝑓(ղ;𝑟)

𝜕ղ3 −
𝜕𝑓(ղ;𝑟)

∂ղ
, 𝐿𝜃[𝜃(ղ; 𝑟)] =

𝜕2𝜃(ղ;𝑟)

𝜕ղ2 − 𝜃(ղ; 𝑟) 𝑎𝑛𝑑  𝐿∅[(ղ; 𝑟)] =
𝜕2∅(ղ;𝑟)

𝜕ղ2 −

∅(ղ; 𝑟)                                                                                                                                           (26) 
 

agreed with the following properties 
 

𝐿𝑓[𝐶1 + 𝐶2 𝑒𝑥𝑝(ղ) + 𝐶3 𝑒𝑥𝑝(−ղ)] = 0,   𝐿𝜃[𝐶4 + 𝐶5 𝑒𝑥𝑝(−ղ)] =

0 𝑎𝑛𝑑   𝐿∅[𝐶6 + 𝐶7 𝑒𝑥𝑝(−ղ)] = 0                                                                                               (27) 

 

where 𝐶1, 𝐶2, . . . , 𝐶7 are constants. 

 

3.1.  Zero Order Deformation Problem. 

 
(1 − 𝑟)𝐿𝑓[𝑓(ղ; 𝑟) − 𝑓0(ղ)] = 𝑟ℏ𝑓𝐻𝑓(ղ)𝑁𝑓[𝑓(ղ; 𝑟), 𝜃(ղ; 𝑟), ∅(ղ; 𝑟)]                                        (28) 
 

(1 − 𝑟)𝐿𝜃[𝑓(ղ; 𝑟) − 𝜃0(ղ)] = 𝑟ℏ𝜃𝐻𝜃(ղ)𝑁𝜃[𝑓(ղ; 𝑟), 𝜃(ղ; 𝑟)]                                                   (29) 
 

(1 − 𝑟)𝐿∅[𝑓(ղ; 𝑟) − ∅0(ղ)] = 𝑟ℏ∅𝐻∅(ղ)𝑁∅[𝑓(ղ; 𝑟), ∅(ղ; 𝑟)]                                                   (30) 
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having the following boundary conditions. 
 

𝑓(ղ = 0; 𝑟) = 0,
𝜕𝑓(ղ;𝑟)

∂ղ
│ղ=0 = 1,    

𝜕𝜃(ղ;𝑟)

∂ղ
│ղ=0 = 𝐵𝑖[𝜃(ղ = 0; 𝑟) − 1], ∅(ղ = 0; 𝑟) = 1     (31) 

 

𝜕𝑓(ղ;𝑟)

∂ղ
│ղ→∞ = 0, 𝜃(ղ → ∞; 𝑟) = 0 = ∅(ղ → ∞; 𝑟)                                                                  (32) 

 

The nonlinear operator followed from equations (12)-(14) and defined as 
 

𝜕3𝑓(ղ;𝑟)

𝜕ղ3 +
1

2
𝑓(ղ; 𝑟)

𝜕2𝑓(ղ;𝑟)

𝜕ղ2 − 𝐻𝑎
𝜕𝑓(ղ;𝑟)

∂ղ
+ 𝐺𝑟𝜃(ղ; 𝑟) + 𝐺𝑐∅(ղ; 𝑟) = 0                                      (33) 

 

[1 +
4

3𝑅𝑎
]

𝜕2𝜃(ղ;𝑟)

𝜕ղ2 + 𝑃𝑟𝐸𝑐 (
𝜕2𝑓(ղ;𝑟)

𝜕ղ2 )
2

+
1

2
𝑃𝑟

𝜕𝜃(ղ;𝑟)

∂ղ
𝑓(ղ; 𝑟) + 𝑄𝜃(ղ; 𝑟) = 0                              (34) 

 

𝜕2∅(ղ;𝑟)

𝜕ղ2 +
1

2
𝑆𝑐𝑓(ղ; 𝑟)

𝜕∅(ղ;𝑟)

∂ղ
= 0                                                                                                  (35) 

 

where 𝑟𝜖[0,1] is the same as embedding parameter defined above. Putting 𝑟 = 0 and 𝑟 = 1, 

we respectively have the following solution from equation (28)-(30). 
 

𝐿𝑓[𝑓(ղ; 0) − 𝑓0(ղ)] = 0,   𝐿𝜃[𝜃(ղ; 0) − 𝜃0(ղ)] = 0,   𝐿∅[∅(ղ; 0) − ∅0(ղ)] = 0                      (36) 
 

𝑓(ղ; 0) = 𝑓0(ղ), 𝜃(ղ; 0) = 𝜃0(ղ),    ∅(ղ; 0) = ∅0(ղ)                                                               (37) 
 

With 
 

𝑓(ղ = 0; 0) = 0,
𝜕𝑓(ղ=0;0)

∂ղ
= 1,    

𝜕𝜃(ղ=0;0)

∂ղ
= 𝐵𝑖[𝜃(ղ = 0; 0) − 1], ∅(ղ = 0; 0) = 1               (38) 

 

 
𝜕𝑓(ղ→∞;0)

∂ղ
= 0, 𝜃(ղ → ∞; 0) = 0 = ∅(ղ → ∞; 0)                                                                      (39) 

 

and  
 

0 = 𝑁𝑓[𝑓(ղ; 𝑟), 𝜃(ղ; 𝑟), ∅(ղ; 𝑟)],      0 = 𝑁𝜃[𝑓(ղ; 𝑟), 𝜃(ղ; 𝑟)],       0 = 𝑁∅[𝑓(ղ; 𝑟), ∅(ղ; 𝑟)]     (40) 
 

But ℏ𝑓𝐻𝑓(ղ) ≠ 0, ℏ𝜃𝐻𝜃(ղ) ≠ 0 𝑎𝑛𝑑 ℏ∅𝐻∅(ղ) ≠ 0  
 

𝑓(ղ; 1) = 𝑓(ղ), 𝜃(ղ; 1) = 𝜃(ղ),    ∅(ղ; 1) = ∅(ղ)                                                                    (41) 
 

with 
 

𝑓(ղ = 0; 1) = 0,
𝜕𝑓(ղ=0;1)

∂ղ
= 1,    

𝜕𝜃(ղ=0;1)

∂ղ
= 𝐵𝑖[𝜃(ղ = 0; 𝑟) − 1], ∅(ղ = 0; 1) = 1              (42) 

 

𝜕𝑓(ղ→∞;1)

∂ղ
= 0, 𝜃(ղ → ∞; 1) = 0 = ∅(ղ → ∞; 1)                                                                      (43) 

 

3.2.  Mth-Order Deformation Problem 

 

The increase in embedding parameter 𝑟 from Zero to One(0 − 1), lead to a variation of the 

function 𝑓(ղ; 𝑟), 𝜃(ղ; 𝑟) and ∅(ղ; 𝑟) from initial guess 𝑓0(ղ), 𝜃0(ղ)  𝑎𝑛𝑑  ∅0(ղ) to the solutions 

𝑓(ղ; 𝑟), 𝜃(ղ; 𝑟) and ∅(ղ; 𝑟). Using Taylor series with respect to  𝑟, we have 
 

𝑓(ղ; 𝑟) = 𝑓0(ղ) + ∑ 𝑓𝑚(ղ)𝑟𝑚∞
𝑚=1  , 𝜃(ղ; 𝑟) = 𝜃0(ղ) + ∑ 𝜃𝑚(ղ)𝑟𝑚∞

𝑚=1   𝑎𝑛𝑑  ∅(ղ; 𝑟) = ∅0(ղ) +
∑ ∅𝑚(ղ)𝑟𝑚∞

𝑚=1                                                                                                                             (44) 
 

where        𝑓𝑚(ղ) =
1

𝑚!

𝜕𝑚𝑓(ղ; 𝑟)

𝜕ղ𝑚 ,   𝑓𝑚(ղ) =
1

𝑚!

𝜕𝑚𝜃(ղ; 𝑟)

𝜕𝜃𝑚
,     𝑓𝑚(ղ) =

1

𝑚!

𝜕𝑚∅(ղ; 𝑟)

𝜕∅𝑚
, 

 

Obviously, the convergence of the series (44) are subject to the auxiliary parameter ℏ. 

Assuming ℏ is chosen such that the series (44) converge at  𝑟 = 1, we have 
 

𝑓(ղ) = 𝑓0(ղ) + ∑ 𝑓𝑚(ղ)∞
𝑚=1 , 𝜃(ղ) = 𝜃0(ղ) + ∑ 𝜃𝑚(ղ)∞

𝑚=1   𝑎𝑛𝑑     ∅(ղ) = ∅0(ղ) +
∑ ∅𝑚(ղ)∞

𝑚=1                                                                                                                                  (45)  
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For the mth-order deformation, we take the derivative  of zeroth-order deformation of 

equations (28)-(30) mtimes with respect to 𝑟, dividing by 𝑚! and set 𝑟 = 0, we have 
 

𝐿𝑓[𝑓𝑚(ղ) − 𝜒𝑚𝑓𝑚−1(ղ)] = ℏ𝑅𝑚
𝑓 (ղ), 𝐿𝜃[𝜃𝑚(ղ) − 𝜒𝑚𝜃𝑚−1(ղ)] = ℏ𝑅𝑚

𝜃 (ղ) 𝑎𝑛𝑑 𝐿∅[∅𝑚(ղ) −

𝜒𝑚∅𝑚−1(ղ)] = ℏ𝑅𝑚
∅ (ղ)                                                                                                               (46)   

 

having the following boundary conditions. 
 

𝑓𝑚(ղ = 0; 0) = 0,
𝜕𝑓𝑚(ղ=0;0)

∂ղ
= 0,

𝜕𝜃𝑚(ղ=0;0)

∂ղ
= 𝐵𝑖[𝜃𝑚(ղ = 0; 0)], ∅𝑚(ղ = 0; 0) = 0              (47) 

 

𝜕𝑓𝑚(ղ→∞)

∂ղ
= 0, 𝜃𝑚(ղ → ∞) = 0 = ∅𝑚(ղ → ∞)                                                                          (48)  

 

Where 
 

𝑅𝑚
𝑓 (ղ) =

𝑑3𝑓𝑚−1(ղ)

𝑑ղ3 +
1

2
∑ 𝑓𝑛(ղ)𝑚−1

𝑛=0
𝑑2𝑓𝑚−1−𝑛(ղ)

𝑑ղ2 − 𝐻𝑎
𝑑𝑓𝑚−1(ղ)

𝑑ղ
+  𝐺𝑟𝜃𝑚−1 + 𝐺𝑐∅𝑚−1                (49)  

 

𝑅𝑚
𝜃 (ղ) = [1 +

4

3𝑅𝑎
]

𝑑2𝜃𝑚−1(ղ)

𝑑ղ2 + 𝑃𝑟𝐸𝑐 ∑
𝑑2𝑓𝑛(ղ)

𝑑ղ2
𝑚−1
𝑛=0

𝑑2𝑓𝑚−1−𝑛(ղ)

𝑑ղ2 +
1

2
𝑃𝑟 ∑ 𝑓𝑛(ղ)𝑚−1

𝑛=0
𝑑𝜃𝑚−1−𝑛(ղ)

𝑑ղ
+

𝑄𝜃𝑚−1                                                                                                                                           (50) 
 

𝑅𝑚
∅ (ղ) =

𝑑2∅𝑚−1(ղ)

𝑑ղ2 +
1

2
𝑆𝑐 ∑ 𝑓𝑛(ղ)𝑚−1

𝑛=0
𝑑∅𝑚−1−𝑛(ղ)

𝑑ղ
                                                                        (51) 

 

and        𝜒𝑚 = 0   𝑓𝑜𝑟   𝑚 ≤ 1,     𝜒𝑚 = 1   𝑓𝑜𝑟   𝑚 > 1 

having the following as a general solution 
 

𝑓𝑚(ղ) = 𝑓𝑚
∗ (ղ) + 𝐶1 + 𝐶2 𝑒𝑥𝑝(−ղ) + 𝐶3 𝑒𝑥𝑝(ղ)                                                                       (52) 

 

𝜃𝑚(ղ) = 𝜃𝑚
∗ (ղ) + 𝐶4 + 𝐶5 𝑒𝑥𝑝(ղ)                                                                                              (53)  

 

∅𝑚(ղ) = ∅𝑚
∗ (ղ) + 𝐶6 + 𝐶7 𝑒𝑥𝑝(ղ)                                                                                             (54) 

 

where 𝑓𝑚
∗ (ղ), 𝜃𝑚

∗ (ղ) and ∅𝑚
∗ (ղ) represent the particular solution of equations (47) and (48). 

In agreement with Liao (2003), we consider the rule of coefficient ergodicity and rule of solution 

existence and choose the auxiliary functions as  
 

𝐻𝑓 = 𝐻𝜃 = 𝐻∅ = 1 

 

3.3.  Convergence of the HAM Solution 

 

The convergence of solution of this present investigation as revealed by Liao (2003) is 

considered, Equation (45) contains the non-zero auxiliary parameters ℏ𝑓 , ℏ𝜃 𝑎𝑛𝑑 ℏ∅ that 

determine the convergence region and rate of approximation for Homotopy Analysis Method at 

10-order with 𝐻𝑎 = 0.1, 𝐺𝑟 = 0.1, 𝐺𝑐 = 0.1, 𝑃𝑟 = 0.72, 𝑆𝑐 = 0.62, 𝐵𝑖 = 0.1, 𝑄 = 0.01, 

𝐸𝑐 = 0.1, 𝑅𝑎 = 0.7. The admissible values of ℏ𝑓 , ℏ𝜃  𝑎𝑛𝑑 ℏ∅ was consider at the range where 

ℏ − 𝑐𝑢𝑟𝑣𝑒 becomes parallel and resulted in −1.2 ≤ ℏ𝑓 ≤ −03, −0.1 ≤ ℏ𝜃 ≤ 0.2  𝑎𝑛𝑑 − 1.7 ≤

ℏ∅ ≤ −0.5  for ℏ𝑓 , ℏ𝜃  and ℏ∅ respectively as shown in figures 2-below 
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 Figure 2. ℏ𝑓-curve of       Figure 3. ℏ𝜃-curve of 𝜃′(0) at 10th  Figure 4. ℏ𝑓-curve of ∅′(0) at 10th                                                                   

𝑓′′(0) at 10th order of                order approximation                      order of approximation 

     approximation  
 

4. VALIDATION OF THE STUDY 

 

Table 1. Comparison of the present result with Makinde (2010) 
 

 Makinde (2010) Present result 

𝐻𝑎 𝐺𝑟 𝐺𝑐 𝐵𝑖 𝑃𝑟 𝑆𝑐 𝑓′′(0) −𝜃′(0) 𝜃(0) −∅′(0) 𝑓′′(0) −𝜃′(0) 𝜃(0) −∅′(0) 

0.1 0.1 0.1 0.1 0.72 0.62 −0.402271 0.078635 0.213643 0.3337425 −0.402272 0.078636 0.213644 0.3337425 

1.0 0.1 0.1 0.1 0.72 0.62 −0.352136 0.273153 0.726846 0.3410294 −0.352137 0.273154 0.726845 0.3410295 

10 0.1 0.1 0.1 0.72 0.62 −0.329568 0.365258 0.963474 0.3441377 −0.329568 0.365259 0.963475 0.3441377 

0.1 0.5 0.1 0.1 0.72 0.62 −0.322212 0.079173 0.208264 0.3451301 −0.322213 0.079174 0.208264 0.3451302 

0.1 1.0 0.1 0.1 0.72 0.62 −0.231251 0.079691 0.203088 0.3566654 −0.231252 0.079692 0.203089 0.3566654 

0.1 0.1 0.5 0.1 0.72 0.62 −0.026410 0.080711 0.192889 0.3813954 −0.026411 0.080712 0.192889 0.3813955 

0.1 0.1 1.0 0.1 0.72 0.62 0.3799184 0.082040 0.179592 0.4176697 0.3799185 0.082041 0.179593 0.4176698 

0.1 0.1 0.1 1.0 0.72 0.62 −0.985719 0.074174 0.258252 0.2598499 −0.985720 0.074175 0.258253 0.2598500 

0.1 0.1 0.1 5.0 0.72 0.62 −2.217928 0.066156 0.338435 0.1806634 −2.217929 0.066157 0.338436 0.1806634 

0.1 0.1 0.1 0.1 1.00 0.62 −0.407908 0.081935 0.180640 0.3325180 −0.407909 0.081936 0.180640 0.3325180 

0.1 0.1 0.1 0.1 7.10 0.62 −0.421228 0.093348 0.066513 0.3305618 −0.421229 0.093349 0.066514 0.3305619 

0.1 0.1 0.1 0.1 0.72 0.78 −0.411704 0.078484 0.215159 0.3844559 −0.411705 0.078485 0.215160 0.3844560 

 

Here, we first ensure the successful implementation of the numerical result by comparing it 

with the previous work done. So, these present results are compared to those obtained by Makinde 

(2010) for the local skin-friction, Nusselt Number, Sherwood number and plate surface 

temperature by setting 𝑄 = 0,   𝑅𝑎 = 0, 𝐸𝑐 = 0. The results strongly agreed with each other (see 

Table 1). 

 

 5. DISCUSSION OF RESULTS 

 

In order to get a physical understanding of the present problem, equation (12)-(14) with the 

boundary conditions (16) and (17) have been solved using Homotopy Analysis Method (HAM) at 

20th –order to meet the far field boundary condition at infinite domain. The resulting effects of 

various parameters embedded in the flow system such as; Magnetic Parameter (𝐻𝑎), Thermal 

Grashof Number (𝐺𝑟), Solutal Grashof Number (𝐺𝑐), Prandtl Number (𝑃𝑟. ), Schmidt Number 
(𝑆𝑐), Local Heat transfer parameter (𝐵𝑖), Heat Source Parameter (𝑄), Eckert number (𝐸𝑐), and 

Radiation Parameter (𝑅𝑎) on Velocity profile, Temperature profile, Concentration profile, Local 

Skin-friction, Local Nusselt Number, plate surface temperature and Sherwood number were 

presented in graphically and numerically. 

During the numerical computation, the Prandtl number was considered to be 0.72 which 

correspond to air and it is mostly encountered fluid in nature and commonly used in engineering. 

B.J. Akinbo, B.I. Olajuwon     / Sigma J Eng & Nat Sci 37 (3), 1031-1053, 2019 



1039 

 

The positive values of thermal Grashof number and Solutal Grashof number which are 

collectively referred to as buoyancy parameter correspond to the greater cooling of the surface 

and shows that the concentration at the plate surface is higher than the free stream concentration 

respectively. The cooling surface such as nuclear reactors is frequently encountered in 

engineering and industry. The values of Schmidt number 𝑆𝑐 for diffusing chemical species in air 

were chosen to be 𝑆𝑐 = 0.24 (𝐻2), 0.62 (𝐻2𝑂), 𝑆𝑐 = 0.78 (𝑁𝐻3) and 𝑆𝑐 = 2.62 (𝐶9𝐻12). 

Other parameters were discussed by holding   𝐻𝑎 = 𝐺𝑟 = 𝐺𝑐 = 𝐵𝑖 = 𝐸𝑐 = 0.1, 𝑆𝑐 = 0.62, 
𝑃𝑟 = 0.72, 𝑄 = 0.01, 𝑅𝑎 = 0.7 constant for each varying parameter. 

 

  
 

Figure 5. Velocity profile for 𝐻𝑎    

 

 
 

Figure 6. Temperature profile for 𝐻𝑎  
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Figure 7. Concentration profile for 𝐻𝑎 

 

Figure 5, 6 and 7 reveals the variation effects of  Magnetic Parameter 𝐻𝑎, on velocity, 

temperature and concentration profile respectively. It is obvious from the figure 5 as expected that 

the velocity distribution across the boundary layer decreases with the increase in 𝐻𝑎. This 

obvious decrease is true due to the fact that increase in Magnetic field brings about an opposing 

force to the flow called Lorentz force which has tendency to resist motion of fluid and decrease 

the momentum boundary layer. However, increase in 𝐻𝑎 as well results in frictional heating and 

increase the fluid temperature, magnitude of the local skin-friction, plate surface temperature and 

the concentration of the fluid while the Nusselt and Sherwood numbers decrease (See Fig.(6-7) 

and Table 2). Note that the thickness of the thermal and concentration boundary layer improve as 

the fluid temperature and its concentration increase. 

 

 
 

Figure 8. Velocity profile for 𝐺𝑟   
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Figure 9. Temperature profile for 𝐺𝑟  

 

 
 

Figure 10. Concentration profile for 𝐺𝑟  

 

 
 

Figure 11. Velocity profile for 𝐺𝑐      
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Figure 12. Temperature profile for 𝐺𝑐  

 

 
  

Figure 13. Concentration profile for 𝐺𝑐 

 

Figures (8-13) illustrate the influence of thermal Grashof and Solutal Grashof numbers on 

velocity, temperature, and concentration profiles. The thermal Grashof number (𝐺𝑟) signifies the 

relative importance of buoyancy force to the viscous hydrodynamic force within the boundary 

layer while the solutal Grashof number (𝐺𝑐) defines the ratio of the species buoyancy force to the 

viscous hydrodynamic force.  It can be seen from the figures 8 and 11, that increase in (𝐺𝑟,𝐺𝑐) 

gives rise to the fluid velocity within the boundary layer and suddenly fall monotonically to the 

free stream zero value far away from the plate surface agreeing with the far field boundary 

conditions which inturns increases the thickness of momentum  boundary layer (See fig.8 and 

fig.11). It is interesting to note that the positive values of (𝐺𝑟,𝐺𝑐) correspond to the cooling of the 

plate as the fluid Temperature, Plate Surface Temperature and the fluid concentration decrease 

which inturns deteriorate the thickness of thermal and concentration boundary layers as shown in 

fig.(9-10), fig.(12-13). The Local Skin Friction, Nusselt number and Sherwood number increase 

with the increase in (𝐺𝑟,𝐺𝑐) (see table 2).  
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Figure 14. Velocity profile for 𝑃𝑟         

 

 
 

Figure 15. Temperature profile for 𝑃𝑟    

 

 
 

Figure 16. Concentration profile for 𝑃𝑟 
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Figures (14-16), depicts the influence of Prandtl number 𝑃𝑟 on the velocity, temperature and 

concentration profiles respectively. Prandtl number 𝑃𝑟 is a dimensionaless number, 

approximating the ratio of momentum diffusivity to thermal diffusivity. Increase in 𝑃𝑟 as a result 

of low thermal diffusivity results in an increase in magnitude of local skin-friction, Nusselt 

number with a reverse phenomenon on Plate Surface Temperature and Sherwood number as 

shown in table 2. It can be seen from the figure that increase in 𝑃𝑟 leads to a fall in velocity field 

and rapid decrease in the thermal boundary layer thickness which inturns lowers the average 

temperature across the boundary layer. The main reason is that, the smaller values of 𝑃𝑟 are 

equivalent to increase in the thermal conductivity. This however, enable the heat to diffuse away 

from the heated surface more rapidly than the higher values. 

 

Table 2. Numerical values of the Skin-friction coefficient, Local Nusselt number, Local 

Sherwood number and plate surface temperature 
 

𝐻𝑎   𝐺𝑟     𝐺𝑐    𝐵𝑖    𝐸𝑐       𝑄      𝑃𝑟      𝑆𝑐      𝑅𝑎        𝑓′′(0)          −𝜃′(0)          𝜃(0)          −∅′(0) 

0.1   0.1    0.1   0.1   0.1   0.01  0.72   0.62   0.7  −0.370788  0.064308   0.356923   0.338928 

0.5   0.1    0.1   0.1   0.1   0.01  0.72   0.62   0.7  −0.686464  0.060864   0.391360   0.294033 

1.0   0.1    0.1   0.1   0.1   0.01  0.72   0.62   0.7  −0.969066  0.057813   0.421873   0.260816 

0.1   0.1    0.1   0.1   0.1   0.01  0.72   0.62   0.7  −0.370788  0.064308   0.356923   0.338928               

0.1   0.5    0.1   0.1   0.1   0.01  0.72   0.62   0.7  −0.188995  0.066264   0.337357   0.372221 

0.1   1.0   0.1    0.1   0.1   0.01  0.72   0.62   0.7  −0.000484  0.067937   0.320633   0.402252 

0.1   0.1   0.1    0.1   0.1   0.01  0.72   0.62   0.7  −0.370788  0.064308   0.356923   0.338928 

0.1   0.1   0.5    0.1   0.1   0.01  0.72   0.62   0.7  −0.001613  0.067242   0.327584   0.385357 

0.1   0.1   1.0    0.1   0.1   0.01  0.72   0.62   0.7     0.387627  0.068519   0.314813   0.314813 

0.1   0.1   0.1    0.1   0.1   0.01  0.72   0.62   0.7  −0.370788  0.064308   0.356923   0.338928 

0.1   0.1   0.1    0.5   0.1   0.01  0.72   0.62   0.7  −0.316811  0.134555   0.730889   0.350223 

0.1   0.1   0.1    1.0   0.1   0.01  0.72   0.62   0.7  −0.301308  0.156786   0.843214   0.353403 

0.1   0.1   0.1    0.1   0.1   0.01  0.72   0.62   0.7  −0.370788  0.064308   0.356923   0.338928 

0.1   0.1   0.1    0.1   1.0   0.01  0.72   0.62   0.7  −0.347715  0.050729   0.492712   0.343464 

0.1   0.1   0.1    0.1   3.0   0.01  0.72   0.62   0.7  −0.299783   0.024012   0.759877  0.353974 

0.1   0.1   0.1    0.1   0.1   0.01  0.72   0.62   0.7  −0.370788  0.064308   0.356923   0.338928 

0.1   0.1   0.1    0.1   0.1   0.05  0.72   0.62   0.7  −0.362516  0.060245   0.397553   0.340405 

0.1   0.1   0.1    0.1   0.1   0.1    0.72   0.62   0.7  −0.348882  0.053510   0.464897   0.342695 

0.1   0.1   0.1    0.1   0.1   0.01  0.72   0.62   0.7  −0.370788  0.064308   0.356923   0.338928  

0.1   0.1   0.1    0.1   0.1   0.01  1.0     0.62   0.7  −0.378412  0.067350   0.326497   0.337293 

0.1   0.1   0.1    0.1   0.1   0.01  3.0     0.62   0.7  −0.402666  0.078508   0.214917   0.331771 

0.1   0.1   0.1    0.1   0.1   0.01  0.72   0.24   0.7 −0.332171   0.064993   0.350075   0.196666 

0.1   0.1   0.1    0.1   0.1   0.01  0.72   0.62   0.7  −0.370788  0.064308   0.356923   0.338928  

0.1   0.1   0.1    0.1   0.1   0.01  0.72   0.78   0.7  −0.380707  0.064110   0.358901   0.391494 

0.1   0.1   0.1    0.1   0.1   0.01  0.72   0.62   0.7  −0.370788  0.064308   0.356923   0.338928  

0.1   0.1   0.1    0.1   0.1   0.01  0.72   0.62   2.0  −0.383342  0.069306   0.306937   0.336197 

0.1   0.1   0.1    0.1   0.1   0.01  0.72   0.62   4.0  −0.388778  0.071622   0.283778   0.334993 

 

 

 

 

 

 

B.J. Akinbo, B.I. Olajuwon     / Sigma J Eng & Nat Sci 37 (3), 1031-1053, 2019 



1045 

 

 
 

Figure 17. Velocity profile for 𝑆𝑐    

 

 
 

Figure 18. Temperature profile for 𝑆𝑐  

 

 
 

Figure 19. Concentration profile for 𝑆𝑐 
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Figures (17-19) present the effect of Schmidt number 𝑆𝑐, on velocity, temperature and 

concentration profiles. The graphical results reviews that increase in 𝑆𝑐, decrease the velocity 

distribution and concentration within the boundary layer with an improve phenomenon on fluid 

temperature. Also from table2, increase in Schmidt number 𝑆𝑐, as a result of low molecular 

diffusivity leads to an increase in the magnitude of Local Skin Friction, Sherwood number and 

Plate Surface Temperature but a decreases in Nusselt  number as shown in table 2. Schmidt 

number measure the effectiveness of Momentum and Mass transport by diffusion in 

hydrodynamic boundary layers. An increase in 𝑆𝑐 leads to a reduction in diffusion properties of 

the fluid and the concentration boundary layer becomes thinner than the velocity boundary layer 

thickness. 

Figures (20-22) observe the influence of Heat Source 𝑄 on velocity, temperature and 

concentration profiles. As expected, the presence of heat source is to enhance the rate of heat 

transport to the flow which inturns overshoot the fluid temperature and increase the fluid velocity 

within the boundary layer while the concentration profile decrease with little effect that can 

hardly be seen. Moreover, the magnitude of local Skin Friction and Nusselt number decrease 

while Sherwood number and Plate Surface Temperature increase owning to an increasing value of 

 𝑄 (see table 2) 

 

 
 

Figure 20. Velocity profile for 𝑄  
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Figure 21. Temperature profile for 𝑄 

 

  
 

Figure 22. Concentration profile for 𝑄 

 

Figures (23-25) depict the effect of Eckert number on velocity, temperature and concentration 

profiles across the boundary layer. The Eckert number expresses the relationship between the 

kinetic energy of the flow and the enthalpy. As shown in table 2, the magnitude of local Skin 

Friction, Nusselt number decrease while the Plate Surface Temperature and the Sherwood number 

increase with the increase in 𝐸𝑐. Eckert number exhibits the conversion of kinetic energy into 

internal energy by work done against the viscous fluid stresses and its positive values correspond 

to the cooling of the plate which implies loss of heat from the plate to the fluid. However, the 

greater viscous dissipative heat give rise to velocity and temperature profiles but a reduction on 

concentration profile.                                                 
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Figure 23. Velocity profile for 𝐸𝑐  

 

  
 

Figure 24. Temperature profile for 𝐸𝑐 

 

  
 

Figure 25. Concentration profile for 𝐸𝑐 
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Figure 26. Velocity profile for 𝑅𝑎                       

 

  
 

Figure 27. Temperature profile for 𝑅𝑎  

 

 
 

Figure 28. Concentration profile for 𝑅𝑎 
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Figures (26-28) presents the influence of Radiation Parameter 𝑅𝑎 on velocity, temperature 

and concentration profiles respectively. Inflation in radiation parameter (𝑅𝑎) slightly diminishes 

the velocity distribution with an opposite result in fluid concentration. However, the thermal 

condition deteriorates with the increase in 𝑅𝑎 which in turns pioneer the decrease in thermal 

boundary layer thickness. This quantitatively agreed with the expectation as increase in 𝑅𝑎 

(See 𝑅𝑎 =
𝐾𝐾∗

4𝜎𝑇∞
 ) contributes to the falling of radiation absorptivity 𝐾∗ while the enhancement in 

radiative heat flux 
𝜕𝑞𝑟

𝜕𝑦
 improves as 𝐾∗ reduces the rate of radiative heat transfer to the fluid that 

consequently improve the fluid temperature. Also, increase in 𝑅𝑎 leads to a increase in magnitude 

of Local Skin Friction and Nusselt number with a reverse phenomenon on Plate Surface 

Temperature and Sherwood number. This result is in agreement with Stanford and Sandile (2009). 

The effect of Thermal Radiation becomes more significant as 𝑅𝑎 = 0.1 but no effect as 𝑅𝑎 →
∞ 𝑜𝑟 𝑅𝑎 = ∞. 

 

  
 

Figure 29. Velocity profile for 𝐵𝑖 
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Figure 30. Temperature profile for 𝐵𝑖 
 

  
 

Figure 31. Concentration profile for 𝐵𝑖 
 

Figures (29-31) show that the velocity and temperature profiles increases while concentration 

profile decreases with little effect, on the increase in the Convective Heat parameter 𝐵𝑖. In 

addition, the magnitude of Local Skin-Friction decreases while the Nusselt number, Sherwood 

number and Plate Surface Temperature increase on the increase in 𝐵𝑖 as shown in table 2. This 

was due to the fact that the left surface of the plate is exposing to the hot fluid thereby causing the 

right surface to be lighter and flow faster. 
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6. CONCLUSION 

 

This study has vast application in industries and engineering disciplines in understanding the 

dynamic flowing phenomenon which is a major language in science and technology such as 

cooling of nuclear reactors, cooling of electronic components and enhanced oil recovery e.t.c. In 

this present investigation, an analysis is made to study heat and mass transfer in hydromagnetic 

boundary layer flow over a moving vertical plate with convective boundary condition in the 

presence of thermal radiation. The resulting partial differential equations which describe the 

problem are transformed to dimensionless equations using Similarity method with the 

corresponding dimensionless variables. We then solve the equations by Homotopy Analysis 

Method and the results are discussed through graphs and tables for different values of embedding 

parameters and the following conclusion are drawn from the results obtained. 
 

 Cooling problem is guaranteed with the positive values of (𝐺𝑟, 𝐺𝑐) which is often 

encountered in engineering application such as cooling of electronic component and nuclear 

reactors. 

 The Nusselt number increased as the values of  Prandtl number, radiation parameter, and 

convective heat parameter increase but decrease with the increase in Schmidt number and viscous 

dissipation 

 The momentum boundary layer thickness decrease while the thermal and concentration 

boundary layers thickness increase on the increase in the magnetic parameter. 

 An increase in viscous dissipation parameter enhanced the velocity and temperature 

profiles with a reverse phenomenon on concentration profile. 

 Higher values of radiation parameter 𝑅𝑎, pioneer the dominance of conduction over 

radiation and consequently depressed the thermal boundary layer thickness. 
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