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ABSTRACT 

 

In this paper, we introduce the notion of crossed polysquare of polygroups and we give some of its properties. 

Our results extend the classical results of crossed squares to crossed polysquares. One of the main tools in the 

study to polygroups is the fundamental relations. These relations connect polygroups to groups, and on the 

other hand, introduce new important classes. So, we consider a crossed polysquare and by using the concept 

of fundamental relation, we obtain a crossed square. 
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1. INTRODUCTION 

 

Crossed modules and its applications play very important roles in category theory, homotopy 

theory, homology and cohomology of groups, Algebra, k -theory and etc. Crossed modules were 

initially defined by Whitehead[34] as a model for 2-types. Loday explored and gave the new 

direction to the category of crossed modules by defining equivalent category of cat
1

-groups in his 

work[30]. Norrie gave a good example of crossed module such as Actor crossed module in[31]. 

Conduché has defined a 2-crossed module as a model for 3-types[17]. His unpublished work 

determines that there exists an equivalence between the category of crossed squares of groups and 

that of 2-crossed modules of groups.  

In [7] Z. Arvasi and T. Porter showed how to go form a simplicial algebra to a 2-crossed 

module of algebras and back to a truncated form of simplicial algebra, and the link between 

simplicial algebras and crossed squares is explicitly given.  

The polygroup theory is a natural generalization of the group theory. In a group the 

composition of two elements is an element, while in a polygroup the composition of two elements 

is a set. Polygroups have been applied in many area, such as geometry, lattices, combinatories and 

color scheme. There exists a rich bibliography: publications appeared within 2012 can be found in 

"Polygroup Theory and Related Systems" by B. Davvaz[21]. This book contains the principal 

definitions endowed with examples and the basic results of the theory.  
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In this paper, w e give a new application of crossed squares. This application is so important 

because we use the notion of polygroup to obtain crossed square. Therefore this application can 

be taught as a generalization of crossed square on groups. In the first two section of the paper, we 

review some basic facts about crossed squares and polygroups that underline the subsequent 

material. To define crossed polysquare, we need the notion of polygroup action. Finally we 

consider a crossed polysquare and by using the concept of fundamental relation, we obtain a 

crossed square. 

 

2. CROSSED SQUARES 

 

As an algebraic model of connected 3-types, the notion of 2-crossed module was introduced 

by Conduché in [17], and these 2-crossed modules are equivalent to simplicial groups with Moore 

complex of length 2. Crossed squares and quadratic modules are other algebraic models of 

connected 3-types defined by Loday and Guin-Walery[26] and Baues[10] respectively. Z. Arvasi 

and E. Ulualan in [8] explored there relations among 2-crossed modules, quadratic modules, 

crossed squares and simplicial groups, and the homotopy equivalences between these structures. 
 

Definition 2.1 Let G  be a group and   be a non-empty set. A binary operator 

G:  that satisfies the following axioms: 
 

1.  )),(,(=),(  hggh , for all Ghg ,  and  ,  

2.   =),(e , for all  .  
 

For   and Gg , we write ),(:=  gg
.  

 

Definition 2.2 A crossed module ),,,(=  GM  consists of groups M  and G  together 

with a homomorphism GM  :  and a (left) action MMG :  on M , satisfying 

the conditions:   
 

1.  
1)(=)(  gmgmg

, for all Mm  and Gg ,  

2.  
1)( =   mmmmm

, for all Mmm , .  
 

The standard examples of crossed modules are inclusion GM   of a normal subgroup 

M  of G , the zero homomorphism GM   when M  is a G -module, and any surjection 

GM   with center central.  

There is also an important topological example: if BEF   is a fibration sequence of 

pointed spaces, then the induced homomorphism EF 11    of fundamental groups in 

naturally a crossed module[12]. To get more idea about category of crossed module we refer to 

read [1, 2, 3, 5, 14, 27]. 

In [26] Loday and Guin-Walery, introduced the notion of crossed square as an algebraic model of 

connected 3-types. 
 

Definition 2.3 A crossed square is a commutative diagram of groups 
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together with actions of the group 0  on 1G , 1  and 0G  (and hence actions of 1  on 1G  

and 0G  via   and of 0G  on 1G  and 1  via 0p .) and a function 101: GGh  , such 

that the following axioms are satisfied:   
 

1.  the maps 1p ,   preserve the actions of 0 . Furthermore with the given actions the maps 

 , 0p  and  00 = pp  are crossed modules;  

2.  
1

1 =),(  gghp , 
1=),(  gggh  ;  

3.  
1

1 =)),((  ggph , 
1=))(,(   h ;  

4.  ),(),(=),( 2
1

21 ghghgh 


, ),(),(=),( 2
1

121 ghghggh
g

 ;  

5.  ),(=),( ghgh  
;  

 

for all 1G , 121,,  , 021,, Gggg   and 0 .  

Note that in these axioms a term such as   is   acted on by  , and so   )(=
. 

It is a consequence of (i) that  , 1p  are crossed modules. Further, by (iv), h  is normalized and 

by (iii), 0G  acts trivially on 1Kerp  and 1  acts trivially on Ker .  

In [13, 30] we have some useful identities:   
 

1.  )(),(=),()(   gg ghgh ;  

2.  )),((),(=),()),(( 22
11

111122
11 ghghghgh

gg



;  

3.  
1

1
2

1211 ),(),(=)),,(( ghghgghph
g

 ;  

4.  
1

11
2

12 ),(),(=)),(,(  ghghghh 


;  

5.  
1

2

1

121211 =))(),((  ph ;  

6.  
1

22

1

112211

1

22
21

1
1

1 ),(),(),(),(=),(  ghghghghggh
g




;  

7.  ),(=),(=),( 111  ghghgh g 
;  

8.  ),(=)),(( ghghg 
;  

9.  ),(=))(,)(( 212
1

11
2

222111 ghgph
g




 ;  
 

for all 121,, G  and 021,, Gggg  . The last three identities do not appear in any 

text and they are deducted from the axiom (iv). 
 

Definition 2.4 A morphism of crossed squares  
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consists of four group homomorphisms 


 11
1

: GGG , 


 00
0

: GGG , 


 11

1
:  and 


 00

0
:  such that the resulting cube of group homomorphisms 

is commutative; ))(),((=)),((
011

ghgh GG     for every 1 , 0Gg ; 

each of the homomorphisms 
101

,,  GG  is 
0
 -equivariant. 

 

Example 1  
 

1.  Given a pair of normal subgroups 21,NN  of a group G , we can form the following 

square:  
 

 
 

in which each morphism is an inclusion crossed module and there is a commutator map  
 

 
 

This forms a crossed square of groups.  
 

2.  [31] Let  
 

 
 

be a crossed square with a function 101: GGh  . Then >,< 01 pp  is a morphism 

of crossed modules, and 01:   acts on 01: GG  .  

3.  [15] Crossed squares can be seen as crossed modules in the category of crossed modules 

and they provide algebraic models of connected 3-types.  

4.  [18] A 2-crossed module constructed from a crossed square  
 

 
 

as  
 

 
 

To get more idea about category of crossed square we refer to read [6, 9, 11, 13, 18, 32]. 
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3. POLYGROUPS AND POLYGROUP ACTION 

 

Suppose that H  is a nonempty set and )(* HP  is the set of all nonempty subsets of H . 

Then, we can consider maps of the following type: )(: * HHHfi P , where 

},{1,2, ni   and n  is a positive integer. The maps if  are called (binary) hyperoperations. 

For all yx,  of H , ),( yxfi  is called a (binary) hyperproduct of x  and y . An algebraic 

system ),,,( 1 nffH   is called a (binary) hyperstructure. Usually 1=n  or 2=n . Under 

certain conditions, imposed to the maps if , we obtain the so-called semihypergroups, 

hypergroups, hyperrings or hyperfields. Sometimes, external hyperoperations are considered, 

which are maps of the following type: )(: * HHRh P , where HR  . An example of 

a hyperstructure, endowed both with an internal hyperoperation and an external hyperoperation is 

the so-called hypermodule. Applications of hypergroups appear in special subclasses like 

polygroups, that they were studied by Comer [16], also see [20, 21, 22].  

Specially, Comer and Davvaz developed the algebraic theory for polygroups. A polygroups is 

a completely regular, reversible in itself multigroup.   

Definition 3.1 [16]A polygroup is a multi-valued system >,,,=< 1ePM  , with Pe ,

PP :1
, )(: * PPP P , where the following axioms hold for all zyx ,,  in P :   

 

1.  )(=)( zyxzyx  ,  

2.  xexxe ==  ,  

3.  zyx   implies 
1 zxy   and zyz 1 .  

 

In the above definition, )(* PP  is the set of all the non-empty subsets of P , and if Px  

and BA,  are non-empty subsets of P , then baBA
BbAa
   ,

=  , BxBx  }{=  

and }{= xAxA  . The following elementary facts about polygroups follow easily from the 

axiom: xxxxe  11   , ee =1
 and xx =)( 11 

. For further discussion of 

polygroups, we refer to Davvaz’s book[21]. Many important examples of polygroups are 

collected in [21] such as Double coset algebra,Prenowitz algebra, Conjugacy class polygroups, 

Character polygroups, Extension of polygroups, and Chromatic polygroups. 
 

Example 2 Suppose that H  is a subgroup of a group G . Define a system 

>,},*,|{=<// 1 HGgHgHHG , where HHgHgH 11 =)( 
 and  

 

}.|{=)(*)( 2121 HhHhgHgHHgHHg   
 

The algebra of double cosets HG//  is a polygroup.  
 

Lemma 3.2 [21]Every group is a polygroup.  
 

If K  is a non-empty subset of P , then K  is called a  subpolygroup of P  if Ke  and 

>,,,< 1eK   is a polygroup. The subpolygroup N  of P  is said to be  normal in P  if 
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NaNa  1
, for every Pa . If N  is a normal subpolygroup of P , then 

>,,,< 1 N
N

P
 is a polygroup, where }|{= baNccNbBaN    and 

11 =)(  aNaN  [21].  
 

There are several kinds of homomorphisms between polygroups[21]. 
 

Definition 3.3 Let >,,,< 1eP   and >,,*,< 1 eP  be two polygroups. Let   be a 

mapping from P  into P  such that ee =)( . Then   is called   
 

1.  an  inclusion homomorphism if )(*)()( baba   , for all Pba , ,  

2.  a  weak homomorphism if  )(*)()( baba  , for all Pba , ,  

3.  a  strong homomorphism if )(*)(=)( bba   , for all Pba , .  
 

A strong homomorphism   is said to be an  isomorphism if   is one to one and onto. Two 

polygroups P  and P  are said to be  isomorphic if there is an isomorphism from P  onto P .  
For the definition of crossed polysquare, we need the notion of polygroup action. 
 

Definition 3.4 [22]Let >,,,=< 1eP P  be a polygroup and   be a non-empty set. A map 

)(: *  PP , where  pp :=),(  is called a  (left) polygroupaction on   if 

the following axioms hold:   
 

1.   =e
,  

2.  
 phph =)(

, where 
aA

p

Aa

p  
=

 and 


b

Bb

B  
=

 for all A  and PB ,  

3.  


=


p ,  

4.  for all Pp , .
1

abba pp 

  
 

Example 3 Suppose that >,,,< 1eP   is a polygroup. Then, P  acts on itself by conjugation. 

Indeed if we consider the map )(: * PPP P  by 
1:==),( pxpxxp p  , then   

 

1.  xxe = ,  

2.  

xxbxbphxphhpxphpxpx phb

phbphb

hph 

   ==)(=)()(==)(=)( 11111







 ,  

3.  Ppxpx
Px

p

Px
== 1


 ,  

4.  if 
1=  pbpba p  , then 

1 bpap   and hence papb  111   . 

This implies that papb 1 .  

 

4. CROSSED POLYSQUARES 

 

Now, in this section, we give the notion of crossed polysquares. 
 

Definition 4.1 A crossed polysquares is a commutative diagram of polygroups  
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together with polyactions of the polygroup 0  on 1P , 1  and 0P  (and hence polyactions of 1  

on 1P  and 0P  via   and of 0P  on 1P  and 1  via 0p ) and a function 

)(: 1

*

01 PPh P , such that the following axioms are satiesfied:   
 

1.  the maps ,1p  preserve the polyactions of 0 . Furthermore, with the given polyactions 

the maps 0, p  and  01 = pp  are crossed polymodules;  

2.  
1

1 =),(  pphp , 
1=),(  ppph  ;  

3.  
1

1 =)),((  ppph , 
1=))(,(   h ;  

4.  ),(),(=),( 12
1

21 phphph 


, ),(),(=),( 2
1

121 phphpph
p

 ;  

5.  ),(=),( phph  
;  

 

for all 1P , 121,,  , 021,, Pppp   and 0 .  

It is a consequence of (1) that 1, p  are crossed polymodules. Further, by (4), h  is 

normalized and by (3), 0P  acts trivially on 1Kerp  and 1  acts trivially on Ker .  

We have some useful identities:   
 

1.  )(),(=),()(   pp phph ;  

2.  )),((),(=),()),(( 22
11

111122
11 phphphph

pp



;  

3.  
1

1
2

1211 ),(),(=)),,(( phphpphph
p

 ;  

4.  
1

11
2

12 ),(),(=)),(,(  phphphh 


;  

5.  
1

2

1

121211 =))(),((  ph ;  

6.  
1

22

1

112211

1

22
21

1
1

1 ),(),(),(),(=),(  phphphphpph
p




;  

7.  ),(=),(=),( 111  phphph p 
;  

8.  ),(=)),(( phphp 
;  

9.  ),(=))(,)(( 212
1

11
2

222111 phpph
p




 ;  
 

for all 121,, P  and 021,, Pppp  . 
 

Example 4 Given a pair of normal subpolygroups 1N , 2N  of a polygroup P , we can form the 

following square:  
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in which each morphism is an inclusion crossed polymodule and there is a commutator map  
 

 

 
 

where ],[ yx  is }|{ 11  yxyxzz . This forms a crossed polysquare of polygroups.  
 

Example 5If  
 

 
 

be a crossed polysquare with function )(: 1

*

01 PPh P , then >,< 01 pp  is a 

morphism of crossed polymodules, and 01:   acts on 01: PP  .  
 

Example 6 Let  
 

 
 

be a crossed polysquare with a function )(: 1

*

01 PPh P . Then we can construct the 

semi-direct crossed polymodule and other one, given by:  
 

 
 

The polyactions of 0P  on 1P  and of 0  on 1  are the natural polyactions and the 

polyaction of 1 ⋊ 0  on 1P ⋊ 0P  is defined by:  
 

}.),,(|),{(=),( )(),( pyphxyxp   


 
 

Theorem 4.2  Every crossed square is a crossed polysquare.  
 

Proof. By using Lemma 3.2, the proof is straightforward.  
 

Definition 4.3 A morphism of crossed polysquares   
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consists of four strong homomorphisms >,,,=<
0101
  PP ,  

00
0

11
1

00
0

11
1

:,:,:,:  PPPP PP  

 

 
 

such that the resulting cube of polygroup strong homomorphisms is commutative; 

))(),((=)),((
011

phph PP     for every 1 , 0Pp ; each of the strong 

homomorphisms 
1

P , 
0

P , 
1
  is 

0
 -equivariant.  

We say that   is an  isomorphism if 
1

P , 
0

P , 
1
  and 

0
  are isomorphisms. 

Similarly, we can defined  monomorphism,  epimorphism and  automorphism of crossed 

polysquares.  

Crossed polysquares and their morphisms from a category that will be denoted by CPS. 

 

5. CROSSED SQUARES DERIVED FROM CROSSED POLYSQUARES 

 

In this section, we consider a crossed polysquare and by using the concept of fundamental 

relation, we obtain a crossed square.  

Let >,,,< 1eP   be a polygroup. We define the relation 
*

P  as the smallest equivalence 

relation on P  such that the quotient 
*

P

P


, the set of all equivalence classes, is a group. In this 
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case 
*

P  is called the  fundamental equivalence on P  and 
*

P

P


 is called the  fundamental 

group. The product ⊙ in 
*

P

P


 is defined as follows:  

 

𝛽𝑃
∗(𝑥) ⊙ 𝛽𝑃

∗(𝑦) = 𝛽𝑃
∗(𝑧),         for all  𝑧𝜖𝛽𝑃

∗(𝑥)°𝛽𝑃
∗(𝑦). 

 

This relation is introduced by Koskas[28] and studied mainly by Corsin[19], Leoreanu-

Fotea[29] and Freni[25] concerning hypergroups, Vougiouklis[33] concerning H -groups, 

Davvaz concerning polygroups [23], and many others. We consider the relation P  as follows:  
 

.},{such that ,,exist   there
1=

1 i

n

i

nP zyxzzyx    

 

Freni in [25] proved that for hypergroups 
*, . Since polygroups are certain subclass of 

hypergroups, we have PP  =*
. The kernel of the  canonical map

*
:

P

P

P
P


   is called 

the  core of P  and is denoted by P . Here we also denote by P  the unite of 
*

P

P


. It is easy 

to prove that the following statements: )(= * ePP   and )(=)( 1*1*  xx PP  , for all 

Px . 
 

Lemma 5.1 [33] P  is a subpolygroup of P .  
 

Lemma 5.2 [33] For every Pp , Ppp 1 .  
 

Proposition 5.3 [33] Let >,,*,< 1eC  and >,,,< 1eP   be two polygroups and let 

PC :  be a strong homomorphism. Then, induces a group homomorphisms 

**
:

Pc

PC


D  be setting 

 

. allfor )),((=))(( ** Cccc PC D  
 

Definition 5.4 [33] We say the action of P  on C  is productive, if for all Cc  and Pp  

there exist ncc ,,1   in C  such that n

p ccc **= 1  .  

According [33], let >,,*,< 1eC  and >,,,< 1eP   be two polygroups and let 

)(: * CCP P  be a productive action on C . We define the map 

)(:
*

*

**

CCP

PPP


P  as usual manner:  
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}.|)({=))(),((

)(*

)(*

*** yxxcp
z

p
P

x

c
C

y

CCP 











  

 

By definition of 
*

C , since the action of P  on C  is productive, we conclude that 

))(),(( ** cp CP   is singleton, i.e., we have  
 

yxxcp
PPP z

p
P

x

c
C

y

CCP

CCP



)(*

)(*

***

***
 allfor ),(=))(),((,:












  

 

We denote )]([=))(),(( *)](*[** ccp C

p
P

CP 


 . 
 

Proposition 5.5 [33] Let >,,*,< 1eC  and >,,,< 1eP   be two polygroups and let 

)(: * CCP P  be a productive action on C . Then,   is an action of the group 
*

P

P


 

on the group 
*

C

P


.  

 

Theorem 5.6Let  
 

 
 

diagram(1)  
 

be a crossed polysquare, such that the actions are productive. Then,  
 

 
 

is a crossed square with actions and function 
*

1

1

*

0

0

*

1

1:
PP

PP
h








 defined as following;   

     

1.  the action of 
*

0

0






 on 

*

1

1

P

P


 is induced by the polyaction of 0  on 1P .  
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2.  the action of 
*

0

0






 on 

*

1

1






 is induced by the polyaction of 0  on 1 .  

3.  the action of 
*

0

0






 on 

*

0

0

P

P


 is induced by the polyaction of 0  on 0P .  

4.  the map 
*

1

1

*

0

0

*

1

1:
PP

PP
h








 is )),((=))(),(( 01

*

1
0

*

0
1

*

1
phph PP   

where the function h  is given by the crossed polysquare structure up.  
 

Proof. The action 
*

0

0






 on 

*

1

1






, 

*

0

0

P

P


 and 

*

1

1

P

P


 is well defined. We now want to check the 

five properties making this diagram a crossed square.   
 

1.  The map Dpreserves the action of 
*

0

0






; i.e., we have 

))((=))(( 1

*

1

)
0

(*

0
1

*

1

)
0

(*

0 ppD PP 


D


, because 

))((=))((=))(( *

0

*

1
1

*

1

)
0

(*

0 xxp PPP 





DD , for all 
y

z

p
P

y zx 
)

0
(*

0

)
1

(*

1








 , and 

)(=)))(((=))(( *

0
1

*

0

)
0

(*

0
1

*

1

)
0

(*

0 xpp PPP 





D  for all 
y

z

p
P

y zx 
)

0
(*

0

))
1

((*

0








 . Also, the 

map   preserves the action of 
*

0

0






. 'D  is a crossed module because diagram (1) is a crossed 

polysquare and we want to prove that   is a crossed module. In fact, suppose that 00 Pp   

and 00   are arbitrary. We have  
 

C
Pp zzp 0

*

0
0

*

0

)]
0

(*

0
[

 allfor )]),(([=)])(([ 





 

C
zzp 00

*

0
 allfor )),((=   

))((= 00

*

0 C
p   

))((= 1

0000

*

0



  pp  

)())(()(= 1

0

*

0
00

*

0
0

*

0



  pp  

1

0

*

0
0

*

0
0

*

0
))())((()(= 

   p  
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Also if 000, Ppp   are arbitrary, then we have  
 

)]([=)]([ 0

*

0

))]
0

(
0

(*

0
[

0

*

0

))]
0

(*

0
([

pp P

pp

P

p
P









 

0

)
0

(
0*

0
 allfor ),(= pzz

pp

P
  

000

*

0
allfor ),(= pppzzP

  

)(= 000

*

0
pppP
  

).()()(= 0

*

0
0

*

0
0

*

0
ppp PPP    

 

'= DD , is a crossed module because 'D  is a crossed module. 

 

2.   

))),(((=)))(),((( 01

*

1
0

*

0
0

*

0
phph PP   

 

1

0

*

0

)
0

(*

0
1

*

1
))(()(= 

 
 P

P
 

 

Now we want to prove that 
1

0

*

0
0

*

0

)
1

(*

1
0

*

0
1

*

1
))()((=))(),(( 

 ppph PPP 


D  and 

we develop the two members separately:  
 

))),(((=))(),(( 01

*

1
0

*

0
1

*

1
phph PP  DD 

 

)(=)),((= 1

00
1*

0
01

*

0

 ppph PP


  

1

0

*

0
0

*

0

)
1

(*

1 ))()((= 
pp PP 



 

 

3. We have  
 

))(),((=))()),(((=))(),(( 0

*

0
1

*

1
0

*

0
1

*

1
0

*

0
1

*

1
phpphph PPPP     

),(=)),((= *

1
01

*

1
zph PP   

 

for all )()( 1*

1
1

*

1

 xpz PP   

 

y

p
P

z

p
P

y

PPP

p
P

P zxxppp 

)
0

(*

0

)
1

(*

1

1*

1
1

*

1

1

1

*

1

)
0

(*

0
1

*

1
allfor),()(=))(().(













   

)()(allfor);(= 1*

1
1

*

1

*

1

 xpzz PPP   

 

On Crossed Polysquares and Fundamental Relations     /   Sigma J Eng & Nat Sci 9 (1), 1-16, 2018 



14 

 

 

4.   

 

)()(allfor)),(),((=))(),()(( *

1

*

1
0

*

0

*

1
0

*

0

*

1

*

1
yxzpzhpyxh PP     

)).,((= 0

*

1
pzhP  

 

But,  
 

))(),(())(),(( 0

*

0

*

1
0

*

0

*

1

)(*

1 pxhpyh PP

x







 

))),(()))(,(((= 0

*

1
0

*

1

)(*

1 pxhpyh PP

x





 

y

z

p
P

y

PP ztpxht 

)
1

(*

1

)
1

(*

1

0

*

1

*

1
));,(()(=












  

 

Also,  
 

)()()),(),((=))()(),(( *

0

*

0

*

0

*

1

*

0

*

0

*

1
zyttxhzyxh PPPPP    

);(=)),((= *

1

*

1
stxh PP   

 

But,  
 

))(),(())(),(( *

0

*

1

)(*

0*

0

*

1
zxhyxh P

y
P

P 


  

)),(()),((= *

1

)(*

0*

1
zxhyxh P

y
P

P 


 

y

y
P

z

zxh
P

y

PP zrryxh 

)(*

0

)),((*

1

*

1

*

1
allfor);()),((=











  

)(= *

1
sP  

 

5.   
 

)),((=))(),((=))(),(( *

1

*

0

*

1
0

*

0

)
0

(*

0
1

*

1

)
0

(*

0 yxhyxhph PPP 









 

 

But,  
 

)(=)),((=))(),(( *

1
01

*

1

)
0

(*

0
0

*

0
1

*

1

)
0

(*

0 zphph PPP 







 

 

Theorem 5.7Let 
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be a crossed polysquare, 
1

P , 
0

P , 
1
  and 

0
  be canonical maps. Then 

),,,=<
0101
  PP  is a crossed polysquares morphism.  

 

Proof. Note that according to Theorem 4.2, we can condider diagram of as a crossed polysquare 
 

 
 

Diagram is commutative. Also are strong homomorphisms. But 

01
011

,)),(),((=)),(( Ppphph PP    . But, )),((=)),(( *

11
phph PP  , 

for all 01, Pp , and )),((=))(),((=))(),(( *

1

*

0

*

101
phphph PPP    .  
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