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ABSTRACT 

 

In this paper, the quintic B–spline method is employed to calculatenumerical solution of the initial-boundary 

value problem of Rosenau–Burgersequation. This scheme is based on the Crank–Nicolson formulation for 
time integration and quintic B–spline functions for space integration. The unconditional stability of the 

method is proved using Von–Neumann approach. A priori bound and the error estimates of the approximate 

solutions are discussed with a numerical example. 
Keywords: Rosenau-Burgers equation, quintic b-spline method, Crank-Nicolson scheme, Thomas algorithm. 
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1. INTRODUCTION     
 

One of the most important nonlinear partial differential equations (PDEs) is Korteweg–de 

Vries (KdV) equation, which describes the vibrations of a uni–dimensional inharmonic lattice 

associated with the birth of the soliton. But KdV equation does not represent wave to wave 

interaction and wave to wall interaction. To overcome this shortcoming of the KDV equation, 

Rosenau [4, 5] proposed the so-called Rosenau equation:  
 

= 0, , (0, ],t xxxxt x xu u u uu x t T                                                           (1.1) 
 

There are some articles and some collected works that has been focused to study the classical 

Rosenau equation from various points of view. M. A. Park [3] was proved he existence and the 

uniqueness of the solution for (1.1). However, by this time, the analytical solution for (1.1) is 

unknown. Since then, much work has been done on the numerical solution of (1.1) ([6, 7, 8, 9] 

and also the references therein). On the other hand, recently and more for the further onsideration 

of the nonlinear wave, by adding the viscous term xxu , the Rosenau equation (1.1) leads to 
 

= 0, , (0, ],t xxxxt x x xxu u u uu u x t T                                                  (1.2) 
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which is usually called the Rosenau–Burgers equation. There are a great of work that has been 

studied about the Cauchy problem of Rosenau–Burgers equation [1, 2, 10, 11]. While there are a 

few works that has been devoted to approximate the numerical solutions to the initial-boundary 

value problem of Rosenau–Burgers equation. In this paper, a B-spline algorithm based on the 

collocation method with trial functions taken as quintic B-spline functions over the elements will 

be constructed. The present algorithm will be used first to model the Rosenau–Burgers equation 

(1.2) and then its results will implement to approximate the numerical solution of (1.2) with the 

boundary conditions 
 

( , ) = ( , ) = 0, , (0, ],xxu x t u x t x t T                                                                     (1.3) 
 

 and an initial condition  
 

0( ,0) = ( ), ,u x u x x                                                                                                (1.4) 
 

 where )(0 xu is sufficiently smooth and satisfies the compatibility condition, 

= (0, ), 0,L L   and <<0 T . For more physical significance of the Rsenaue–Burgers 

equation (1.2), we refer to Rosenau [1, 2, 10, 11]. 

The quintic B-spline basis has been used to approximate numerical solutions for some 

nonlinear differential equations. For instance, numerical solution of the Burger equation has been 

found by quintic B-spline collocation method in [1]. An algorithm based on quintic B-spline 

Galerkin method was devoted to obtain the solutions of the RLW equation in [2]. Numerical 

solutions of the KdV-Burgers equation and Korteweg–de Vries (KdV) equation was obtained 

using collocation of quintic B-spline interpolation functions over finite elements in [10, 11], 

respectively. The Kuramoto-Sivashinsky equation is also approximated by quintic B-spline in 

[12]. 

The organization of this paper is as follows. In Section 2, quintic B-spline collocation scheme 

is explained. In Sections 3, the quintic B-spline collocation method is applied to the Rosenau–

Burgers equation (1.2). In Section 4, the stability analysis of the method is discussed. In Section 

5, one examples are presented. Also the global relative error at different time is obtained for the 

example. A summary about overall the present work is given at the end of the paper in Section 6. 

 

2. DESCRIPTION OF THE QUINTIC B-SPLINE METHOD 

 

The solution domain 10  x  is partitioned in to a mesh of uniform length 

ii xxh 1= , by the knots ix where = 0,1,2, ,i N  such that 

0 1 10 = < < < < =1n Nx x x x . Our numerical treatment for Rosenau-Burgers 

equation using the collocation method with quintic B-spline is to find an approximate solution 

),( txUN  to the exact solution ),( txu  in the form:  
 



2

= 2

( , ) = ( ) ( ),
N

N i i

i

U x t t B x




                                                                                             (2.1) 

 

where )(ti  are time-dependent quantities to be determined from the boundary conditions 

and collocation form of the differential equations, and )(xBi  are the quintic B-spline basis 

functions at knots, given by [13, 14, 15]. 
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     (2.2) 

 

where },,...,,,,,{ 2121012  NN BBBBBBB  forms a basis over the region 10  x

. Each quintic B-spline covers six elements so that an element is covered by six quintic B-splines 

[16]. Over the element ],[ 1mm xx  the variation of the function ),( txU  is formed from  
 

3

= 2

( , ) = ( ) ( ),
m

j j

j m

U x t t B x




                                                                                            (2.3) 

 

 In terms of a local coordinate system   given by mxxh = , where mm xxh 1=

 and 10  , expressions for the element splines are [10]  
 

2 3 4 5

2

2 3 4 5

1

2 4 5

2 3 4 5

1

2 3 4 5

2

5

3

( ) =1 5 10 10 5 ,

( ) = 26 50 20 20 20 5 ,

( ) = 66 60 30 10 ,

( ) = 26 50 20 20 20 10 ,

( ) =1 5 10 10 5 5 ,

( ) = .

m

m

m

m

m

m

B x

B x

B x

B x

B x

B x

    

    

  

    

    













    

    

  

    

    

                                                               (2.4) 

 

Using approximate function (2.1) and quintic spline (2.2), the approximate values at the knots 

of )(xU  and its derivatives up to fourth order are determined in terms of the time parameters 

m  as  
 

2 1 1 2

2 1 1 2

2

2 1 1 2

3

2 1 1 2

4 ( )

2 1 1 2

= 26 66 26 ,

= 5( 10 10 ),

= 20( 2 6 2 ),

= 60( 2 2 ),

=120( 4 6 4 ),

m m m m m m

m m m m m

m m m m m m

m m m m m

iv

m m m m m m

U

hU

h U

h U

h U

    

   

    

   

    

   

   

   

   

   

   

   

    

   

   

                                                             (2.5) 

 

where dashes represent differentiation with respect to space variable.  
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3. SOLUTION OF ROSENAU–BURGERS EQUATION 

 

 The Rosenau–Burgers equation can be rewritten as  
 

( ) = 0, ( , ) [0,1] (0, ]xxxx t x x xxu u uu u u x t T                                      (3.1) 
 

 with the boundary conditions  
 

(0, ) = (1, ) = 0,

(0, ) = (1, ) = 0,xx xx

u t u t

u t u t
                                                                                                   (3.2) 

 

 and initial condition  

 

0( ,0) = ( ),u x u x                                                                                                                    (3.3) 
 

 We discrete the time derivative of Eq. (3.1) by a first order accurate forward difference 

formula and apply the  -weighted scheme,  1)(0  , to the space derivative at two 

adjacent time levels to obtain the equation  
 

   
 

 

1 1

1 1 1
( ) ( )

( ) ( ) ( )

(1 ) ( ) ( ) ( ) = 0,

n n n n

xxxx xxxx n n n

x x xx

n n n

x x xx

U U U U
UU U U

k

UU U U





 

  
  

  

   

         (3.4) 

 

 where k  is time step and the superscripts n  and 1n   are successive time levels. In this 

work we take 
1

= ,
2

 . Hence, Eq. (3.4) takes the form  

 

   1 1 1 1

1

( ) ( ) ( ) ( ) ( ) ( )

2 2

( ) ( )
= 0,

2

n n n n n n n n
xxxx xxxx x x x x

n n

xx xx

U U U U UU UU U U

k

U U

   



    
 




          (3.5) 

 

 The nonlinear term in Eq. (3.5) is approximated by the following formula based on Taylor 

series:  
 

1 1 1( ) = ( ) ( ) ( ) ,n n n n n n

x x x xUU U U U U UU                                             (3.6) 
 

Putting values from Eq. (3.6) in Eq. (3.5) we get,  
 

   1 1 1 1 1

1

( ) ( ) ( ) ( ) ( ) ( )

2 2

( ) ( )
= 0,

2

n n n n n n n n n n
xxxx xxxx x x x x

n n

xx xx

U U U U U U U U U U

k

U U

    



    
 




        (3.7) 

 Rearranging the terms and simplifying we get, 
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 1 1 1 1 1 1( ) ( ) ( ) ( ) ( )
2

= ( ) ( ) ( ) ,
2 2

n n n n n n n n

xxxx x x x xx

n n n n

xxxx x xx

k
U U U U U U U U

k k
U U U U

         

  

       (3.8) 

 

Substituting the approximate solution U  for u  and putting the values of the nodal values 

U , its derivatives using Eqs. (2.5) at the knots in Eq. (3.8) yields the following difference 

equation with the variables i  and for  Nm 0,1,2,...,= :  
 

1 1 1 1 1
2 1 0 1 22 2 1 1 0 1 1 2 2 2 1 1 2= ,n n n n n n n n n n

m m m m m m m m m mC C C C C C C C C C             
                        (3.9) 

 

 where  
 

2 4 2

1 4 2

0 4 2

1 4 2

2 4

120 5
= 1 ( 1) 10 ,

2 2

120
= 26 1 4 25 ( 1) 20 ,

2

120
= 66 1 6 60 ,

2

120
= 26 1 4 25 ( 1) 20 ,

2

120
= 1

2

n n

x

n n

x

n

x

n n

x

n

x

k k k
C U U

h h h

k k k
C U U

h h h

k k
C U

h h

k k k
C U U

h h h

k
C U

h





 
     

 

   
       

   

   
     

   

   
       

   

 
  

 
2

5
( 1) 10 ,

2

nk k
U

h h
  

                                             (3.10) 
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                                                                            (3.11) 

 

The systems (3.10)-(3.11) consists of ( 1)N   linear equations in ( 5)N   unknowns  
 

2 1 0 1 2 1 1 2( , , , , ,..., , , , ) ,T

N N N N              
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To obtain a unique solution to the systems (3.10) and (3.11), four additional constraints are 

required. These are obtained from the boundary conditions (3.2). Imposition of the 

boundary conditions enables us to eliminate the parameters  12 ,    and 21,  NN   from 

the system. In order to eliminate the parameters 12 ,    and  21,  NN   from the system 

(3.9), we have used the boundary conditions  
 

0

0

( , ) = ( , ) = 0,

( , ) = ( , ) = 0,

N

xx xx N

u x t u x t

u x t u x t
 

 

Expanding u  in terms of approximate quintic B-spline formula from (2.5) at 0,=0x  and 

putting 0=m  in (2.5) we get, 
  

2 1 0 1 2

2 1 0 1 2

26 66 26 = 0,

2 6 2 = 0,

    

    

 

 

   

   
                                                                  (3.11) 

 

then 

1 0 1

2 0 2

= 3 ,

=12 ,

  

  





 


                                                                                                             (3.12) 

 

Similarly at 1,=Nx  putting Nm =  in (2.5) we get,  
 

2 1 1 2

2 1 1 2

26 66 26 = 0,

2 6 2 = 0,

N N N N N

N N N N N

    

    

   

   

   

   
                                                           (3.13) 

 

where leads to  
 

1 1

2 2

= 3 ,

=12 ,

N N N

N N N

  

  

 

 

 


                                                                                                       (3.14) 

 

Eliminating parameters 12 ,    and  21,  NN  , the system (3.9) is reduced to a penta-

diagonal system of ( 1)N   linear equations with ( 1)N   unknowns, given by 

1 =n nAX AX  where  
 

1 1 1 1 1

1 0 1 2 1

0 1 2 1

= ( , , ,..., , ) ,

= ( , , ,..., , ) ,

n n n n n T

n N N

n n n n n T

n N N

X

X

    

    

    

 



 

 

where T  stands for transpose. The coefficient matrix A  is given by 
 

R. Abazari, K. Yıldırım     / Sigma J Eng & Nat Sci 37 (3), 967-979, 2019 



973 

2 1 0 1 0 2 2

0 2 0 2 1 2

2 1 0 1 2

2 1 0 1 2

2 1 0 1 2

2 1 0 2 1 2

2 2 0 1 0 1 2
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= 0 0 0
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C C C C C C C
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C C C C C

C C C C C

A

C C C C C
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where 2 1 0 1, , ,C C C C   and 2C  are given in (3.10), and the coefficient matrix A , is  
 

2 1 0 1 0 2 2

0 2 0 2 1 2

2 1 0 1 2

2 1 0 1 2

2 1 0 1 2

2 1 0 2 1 2

2 2 0 1 0 1 2

12 3 0 0 0 0

3 0 0 0

0 0

0 0

= 0 0 0

0 0

0 0 0 3

0 0 0 0 3 12

C C C C C C C

C C C C C C

C C C C C

C C C C C

A

C C C C C

C C C C C C

C C C C C C C

  

 

 

 

 

 



    
 

  
 
 
 
 
 
 
 
 

  
    
  
 

 

 

where 2 1 0 1, , ,C C C C   and  2C  are also given in (3.10). This penta-diagonal system can 

be solved by a modified form of Thomas algorithm. The time evolution of the approximate 

solution ),( txUN  is determined by the time evolution of the vector 
n

NX  which is found 

repeatedly by solving the recurrence relation, once the initial vectors 
0

NX  have been computed 

from the initial and boundary conditions.  

 

3.1. The initial state 
 

 The initial vector 
0

NX  can be determined from the initial condition )(=,0)( 0 xuxu  

which gives ( 1)N   equation in ( 5)N   unknowns. For the determination of the 

unknowns relations at the knot are used the boundary conditions (3.2).  

The initial vector is then determined as the solution of the matrix equation 
0 0

0( ),N NA X u x where 
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0

54 60 6 0 0 0 0

101 135 105
1 0 0 0

4 2 4

1 26 66 26 1 0 0

0 1 26 66 26 1 0
= ,

0 0 0

0 0 1 26 66 26 1

105 135 101
0 0 0 1

4 2 4

0 0 0 0 6 60 54

NA

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

0 0 0 0 0 0

0 1 2 1

0 0 0 0 1 0 1 0

= ( , , , , , ) ,

( ) = ( ( ), ( ), , ( ), ( )) ,

T

N N N

T

N N

X

u x u x u x u x u x

    



 

 

where 0( ), = 0,1,2,....iu x i N  can be obtained by initial condition (3.3).  

 

4. STABILITY OF THE PROPOSED SCHEME 
 

The Von–Neumann stability method (Fourier mode method) is used for the stability of 

scheme developed in the previous section. To apply this method, we have linearized the non-

linear term xUU  by considering U  as a constant in (3.9), therefore 0.=,..., xxx UU   
 

Theorem 4.1. The quintic B-spline method (3.8) for the solution of Rosenau-Burgers equation 

(3.1) is unconditionally stable. 
 

Proof. We implement the Von–Neumann stability method (Fourier mode method) in which the 

growth factor of a typical Fourier mode is defined as  )(exp= mhinn

m  , where   and h  

are the mode number and element size, respectively, and 1= i  .  Now substituting
n

m into 

linearized form of (3.9), the formulae (3.9) leads to 
 

2 2 2 ýý 2
2 1 0 1 22 1 0 1 2{ }= ,i h i h i h i h i h i h i h i hC e C e C C e C e C e C e C C e C e           

            (4.1) 
 

Here jC  and jC , for 1,0,1,22,= j  have their predefined definition given in (3.10)-

(3.11). Set 
4

120
= ,X

h
= ,

2

n

x

k
Y U

5
=

2

nk
Z U

h
 and 

5
=

2

k
W

h
. Simplifying 

Eq. (4.1), we get  
 

1

2

= ,
a ib

a ib





                                                                                                                       (4.2) 
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where  
 

1

2

= (2 2 )cos(2 ) (52 8 )cos( ) 66 6 ,

= 2 sin(2 ) 20 sin( ),

= 2( )sin(2 ) 20( )sin( ),

a X h X h X

b W h W h

b Z W h Z W h

 

 

 

    



  

                                    (4.3) 

 

 From (4.3), we get  
 

2 1= 2 sin(2 ) 20 sin( ),b b Z h Z h    
 

 therefore 
2

2

22

1

2 baba  . This implies 1  , which is the condition for scheme to 

be unconditionally stable.  

 

5. NUMERICAL COMPUTATIONS 
 

Consider the following initial-boundary problem of Rosenau–Burgers equation [17] 
 

( ) = 0, ( , ) [0,1] (0, ],xxxx t x x xxu u uu u u x t T                                    (5.1) 
 

 with the boundary conditions  
 

(0, ) = (1, ) = 0,
[0, ],

(0, ) = (1, ) = 0,xx xx

u t u t
t T

u t u t
                                                                      (5.2) 

 

 and initial condition  
 

4 4( ,0) = (1 ), [0,1],u x x x x                                                                              (5.3) 
 

We divide the domain [0,1]  into 5,10,20,40,80iN   intervals with each of equal 

intervals 
ih , respect to ,

20

1
=k , where 

1
= ,i

i

h
N

 for  1,2,3,4,5.i   

Since we do not know the exact solution of (5.1)-(5.3), a comparison between the 

numerical solutions on a coarse mesh and those on a refine mesh is made [13]. Since the 

numerical solution 
ihU  of Quintic B-spline collocation method (2.5) is zero at boundaries 

0,1=x , we can compute ratios of convergence at each time step n , by the following relation 
 

2 2

2 4 2 4

( )

= ,

( )

n n n n

h h h h h

n

h

n n n n

h h h h h

U U U U

R

U U U U
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where 
1 1

2

2
= .

n n n
n i i i

h i

v v v
v

h

  
  The maximum time step size used in all 

calculations is 
1

=
20

k . The average ratio of convergence 
n

hR , based on both infinite norm and 

2L -norm is 



=1

1
= ,

M
n

av h

n

R R
M
  on 10  x  and 10  t  are given in Tables 1 and 2. Here 

n

hU  is 

a numerical solution of (5.1) at nktn =  with step size h , which shown in the Figures 1, 2, 3 

and Figure 4.  
 

Table  1. The ratios of convergence 
n

hR , based on infinite norm when 
20

1
=k .  

 

  
n

hR  

n  t  
5

1
=h

 

10

1
=h

 1
=

20
h

 

40

1
=h

 

 2 0.1 5.1154 4.1669 4.0346 4.0079 

 4 0.2 5.1226 4.1668 4.0343 4.0078 

 6 0.3 5.1299 4.1667 4.0340 4.0076 

 8 0.4 5.1372 4.1665 4.0336 4.0074 

 10 0.5 5.1446 4.1664 4.0333 4.0072 

 12 0.6 5.1520 4.1663 4.0330 4.0070 

 14 0.7 5.1594 4.1662 4.0327 4.0068 

 16 0.8 5.1669 4.1661 4.0324 4.0066 

 18 0.9 5.1743 4.1660 4.0321 4.0064 

 20 1 5.1818 4.1659 4.0318 4.0062 

  
avR  5.1484 4.1664 4.0332 4.0071 

 

Table  2. The ratios of convergence 
n

hR , based on 
2L -norm when 

20

1
=k  .  

 

  
n

hR  

n  t  
5

1
=h

 

10

1
=h

 1
=

20
h

 

40

1
=h

 

 2 0.1 4.9909 4.1757 4.0393 4.0094 

 4 0.2 4.9939 4.1752 4.0388 4.0091 

 6 0.3 4.9969 4.1747 4.0384 4.0088 

 8 0.4 4.9999 4.1742 4.0379 4.0085 

 10 0.5 5.0025 4.1737 4.0374 4.0082 

 12 0.6 5.0057 4.1732 4.0369 4.0079 

 14 0.7 5.0087 4.1728 4.0365 4.0076 

 16 0.8 5.0116 4.1723 4.0360 4.0073 

 18 0.9 5.0145 4.1718 4.0356 4.0070 

 20 1 5.0174 4.1714 4.0351 4.0067 

  
avR  5.0042 4.1735 4.0372 4.0081 
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Figure  1. The approximation solution (left) and its concentration (right) of solution ),( txU , for 

5

1
=h

 and 

20

1
=k

 plotted as a function of 1::0= hx  and 10::0= kt .   

 

 
 

 

Figure  2. The approximation solution (left) and its concentration (right) of solution ),( txU , for 

10

1
=h  and 

20

1
=k  plotted as a function of 1::0= hx  and 10::0= kt . 
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Figure  3. The approximation solution (left) and its concentration (right) of solution ),( txU , for 

20

1
=h

 and 

20

1
=k

 plotted as a function of 1::0= hx  and 10::0= kt .  

 

 
 

Figure  4. The approximation solution (left) and its concentration (right) of solution ),( txU , for 

40

1
=h

 and 
20

1
=k  plotted as a function of 1::0= hx  and 10::0= kt . 

 

6. CONCLUSIONS 

 

In this paper, a numerical algorithm for the nonlinear Rosenau–Burgers equation is proposed 

using a collocation method with the quintic B–spline functions. This scheme is based on the 

Crank–Nicolson formulation for time integration and quintic B–spline functions for space 

integration. By the application point of view the quintic B–spline method considered in this work 

is simple and straight forward. The algorithm described above works for a large class of linear 

and nonlinear problems. The solution obtained is presented graphically at various time steps 

which show the same characteristics as given in the literature. Since we do not know the exact 

solution of the nonlinear (KdV–like) Rosenau–Burgers equation, a comparison between the 

numerical solutions on a coarse mesh and those on a refine mesh is made. The ratios of 

convergence 
n

hR , based on infinite norm and 
2L -norm, mentioned in the Tables 1 and 2, show 

that the simulating results are in excellent agreement with the analytical solutions. 
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