Sigma J Eng & Nat Sci 9 (1), 2018, 69-75

Publications Prepared for the 13th Algebraic Hyperstructures and its Applications Conferences AHA 2017

Review Article UNI-SOFT IDEALS IN CORESIDUATED LATTICES

Hashem BORDBAR*¹, Habib HARIZAVI², Young BAE JUN³

¹Department of Mathematics, Shahid Beheshti University, Tehran-IRAN; ORCID:0000-0003-3871-217X ²Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz-IRAN; ORCID:0000-000 ³Department of Mathematics Education, Gyeongsang National University, Jinju-KOREA; ORCID:0000-000

Received: 25.08.2017 Revised: 06.12.2017 Accepted: 26.02.2018

ABSTRACT

The notion of uni-soft ideal is introduced, and related properties are investigated. Characterizations of uni-soft ideal are discussed. The transfer of uni-soft ideal is considered, and relations between uni-soft ideal and its transfer are investigated. Given a soft set, conditions for the transfer of soft set to be a uni-soft ideal. **Keywords:** Coresiduated lattice, uni-soft ideal, transfer, support. **MSC Number:** 06F35, 03G25, 06D72.

1. INTRODUCTION

As a generalization of fuzzy set theory, Molodtsov [2] introduced the soft set theory in 1999 to deal with uncertainty in a parametric manner. Co-residuated lattice is discussed in [3] and [4] by Zheng et al.

In this paper, we introduce the notion of uni-soft ideal in coresiduated lattices, and investigate related properties. We discuss characterizations of uni-soft ideal. We also consider the transfer of uni-soft ideals, and discuss relations between uni-soft ideal and its transfer. We provide conditions for the transfer of a soft set to be a uni-soft ideal.

2. PRELIMINARIES

We display basic notions of coresiduated lattices. We refer to the papers [3] and [4] for more details.

A structure $(\mathcal{L}; V, \Lambda, \oplus, \Theta, 0, 1)$ is called a coresiduated lattice if the following conditions are valid.

(1) $(\mathcal{L}, V, \Lambda)$ is a bounded lattice with the smallest element 0 and the greatest element 1.

(2) (\oplus, \ominus) is a coadjoint pair on \mathcal{L} .

(3) $(\mathcal{A}, \oplus, 0)$ is a commutative monoid.

In a coresiduated lattice \mathcal{L} , the following are valid.

^{*} Corresponding Author: e-mail: bordbar.amirh@gmail.com, tel: +989177842687

$$x \ominus 0 = x, \tag{2.1}$$

$$x \le y \iff x \ominus y = 0, \tag{2.2}$$

$$x \oplus y = 0 \iff x = y = 0, \tag{2.3}$$

$$(x \ominus y) \ominus z = (x \ominus z) \ominus y = x \ominus (y \oplus z), \tag{2.4}$$

$$(x \oplus y) \ominus y \le x \le (x \ominus y) \oplus y. \tag{2.5}$$

A subset *I* of a coresiduated lattice \mathcal{L} is called an *ideal* of \mathcal{L} if it sati sfies:

(I1)
$$0 \in I$$
,

- (I2) $(\forall x, y \in \mathcal{L}) (x \in I, y \leq x \Rightarrow y \in I),$
- (I3) $(\forall x, y \in \mathcal{L}) (x \in I, y \in I \Rightarrow x \oplus y \in I).$

A subset I of a coresiduated lattice \mathcal{L} is an ideal of \mathcal{L} if and only if the following assertions are valid.

$$0 \in I$$
 (2.6)

$$(\forall x, y \in \mathcal{L}) (x \in I, y \ominus x \in I \Rightarrow y \in I).$$

$$(2.7)$$

Let U be an initial universe set and E be a set of parameters. Let 2^U denotes the power set of U and $A \subseteq E$.

A soft set (see [1, 2]) (f, A) over U is defined to be the set of ordered pairs

$$(\tilde{f}, A) := \left\{ (x, \tilde{f}_A(x)) : x \in E, \ \tilde{f}_A(x) \in 2^U \right\}$$

where $f_A: E \to 2^U$ such that $f(x) = \emptyset$ if $x = \notin A$: The soft set (f, A) is simply denoted by f_A .

For a soft set f_A over U and a subset τ of U, the τ -exclusive set of f_A , denoted by $e(f_A; \tau)$; is defined to be the set

$$e\left(\tilde{f}_A;\tau\right) := \left\{x \in A \mid \tilde{f}_A(x) \subseteq \tau\right\}.$$

3. UNI-SOFT IDEALS

In what follows, we take a coresiduated lattice \mathcal{L} as a set of parameters.

Definition 3.1. A soft set $f_{\mathcal{A}}$ over U is called a *uni-soft ideal* of \mathcal{A} if it satisfies:

$$(\forall x \in L) \left(\tilde{f}_{\mathcal{L}}(0) \subseteq \tilde{f}_{\mathcal{L}}(x) \right), \tag{3.1}$$

$$(\forall x, y \in L) \left(\tilde{f}_{\mathcal{L}}(y) \subseteq \tilde{f}_{\mathcal{L}}(x) \cup \tilde{f}_{\mathcal{L}}(y \ominus x) \right).$$
(3.2)

Proposition 3.2. If $\sim f_{\mathcal{A}}$ *is a uni-soft ideal* of \mathcal{A} , then

$$(\forall x, y \in \mathcal{L}) \left(x \le y \; \Rightarrow \; \tilde{f}_{\mathcal{L}}(x) \subseteq \tilde{f}_{\mathcal{L}}(y) \right).$$
(3.3)

Proof. For any x, $y \in \mathcal{A}$, if $x \leq y$ then $x \ominus y = 0$. It follows from (3.1) and (3.2) that

$$\tilde{f}_{\mathcal{L}}(x) \subseteq \tilde{f}_{\mathcal{L}}(y) \cup \tilde{f}_{\mathcal{L}}(x \ominus y) = \tilde{f}_{\mathcal{L}}(y) \cup \tilde{f}_{\mathcal{L}}(0) = \tilde{f}_{\mathcal{L}}(y)$$

This completes the proof.

Theorem 3.3. A soft set $f \mathcal{L}$ over U is a uni-soft ideal of \mathcal{L} if and only if

$$(\forall x, y, z \in \mathcal{L}) \left(z \le x \oplus y \implies \tilde{f}_{\mathcal{L}}(z) \subseteq \tilde{f}_{\mathcal{L}}(x) \cup \tilde{f}_{\mathcal{L}}(y) \right).$$
(3.4)

Proof. Assume that $f_{\mathcal{A}}$ is a uni-soft ideal of \mathcal{A} . Let $x, y, z \in \mathcal{A}$ be such that $z \leq x \oplus y$.

Then $z \ominus y \le x$, and so $f_{\mathscr{L}}(z \ominus y) \mathscr{L} \sim f_L(x)$ by (3.3). It follows from (3.2) that

$$\tilde{f}_{\mathcal{L}}(z) \subseteq \tilde{f}_{\mathcal{L}}(y) \cup \tilde{f}_{\mathcal{L}}(z \ominus y) \subseteq \tilde{f}_{\mathcal{L}}(x) \cup \tilde{f}_{\mathcal{L}}(y).$$

Thus (3.4) is valid.

Conversely suppose that $f_{\mathcal{A}}$ satis_es the condition (3.4). Since $0 \le x \oplus x$ for all $x \in \mathcal{A}$, we have $f_{\mathcal{A}}(0) \subseteq f_{\mathcal{A}}(x) \cup f_{\mathcal{A}}(x) = f_{\mathcal{A}}(x)$ by (3.4). Note that $y \le (y \ominus - x) \oplus x$ for all $x, y \in \mathcal{A}$ by (2.5). Hence $f_{\mathcal{A}}(y) \subseteq f_{\mathcal{A}}(x) \cup f_{\mathcal{A}}(y \ominus x)$ for all $x, y \in \mathcal{A}$. Therefore $f_{\mathcal{A}}$ is a uni-soft ideal of \mathcal{A} .

Corollary 3.4. For any soft set $f_{\mathcal{L}}$ over U, the following are equivalent.

- (1) f_⊥ is a uni-soft ideal of L.
 (2) f_⊥ satis_es the condition (3.3).
 (3) f_⊥ satis_es the condition (3.4).
- ⁽⁴⁾ $(\forall x, y, z \in \mathcal{L}) \left(z \ominus y \le x \Rightarrow \tilde{f}_{\mathcal{L}}(z) \subseteq \tilde{f}_{\mathcal{L}}(x) \cup \tilde{f}_{\mathcal{L}}(y) \right).$

Proof. It is straightforward by Theorem 3.3.

Theorem 3.5. A soft set $f_{\mathcal{A}}$ over U is a uni-soft ideal of \mathcal{A} if and only if the following condition is true.

$$y \le x_1 \oplus x_2 \oplus \dots \oplus x_n \implies \tilde{f}_{\mathcal{L}}(y) \subseteq \bigcup_{k=1}^n \tilde{f}_{\mathcal{L}}(x_k)$$
(3.5)

for all $y, x_1, x_2, \ldots, x_n \in \mathcal{L}$.

Proof. Assume that $f_{\mathcal{A}}$ is a uni-soft ideal of \mathcal{A} . If n = 2, then it is clear by Theorem 3.3. Suppose the condition (3.5) is valid for n = k, that is,

$$y \le x_1 \oplus x_2 \oplus \dots \oplus x_k \Rightarrow \tilde{f}_{\mathcal{L}}(y) \subseteq \bigcup_{i=1}^k \tilde{f}_{\mathcal{L}}(x_i)$$
(3.6)

for all $y, x_1, x_2, \ldots, x_k \in \mathcal{L}$. Let $y, x_1, x_2, \ldots, x_k, x_{k+1} \in \mathcal{L}$ be such that

 $y \leq x_1 \oplus x_2 \oplus \cdots \oplus x_k \oplus x_{k+1}.$

Then $y \oplus x_{k+1} \le x_1 \oplus x_2 \oplus \ldots \oplus x_k$, and so

$$\tilde{f}_{\mathcal{L}}(y \ominus x_{k+1}) \subseteq \bigcup_{i=1}^{n} \tilde{f}_{\mathcal{L}}(x_i)$$
(3.7)
$$(3.7)$$

by (3.6). It follows from (3.2) that

H. Bordbar, H. Harizavi, Y. Bae Jun / Sigma J Eng & Nat Sci 9 (1), 69-75, 2018

$$\begin{split} \tilde{f}_{\mathcal{L}}(y) &\subseteq \tilde{f}_{\mathcal{L}}(y \ominus x_{k+1}) \cup \tilde{f}_{\mathcal{L}}(x_{k+1}) \\ &\subseteq \left(\bigcup_{i=1}^{k} \tilde{f}_{\mathcal{L}}(x_{i})\right) \cup \tilde{f}_{\mathcal{L}}(x_{k+1}) \\ &= \bigcup_{i=1}^{k+1} \tilde{f}_{\mathcal{L}}(x_{i}). \end{split}$$

Therefore (3.5) is valid.

Conversely suppose that (3.5) holds. If n = 2, then it is true by Theorem 3.3. Suppose n > 2. If we take y = 0 and xi = x for i = 1, 2, ..., n in (3.5), then $\neg f_{\mathcal{A}}(0) \subseteq \neg f_{\mathcal{A}}(x)$. Hence the condition (3.4) is induced by taking y = z, $x_1 = x$, $x_2 = y$ and $x_i = 0$ for i = 3, 4, ..., n in (3.5). Therefore $\neg f_{\mathcal{A}}$ is a uni-soft ideal of \mathcal{A} by Theorem 3.3.

Theorem 3.6. A soft set $f_{\mathcal{A}}$ over U is a uni-soft ideal of \mathcal{A} if and only if $f_{\mathcal{A}}$ satisfies (3.3) and

$$(\forall x, y \in \mathcal{L}) \left(\tilde{f}_{\mathcal{L}}(x \oplus y) = \tilde{f}_{\mathcal{L}}(x) \cup \tilde{f}_{\mathcal{L}}(y) \right).$$
(3.8)

Proof. Let $f_{\mathcal{A}}$ be a uni-soft ideal of \mathcal{A} . Since $x \leq x \oplus y$ and $y \leq x \oplus y$, we have $f_{\mathcal{A}}(x) \subseteq f_{\mathcal{A}}(x \oplus y)$ and $f_{\mathcal{A}}(y) \subseteq f_{\mathcal{A}}(x \oplus y)$ by Proposition 3.2. Hence $f_{\mathcal{A}}(x) \cup f_{\mathcal{A}}(y) \subseteq f_{\mathcal{A}}(x \oplus y)$.

Since $x \oplus y \le x \oplus y$, we get $f_{\mathcal{A}}(x \oplus y) \subseteq f_{\mathcal{A}}(y)$ by Theorem 3.3. Therefore $f_{\mathcal{A}}(x \oplus y) = f_{\mathcal{A}}(x) \cup f_{\mathcal{A}}(y)$ for all $x, y \in \mathcal{A}$.

Conversely, suppose that $f_{\mathcal{L}}$ satisfies two conditions (3.3) and (3.8). Let $x, y, z \in \mathcal{L}$ be such that $z \leq x \oplus y$. Then $f_{\mathcal{L}}(z) \subseteq f_{\mathcal{L}}(x \oplus y) = f_{\mathcal{L}}(x) \cup f_{\mathcal{L}}(y)$, and thus $f_{\mathcal{L}}$ is a uni-soft ideal of \mathcal{L} by Theorem 3.3.

Theorem 3.7. A soft set $f_{\mathcal{A}}$ over U is a uni-soft ideal of \mathcal{A} if and only if the τ -exclusive set

$$e(\tilde{f}_{\mathcal{L}};\tau) := \left\{ x \in \mathcal{L} \mid \tilde{f}_{\mathcal{L}}(x) \subseteq \tau \right\}$$

is an ideal of \mathcal{L} for all $\tau \in 2^U$ with $e(f\mathcal{L}; \tau) \neq \emptyset$

Proof. Suppose that $f_{\mathcal{A}}$ is a uni-soft ideal of \mathcal{A} and let $\tau 2^U$ be such that $e(f_{\mathcal{A}}; \tau) \neq \emptyset$. Then $f_{\mathcal{A}}(x0) \subseteq \tau$ for some $x_0 \in \mathcal{A}$. It follows from (3.1) that $\neg f_{\mathcal{A}}(0) \subseteq \neg f_{\mathcal{A}}(x_0) \subseteq \tau$ and so that $0 \in e(f_{\mathcal{A}}; \tau)$. Let $x, y \in \mathcal{A}$ be such that $x \in e(f_{\mathcal{A}}; \tau)$ and $y \ominus x \in e(f_{\mathcal{A}}; \tau)$. Then $f_{\mathcal{A}}(x) \subseteq \tau$ and $f_{\mathcal{A}}(y \ominus x) \subseteq \tau$, which imply from (3.2) that $f_{\mathcal{A}}(y) \subseteq f_{\mathcal{A}}(x) \cup f_{\mathcal{A}}(y \ominus x) \subseteq \tau$. Hence $y \in e(f_{\mathcal{A}}; \tau)$, and therefore $e(f_{\mathcal{A}}; \tau)$ is an ideal of \mathcal{A} .

Conversely assume that $e(f_{\mathcal{A}}; \tau)$ is an ideal of \mathcal{A} for all $\tau \in 2^U$ with $e(f_{\mathcal{A}}; \tau) \neq \emptyset$. For any $x, y \in \mathcal{A}$, $let f_{\mathcal{A}}(x) = \tau_0$. Then $e(f_{\mathcal{A}}; \tau_0) \neq \emptyset$, and so $0 \in e(f_{\mathcal{A}}; \tau_0)$. Hence $f_{\mathcal{A}}(0) \subseteq \tau 0 = f_{\mathcal{A}}(x)$, and thus (3.1) is valid. If we put $\tau_1 = f_{\mathcal{A}}(x) \cup f_{\mathcal{A}}(y \ominus x)$, then $f_{\mathcal{A}}(x) \subseteq \tau_1$ and $f_{\mathcal{A}}(y \ominus x) \subseteq \tau_1$, that is, $x \in e(f_{\mathcal{A}}; \tau_1)$ and $y \ominus x \in e(f_{\mathcal{A}}; \tau_1)$. Since $e(f_{\mathcal{A}}; \tau_1)$ is an ideal of \mathcal{A} , it follows that $y \in e(f_{\mathcal{A}}; \tau_1)$. Hence $f_{\mathcal{A}}(y) \subseteq \tau_1 = f_{\mathcal{A}}(x) \cup f_{\mathcal{A}}(y \ominus x)$. Therefore $f_{\mathcal{A}}$ is a uni-soft ideal of \mathcal{A} .

For any soft set $f_{\mathcal{A}}$ over U and $a \in \mathcal{A}$, consider the set

$$\mathcal{L}_{a}(\tilde{f}_{\mathcal{L}}) := \left\{ x \in \mathcal{L} \mid \tilde{f}_{\mathcal{L}}(x) \subseteq \tilde{f}_{\mathcal{L}}(a) \right\}.$$

Obviously, $a \in \mathcal{L}_a(f_{\mathcal{L}})$. Using Theorem 3.7, we have the following corollary.

Corollary 3.8. If $f_{\mathcal{L}}$ is a uni-soft ideal of \mathcal{L} , then the set $\mathcal{L}_a(f_{\mathcal{L}})$ is an ideal of \mathcal{L} for all a 2 \mathcal{L} .

Using (3.1) and Corollary 3.8, we have the following corollary.

Corollary 3.9. If $f_{\mathcal{A}}$ is a uni-soft ideal of \mathcal{A} , then the set

$$\mathcal{L}^*(\tilde{f}_{\mathcal{L}}) := \left\{ x \in \mathcal{L} \mid \tilde{f}_{\mathcal{L}}(x) = \tilde{f}_{\mathcal{L}}(0) \right\}.$$

is an ideal of \mathcal{L} .

Theorem 3.10. Given a soft set $f_{\mathcal{A}}$ over U and $a \in \mathcal{A}$, if $f_{\mathcal{A}}$ satisfies (3.3) and

$$(\forall x, y \in \mathcal{L}) \left(x, y \in \mathcal{L}_a(\tilde{f}_{\mathcal{L}}) \Rightarrow x \oplus y \in \mathcal{L}_a(\tilde{f}_{\mathcal{L}}) \right),$$
(3.9)

then $\mathcal{L}_a(f_{\mathcal{L}})$ is an ideal of \mathcal{L} .

Proof. Clearly, $0 \in \mathcal{L}_a(f_{\mathcal{L}})$. Let $x, y \in \mathcal{L}$ be such that $y \leq x$ and $x \in \mathcal{L}_a(f_{\mathcal{L}})$. Then $f_{\mathcal{L}}(y) \subseteq f_{\mathcal{L}}(x) \subseteq f_{\mathcal{L}}(a)$, that is, $y \in \mathcal{L}_a(f_{\mathcal{L}})$. The condition (3.9) implies that $x \oplus y \in \mathcal{L}_a(f_{\mathcal{L}})$ for all $x, y \in \mathcal{L}_a(f_{\mathcal{L}})$. Therefore $\mathcal{L}_a(f_{\mathcal{L}})$ is an ideal of \mathcal{L} .

4. TRANSFER OF UNI-SOFT IDEALS

For any soft set $f_{\mathcal{A}}$ over U, we consider the set

$$\Omega_{\tilde{f}_{\mathcal{L}}} := U \setminus \bigcup_{x \in \mathcal{L}} \tilde{f}_{\mathcal{L}}(x).$$
(4.1)

It is clear that $\Omega_{f\mathcal{A}}$ and $f_{\mathcal{A}}(x)$ are disjoint for all $x \in \mathcal{A}$.

Definition 4.1. For a soft set $f_{\mathcal{L}}$ over U and $\varepsilon \subseteq f_{\mathcal{L}}$, a soft set $f_{\mathcal{L}}^{\varepsilon}$ over U is called the ε -soft transfer of $f_{\mathcal{L}}$ where

$$\tilde{f}_{\mathcal{L}}^{\varepsilon}: \mathcal{L} \to 2^U, \ x \mapsto \tilde{f}_{\mathcal{L}}(x) \cup \varepsilon.$$

Theorem 4.2. If $f_{\mathcal{A}}$ is a uni-soft ideal of \mathcal{A} over U, then the ε -soft transfer $f_{\mathcal{A}}^{\varepsilon}$ of $f_{\mathcal{A}}$ is a uni-soft ideal of \mathcal{A} over U for all $\varepsilon \subseteq \Omega_{f_{\mathcal{A}}}$.

Proof. Using (3.1) and (3.2), we have

$$\tilde{f}^{\varepsilon}_{\mathcal{L}}(0) = \tilde{f}_{\mathcal{L}}(0) \cup \varepsilon \subseteq \tilde{f}_{\mathcal{L}}(x) \cup \varepsilon = \tilde{f}^{\varepsilon}_{\mathcal{L}}(x)$$

and

$$\begin{split} \tilde{f}^{\varepsilon}_{\mathcal{L}}(x) &= \tilde{f}_{\mathcal{L}}(x) \cup \varepsilon \\ &\subseteq (\tilde{f}_{\mathcal{L}}(x \ominus y) \cup \tilde{f}_{\mathcal{L}}(y)) \cup \varepsilon \\ &= (\tilde{f}_{\mathcal{L}}(x \ominus y) \cup \varepsilon) \cup (\tilde{f}_{\mathcal{L}}(y) \cup \varepsilon) \\ &= \tilde{f}^{\varepsilon}_{\mathcal{L}}(x \ominus y) \cup \tilde{f}^{\varepsilon}_{\mathcal{L}}(y) \end{split}$$

for all $x, y \in \mathcal{L}$ and $\varepsilon \subseteq \Omega_{-f\mathcal{L}}$. Therefore $f_{\mathcal{L}}^{\varepsilon}$ is a uni-soft ideal of \mathcal{L} over U.

Corollary 4.3. Let $f_{\mathcal{L}}$ be a soft set over U and $\varepsilon \subseteq \Omega f_{\mathcal{L}}$. If $f_{\mathcal{L}}$ is a uni-soft ideal of \mathcal{L} over U, then the ε -soft transfer of $\sim f_{\mathcal{L}}$ satisfies:

$$(\forall x, y \in \mathcal{L}) \left(x \le y \Rightarrow \tilde{f}_{\mathcal{L}}^{\varepsilon}(x) \subseteq \tilde{f}_{\mathcal{L}}^{\varepsilon}(x) \right), \tag{4.2}$$

$$(\forall x, y, z \in \mathcal{L}) \left(z \le x \ominus y \implies \tilde{f}^{\varepsilon}_{\mathcal{L}}(z) \subseteq \tilde{f}^{\varepsilon}_{\mathcal{L}}(x) \cup \tilde{f}^{\varepsilon}_{\mathcal{L}}(y) \right).$$

$$(4.3)$$

We consider the converse of Theorem 4.2.

Theorem 4.4. Let $f_{\mathcal{L}}$ be a soft set over U. If there exists a subset ε of $\Omega_{f_{\mathcal{L}}}$ such that the ε -soft transfer of $f_{\mathcal{L}}$ is a uni-soft ideal of \mathcal{L} over U, then $f_{\mathcal{L}}$ is a uni-soft ideal of \mathcal{L} over U. *Proof.* Assume that the ε -soft transfer $f_{\mathcal{L}}^{\varepsilon}$ of $f_{\mathcal{L}}$ is a uni-soft ideal of \mathcal{L} over U for some $\varepsilon \subseteq \Omega_{f_{\mathcal{L}}}$. Then

$$\tilde{f}_{\mathcal{L}}(0) \cup \varepsilon = \tilde{f}_{\mathcal{L}}^{\varepsilon}(0) \subseteq \tilde{f}_{\mathcal{L}}^{\varepsilon}(x) = \tilde{f}_{\mathcal{L}}(x) \cup \varepsilon$$

and

$$\begin{split} \tilde{f}_{\mathcal{L}}(x) \cup \varepsilon &= \tilde{f}_{\mathcal{L}}^{\varepsilon}(x) \subseteq \tilde{f}_{\mathcal{L}}^{\varepsilon}(x \ominus y) \cup \tilde{f}_{\mathcal{L}}^{\varepsilon}(y) \\ &= (\tilde{f}_{\mathcal{L}}(x \ominus y) \cup \varepsilon) \cup (\tilde{f}_{\mathcal{L}}(y) \cup \varepsilon) \\ &= (\tilde{f}_{\mathcal{L}}(x \ominus y) \cup \tilde{f}_{\mathcal{L}}(y)) \cup \varepsilon \end{split}$$

for all $x, y \in \mathcal{A}$. Since $f_{\mathcal{A}}(x)$ and ε are disjoint for all $x \in \mathcal{A}$, it follows that $f_{\mathcal{A}}(0) \subseteq f_{\mathcal{A}}(x)$ and $f_{\mathcal{A}}(x) \subseteq f_{\mathcal{A}}(x \ominus y) \cup f_{\mathcal{A}}(y)$ for all $x, y \in \mathcal{A}$. Therefore $f_{\mathcal{A}}$ is a uni-soft ideal of \mathcal{A} over U.

For any soft set $f_{\mathcal{A}}$ over U, consider a set

$$\mathcal{L}^{\varepsilon}_{\delta} := \{ x \in \mathcal{L} \mid \tilde{f}_{\mathcal{L}}(x) \subseteq \delta \setminus \varepsilon \}$$

where $\varepsilon \subseteq \Omega_{\ell}$ and $\delta \in 2^U$ with $\varepsilon \subseteq \delta$. We say that $\mathcal{L}^{\varepsilon}_{\delta}$ is the (δ, ε) -support of $f_{\mathcal{L}}$. Note that

$$(\forall x \in \mathcal{L}) \left(\tilde{f}_{\mathcal{L}}(x) \subseteq \delta \setminus \varepsilon \iff \tilde{f}_{\mathcal{L}}(x) \cup \varepsilon \subseteq \delta \right)$$

Hence $\mathcal{L}_{\delta}^{\varepsilon} := \{ x \in \mathcal{L} \mid f_{\mathcal{L}}^{\varepsilon}(x) \subseteq \delta \}.$

Theorem 4.5. For any $\varepsilon \subseteq \Omega_{f,\varepsilon}$ if a soft set $f_{\mathcal{A}}$ over U is a uni-soft ideal of \mathcal{A} over U, then the (δ, ε) -support of $f_{\mathcal{A}}$ is an ideal of \mathcal{A} for all $\delta \in 2^U$ with $\varepsilon \subseteq \delta$.

Proof. Assume that $f_{\mathcal{A}}$ is a uni-soft ideal of \mathcal{A} over U. Let $x, y \in \mathcal{A}$. If $x \in \mathcal{A}^{\varepsilon}_{\delta}$, then $f_{\mathcal{A}}(0) \subseteq f_{\mathcal{A}}(x) \subseteq \delta \setminus \varepsilon$ by (3.1), and so $0 \in \mathcal{A}^{\varepsilon}_{\delta}$. Suppose that $x \ominus y \in \mathcal{A}^{\varepsilon}_{\delta}$ and $y \in \mathcal{A}^{\varepsilon}_{\delta}$. Then $f_{\mathcal{A}}(x \ominus y) \subseteq \delta \setminus \varepsilon$ and $f_{\mathcal{A}}(y) \subseteq \delta \setminus \varepsilon$. Using (3.2), we have

$$\tilde{f}_{\mathcal{L}}(x) \subseteq \tilde{f}_{\mathcal{L}}(x \ominus y) \cup \tilde{f}_{\mathcal{L}}(y) \subseteq \delta \setminus \varepsilon$$

and thus $x \in \mathcal{L}^{\varepsilon}_{\delta}$. Therefore the (δ, ε) -support of $f_{\mathcal{L}}$ is an ideal of \mathcal{L} .

Using Theorems 4.4 and 4.5, we obtain the following corollary.

Corollary 4.6. For a soft set $f_{\mathcal{L}}$ over U, if there exists a subset ε of $f_{\mathcal{L}}$ such that the ε -soft transfer of $f_{\mathcal{L}}$ is an ideal of \mathcal{L} over U, then the (δ, ε) -support of $f_{\mathcal{L}}$ is an ideal of \mathcal{L} for all $\delta \in 2^U$ with $\varepsilon \subseteq \delta$.

Lemma 4.7. Given $\varepsilon \subseteq \Omega_{f_{\mathcal{L}}}$ and any $\delta \in 2^U$ with $\varepsilon \subseteq \delta$, let $f_{\mathcal{L}}$ be a soft set over U such that

$$(\forall x, y \in \mathcal{L}) (x, y \in \mathcal{L}_{\delta}^{\varepsilon} \implies x \ominus y \in \mathcal{L}_{\delta}^{\varepsilon}).$$
(4.4)

Then the ε -soft transfer $f_{\mathcal{A}}^{\varepsilon}$ of $f_{\mathcal{A}}$ satisfies:

$$(\forall x, y \in \mathcal{L}) \left(\tilde{f}^{\varepsilon}_{\mathcal{L}}(x \ominus y) \subseteq \tilde{f}^{\varepsilon}_{\mathcal{L}}(x) \cup \tilde{f}^{\varepsilon}_{\mathcal{L}}(y) \right).$$

$$(4.5)$$

Proof. Let $x, y \in \mathcal{A}$ be such that $f_{\mathcal{A}}^{\varepsilon}(x) = \delta_x$ and $f_{\mathcal{A}}^{\varepsilon}(y) = \delta_y$. If we take $\delta = \delta_x \cup \delta_y$, then $f_{\mathcal{A}}(x) = \delta_x \subseteq \delta$ and $f_{\mathcal{A}}(y) = \delta_y \subseteq \delta$, that is, $f_{\mathcal{A}}(x) \cup \varepsilon \subseteq \delta$ and $f_{\mathcal{A}}(y) \cup \varepsilon \subseteq \delta$. Since $f_{\mathcal{A}}(x)$ and ε are disjoint for all $x \in \mathcal{A}$, we have $f_{\mathcal{A}}(x) \subseteq \delta \setminus \varepsilon$ and $f_{\mathcal{A}}(y) \subseteq \delta \setminus \varepsilon$, *i.e.*, $x, y \in \mathcal{A}^{\varepsilon}_{\delta}$ Thus $x \ominus y \in \mathcal{A}^{\varepsilon}_{\delta}$ by (4.4). It follows that

$$\tilde{f}^{\varepsilon}_{\mathcal{L}}(x \ominus y) \subseteq \delta = \delta_x \cup \delta_y = \tilde{f}^{\varepsilon}_{\mathcal{L}}(x) \cup \tilde{f}^{\varepsilon}_{\mathcal{L}}(y)$$

which completes the proof.

Theorem 4.8. Given $\varepsilon \subseteq \Omega_{f_{\mathcal{A}}}$ and any $\delta \in 2^U$ with $\varepsilon \subseteq \delta$, if the (δ, ε) -support of a soft set $f_{\mathcal{A}}$ over U is an ideal of \mathcal{A} , then the ε -soft transfer of $f_{\mathcal{A}}$ is a uni-soft ideal of \mathcal{A} over U.

Proof. Suppose that the (δ, ε) -support $\mathcal{L}^{\varepsilon}_{\delta}$ of a soft set $f_{\mathcal{L}}$ over U is an ideal of \mathcal{L} . Let $x, y \in \mathcal{L}^{\varepsilon}_{\delta}$. Then

$$(x\ominus y)\ominus x=(x\ominus x)\ominus y=0\ominus y=0\in \mathcal{L}^{\varepsilon}_{\delta},$$

and so $x \ominus y \in \mathscr{L}^{e}_{\delta}$. It follows from Lemma 4.7 that the *e*-soft transfer $f_{\mathscr{L}}^{e}$ of $f_{\mathscr{L}}$ satisfies the condition (4.5). Thus $f_{\mathscr{L}}^{e}(0) = f_{\mathscr{L}}^{e}(x \ominus x) \subseteq f_{\mathscr{L}}^{e}(x) \cup f_{\mathscr{L}}^{e}(x) = f_{\mathscr{L}}^{e}(x)$ for all $x \in \mathscr{L}$. Let $x, y \in \mathscr{L}$ be such that $f_{\mathscr{L}}^{e}(x \ominus y) = \delta_{x \ominus y}$ and $f_{\mathscr{L}}^{e}(y) = \delta_{y}$. If we take $\delta := \delta_{x \ominus y} \cup \delta_{y}$, then $f_{\mathscr{L}}^{e}(x \ominus y) = \delta_{x \ominus y} \subseteq \delta$ and $\neg f_{\mathscr{L}}^{e}(y) = \delta_{y} \subseteq \delta$, that is, $x \ominus y \in \mathscr{L}^{e}_{\delta}$ and $y \in \mathscr{L}^{e}_{\delta}$. Since \mathscr{L}^{e}_{δ} is an ideal of \mathscr{L} , we have $x \in \mathscr{L}^{e}_{\delta}$. Thus $f_{\mathscr{L}}^{e}(x) \subseteq \delta = \delta_{x \ominus y} \cup \delta_{y} = f_{\mathscr{L}}^{e}(x \ominus y) \cup f_{\mathscr{L}}^{e}(y)$. Therefore the *e*-soft transfer of $f_{\mathscr{L}}$ is a uni-soft ideal of \mathscr{L} over U.

REFERENCES

- N. C_ a_gman and S. Engino_glu, Soft set theory and uni-int decision making, Eur. J. Oper. Res. 207 (2010) 848-855.
- [2] D. Molodtsov, Soft set theory First results, Comput. Math. Appl. 37 (1999) 19-31.
- [3] M. C. Zheng and G. J. Wang, Co-residuated lattice with application, Fuzzy Syst. Math. 19 (2005), 1-6.
- [4] M. C. Zheng, G. J. Wang and Y. Liu, Ideals and embedding theorem of co-residuated lattices, J. Shaanxi Normal Univ. (Natural Science Edition), 34 (2006), 1-6.