Sigma J Eng & Nat Sci 9 (1), 2018, 127-132

Publications Prepared for the 13th Algebraic Hyperstructures and its Applications Conferences AHA 2017

Research Article ON MULTIPLIERS OF HYPER BCC-ALGEBRAS

Didem SÜRGEVİL UZAY¹, Alev FIRAT*²

¹Ege University, Faculty of Science, Department of Mathematics, IZMIR; ORCID:0000-0003-0249-9186 ²Ege University, Faculty of Science, Department of Mathematics, IZMIR; ORCID:0000-0001-6927-4817

Received: 18.09.2017 Revised: 05.12.2017 Accepted: 25.04.2018

ABSTRACT

In this paper, we introduced the notion of multiplier of a hyper BCC-algebra, and investigated some properties of hyper BCC- algebras. And then we introduced notion of kernels and notion of hyper normal ideal of multipliers on hyper BCC-algebras. Also we gave some propositions related with isotone and $Fix_d(H)$. **Keywords:** hyper BCC-algebra, multiplier, isotone, $Fix_d(H)$, hyper normal ideal, regular. **MSC number:** 20N20, 16W2.

1. INTRODUCTION

The study of BCK-algebras was initiated (1966) by Y. Imai and K. Iseki[4] as a generalization of the concept of set-theoretic difference and propositinal calculus. In 1984, was introduced a notion of BCC-algebra which is a generalization of a BCK-algebra by Y. Komori [9].

The derivation of BCC-algebra was introduced C. Prabpayak and U. Lerrawat [1]. In [6] a partial multiplier on a commutative semigroup (A, .) has been introduced as a function F from a nonvoid subset D_F of A into A such that F(x). y = x. F(y) for all $x, y \in D_F$.

The hyperstructure theory(called also multialgebras) was introduced (1934) by

F. Marty [2] and hyper BCK-algebras were studied by many authors and were given some related properties. Also hyper BCC-algebras were studied which was a generalization of BCC-algebras and were investigated different types of hyper BCC-ideals and were defined the relationship among them by (2006) R.A. Borzooei. [5]

The notion of multiplier of a BCC-algebra was introduced and some properties of BCCalgebras were invastigated (2013) by K.H.Kim.[3]

In this study, we introduce the notion of multipler of a hyper BCC-algebra and discuss some properties of hyper BCC-algebras. Also we characterize kernel of multipliers on hyper BCC-algebras. Finally we introduced notion of hyper normal ideal of multipliers on hyper BCC-algebras.

^{*} Corresponding Author: e-mail: alev.firat@ege.edu.tr, tel: (232) 311 17 48

2. PRELIMINARIES

Definition 2.1 [9] An algebra (X, *, 0) of type (2,0) is said to be a BCC-algebra if it satisfies the following:

for all $x, y, z \in X$,

1. ((x * y) * (z * y)) * (x * z) = 0,

- 2. x * 0 = x,
- 3. x * x = 0,
- 4. 0 * x = 0,
- 5. x * y = 0 and y * x = 0 imply x = y.

Definition 2.2 [7] By a hyper BCK-algebra, it is meant a nonempty set H endowed with a hyper operation " \circ " and a constant "0" satisfying the following axioms:

- 1. $(xoz)o(yoz) \ll xoy$,
- 2. (xoy)oz = (xoz)oy,
- 3. xoH << x,
- 4. $x \ll y$ and $y \ll x$ imply x = y,

for all $x, y, z \in H$, where $x \ll y$ is defined by $0 \in xoy$ and for every $A, B \subseteq H, A \ll B$ is defined by for all $a \in A$, there exists $b \in B$ such that $a \ll b$. In such case, " \ll " is called the hyperorder in H.

Definition 2.3 [5] By a hyper BCC-algebra, it is meant a nonempty set H endowed with a hyper operation " • " and a constant 0 satisfying the following axioms:

1. $(x \circ z) \circ (y \circ z) << x \circ y$, 2. $0 \circ x = 0$, 3. $x \circ 0 = x$, 4. x << y and y << x imply x = y, for all $x, y, z \in X$.

Theorem 2.4 [5] Any hyper BCK-algebra is a hyper BCC-algebra.

Proposition 2.5 [5] Let $(H, \circ, 0)$ be a hyper BCC-algebra. Then for all $x, y, z \in H$ and $A \subseteq H$ the following conditions hold:

1. $0 \circ 0 = 0$, 2. 0 << x, 3. x << x, 4. $x \circ y << x$, 5. $A \circ 0 = A$, 6. $0 \circ A = 0$, 7. $x \circ y = 0$ implies $x \circ z << y \circ z$.

Theorem 2.6 [5] Let $(H, \circ, 0)$ be a hyper BCC-algebra. Then $(H, \circ, 0)$ is a hyper BCK-algebra if and only if $(x \circ y) \circ z = (x \circ z) \circ y$ is satisfied for all $x, y, z \in H$.

Definition 2.7 [8] (H, \circ , 0) be a hyper BCC-algebra and I be a subset of H such that $0 \in I$ is said to be the following:

(i) a hyper BCC-ideal of type1, if

 $(x \circ y) \circ z \ll I, y \in I \Rightarrow x \circ z \subseteq I,$

(ii) a hyper BCC-ideal of type2, if

 $(x \circ y) \circ z \subseteq I, y \in I \Rightarrow x \circ z \subseteq I,$

(iii) a hyper BCC-ideal of type3, if

 $(x \circ y) \circ z \ll I, y \in I \Rightarrow x \circ z \ll I,$

(iv) a hyper BCC-ideal of type4, if

$$(x \circ y) \circ z \subseteq I, y \in I \Rightarrow x \circ z \ll I,$$

Definition 2.8 [3] Let (X, *, 0) be a BCC-algebra and a map $f: X \to X$ is said to be a multiplier if f(x * y) = f(x) * y for all $x, y \in X$.

3. ON MULTIPLIERS OF HYPER BCC-ALGEBRAS

Definition 3.1 Let $(H, \circ, 0)$ be a hyper BCC-algebra. A map $d: H \to H$ is said to be a multiplier if for all $x, y \in H$ $d(x \circ y) = d(x) \circ y$.

Example 3.1 Let $H = \{0, a, b\}$ and $(H, \circ, 0)$ be a hyper BCC-algebra with Cayley table as follows:

Table 1.

o	0	а	b
0	{0}	{0}	{0}
а	{a}	{0}	{0}
b	{b}	{b}	{0,b}

Define a map $d: H \to H$

$$d_1(x) = \begin{cases} a, & x = a \\ 0, & x = 0, b \end{cases}$$

Then it is easily checked that d_1 is a multiplier of hyper BCC-algebra.

Proposition 3.2 Let d be a multiplier of H. Then it satisfies $d(x \circ d(x)) \ll 0$ for all $x \in H$.

Proof 3.1 Let $x \in H$. Since d is multiplier, we have $d(x \circ d(x)) = d(x) \circ d(x)$

From Prop.2.5(*iii*), (v), we find that $0 \in d(x) \circ d(x)$ Therefore we get $d(x) \circ d(x) << 0$ Thus we obtain $d(x \circ d(x)) << 0$.

Definition 3.3 Let $(H, \circ, 0)$ be a hyper BCC-algebra. A self-map d of H is said to be regular if d(0) = 0.

Example 3.2 *d* given in Ex. 3.1. is regular.

Proposition 3.4 *Let* $(H, \circ, 0)$ *be a hyper BCC-algebra and a map* $d: H \to H$ *is a regular multiplier of* H. *Then the following hold for all* $x, y \in H: d(x) \ll x$,

Proof 3.2 Let $x \in H$ and d be a regular multiplier. Then we find that

$$0 = d(0) \in d(x \circ x) = d(x) \circ x.$$

Hence we can write $0 \in d(x) \circ x$ for all $x \in H$ and we have $d(x) \ll x$.

Definition 3.5 Let $(H, \circ, 0)$ be a hyper BCC-algebra and a map $d: H \to H$. If $x \ll y$ imply $d(x) \ll d(y)$ for all $x, y \in H$, then d is said to be isotone.

Proposition 3.6 Let $(H, \circ, 0)$ be a hyper BCC-algebra and d be a regular multiplier of H. If $d: H \to H$ is an endomorphism, then d is isotone.

Proof 3.3 *Let* $x, y \in H$ *and* $x \ll y$ *. Then we find* $0 \in x \circ y$ *and*

 $0 = d(0) \in d(x \circ y) = d(x) \circ d(y).$

Hence we get $d(x) \ll d(y)$.

Definition 3.7 Let $(H, \circ, 0)$ be a hyper BCC-algebra and two maps $d_1, d_2: H \to H$. Then a map $d_1 \bullet d_2: H \to H$ is defined by $(d_1 \bullet d_2)(x) = d_1(d_2(x))$ for all $x \in H$.

Proposition 3.8 Let $(H, \circ, 0)$ be a hyper BCC-algebra and two maps $d_1, d_2: H \to H$ are multipliers of H. Then $d_1 \bullet d_2$ is a multiplier of H.

Proof 3.4 We find

$$(d_1 \bullet d_2)(a \circ b) = d_1(d_2(a \circ b)) = d_1(d_2(a) \circ b) = d_1(d_2(a)) \circ b = (d_1 \bullet d_2)(a) \circ b$$

for all $x \in H$.

Definition 3.9 Let $(H_1, \circ, 0)$ and $(H_2, \circ, 0)$ be two hyper BCC-algebras. Then $H_1 \times H_2$ is also a hyper BCC-algebra with respect to the point-wise operation given by

 $(a,b) \circ (c,d) = (a \circ_1 c, b \circ_2 d)$

for all $a, c \in H_1$ and $b, d \in H_2$.

Proposition 3.10 Let $(H_1, \circ_1, 0)$ and $(H_2, \circ_2, 0)$ be two hyper BCC-algebras. Define a map $d: H_1 \times H_2 \to H_1 \times H_2$ by d(x, y) = (x, 0) for all $(x, y) \in H_1 \times H_2$. Then d is a multiplier of $H_1 \times H_2$ with respect to the point-wise operation.

Proof 3.5 *Let* (x_1, y_1) , $(x_2, y_2) \in H_1 \times H_2$. *Then we find*

$$d((x_1, y_1) \circ (x_2, y_2)) = d(x_1 \circ_1 x_2, y_1 \circ_2 y_2) = (x_1 \circ_1 x_2, 0) = (x_1 \circ_1 x_2, 0 \circ_2 y_2) = (x_1, 0) \circ (x_2, y_2) = d(x_1, y_1) \circ (x_2, y_2)$$

Hence d is a multiplier of the direct product $H_1 \times H_2$.

Definition 3.11 Let $(H, \circ, 0)$ be a hyper BCC-algebra, d be a multiplier of H, $A = \{x \in H | d(x) = x\}$ and $d(A_i) = A_i$ for $A_i \subseteq H$. Then a set $Fix_d(H)$ is defined by $Fix_d(H) := A \cup (\bigcup_{i \in I} A_i)$ for all $i \in I$. $Fix_d(H) := \{x \in H | d(x) = x\}$.

Proposition 3.12 Let $(H, \circ, 0)$ be a hyper BCC-algebra and d be a multiplier of H. If $x \in Fix_d(H)$ then $(d \circ d)(x) = x$.

Proof 3.6 *Let* $x \in Fix_d(H)$. *Then we have*

$$(d \circ d)(x) = d(d(x))$$
$$= d(x)$$
$$= x$$

Proposition 3.13 *Let* $(H, \circ, 0)$ *be a hyper BCC-algebra and d be a multiplier of* H.*If* $x \in A$, $y \in H$ *then* $x \circ y \subset Fix_d(H)$

Proof 3.7 Let $x \in A$. Then we have d(x) = x. Therefore we find $d(x \circ y) = d(x) \circ y = x \circ y$

Then $x \circ y = A_k$ for some $k \in I$.

Therefore we get $x \circ y \subset \bigcup_{i \in I} A_i$. Hence we have $x \circ y \subset Fix_d(H)$.

Proposition 3.14 Let $(H, \circ, 0)$ be a hyper BCC-algebra and d be a multiplier of H. If $x \in H$ and $y \in A$ then $x \land y = y \circ (y \circ x) \subset Fix_d(H)$.

Proof 3.8 *Let* $y \in A$ *. We have*

$$d(x \wedge y) = d(y \circ (y \circ x))$$

= d(y) \circ (y \circ x)
= y \circ (y \circ x)
= x \lambda y.

Thus $x \wedge y \subset Fix_d(H)$.

Proposition 3.15 Let $(H, \circ, 0)$ be a hyper BCC-algebra and d be a multiplier of H. If $x \in H$ and $y \in A$ then it satisfies $d(x \circ y) = d(x) \circ d(y)$.

Proof 3.9 Let $x \in H$ and $y \in Fix_d(H)$. We have

$$d(x \circ y) = d(x) \circ y$$

= $d(x) \circ d(y)$

Definition 3.16 Let $(H, \circ, 0)$ be a hyper BCC-algebra and d be a multiplier of H. We can define a set $Ker_d(H) = K \cup Z$ by

$$K = \{x \in H | d(x) = 0\}$$
 and $d(Z) = 0$ for $Z \subset H$.

Proposition 3.17 Let $(H, \circ, 0)$ be a hyper BCC-algebra and d be a multiplier of H. If $x, y \in K$ then $x \circ y \subset Ker_d(H)$.

Proof 3.10 Let $x, y \in K$. We get

$$d(x \circ y) = d(x) \circ y$$

= 0 \circ y
= {0}.

Thus we can write $x \circ y \subseteq Ker_d(H)$.

Definition 3.18 Let $(H, \circ, 0)$ be a hyper BCC-algebra and a non-empty set I of H is said to be hyper normal ideal if it satisfies the following:

 $(i) \ 0 \in I,$

(*ii*) $x \in I$ and $y \in H$ imply $x \circ y \subseteq I$.

Theorem 3.19 Let $(H, \circ, 0)$ be a hyper BCC-algebra and d be a regular multiplier of H. Then the following hold:

- (i) $Fix_d(H)$ is a hyper normal ideal of H.
- (ii) Im(d) is a hyper normal ideal of H.

Proof 3.11 (i) d(0) = 0 so we have $0 \in Fix_d(H)$.

Let
$$x \in H$$
 and $a \in Fix_d(H)$. Then $d(a) = a$.
Therefore we get $d(a \circ x) = d(a) \circ x = a \circ x$.

We find $a \circ x \subseteq Fix_d(H)$. Hence $Fix_d(H)$ is a hyper normal ideal of H.

(ii) d is regular multiplier so d(0) = 0. Let $x \in H$ and $a \in Im(d)$. Then

a = d(b) for some $b \in H$.

Therefore we can write $a \circ x = d(b) \circ x = d(b \circ x) \subseteq Im(d)$. Hence Im(d) is a hyper normal ideal of H.

Example 3.3

For the multiplier given in Ex.3.1. and $I = \{0, b\} \subseteq H$. Then *H* is easily checked that I is a hyper normal ideal of *H*.

Theorem 3.20 Let $(H, \circ, 0)$ be a hyper BCC-algebra and d be a regular multiplier of H, I be a hyper normal ideal of H. Then d(I) is a hyper normal ideal of H.

Proof 3.12. Let $x \in H$ and $a \in d(I)$. Then a = d(b) for some $b \in I$.

Therefore $a \circ x = d(b) \circ x = d(b \circ x)$. We get that $d(b \circ x) \subseteq d(I)$. Hence $a \circ x \subseteq d(I)$. Then d(I) is a hyper normal ideal of H.

Theorem 3.21 Let $(H, \circ, 0)$ be a hyper BCC-algebra and d be a regular multiplier of H. Then Kerd, H is a hyper normal ideal of H.

Proof 3.13. Let $0 \in Kerd$ and $a \in Kerd$, $x \in H$. Then we get

$$d(a \circ x) = d(a) \circ x = 0 \circ x = \{0\}$$

Hence $a \circ x \subseteq Kerd$. Therefore Kerd is a hyper normal ideal of *H*.

REFERENCES

- C. Prabpayak, U. Lerrawat, On Derivations of BCC-algebras, Kasetsart J. (Nat. Sci), 43 (2009), 398-401.
- [2] F. Marty, *Surene generalization de la notion de group*, In eigth Congress Math., Scandinaves, Stockholm, (1934), 45-49.
- [3] K.H.Kim, H.J. Lim, On Multipliers of BCC-algebras, Honam Mathematical Journal J. 35(2),(2013), 201-210.
- [4] K.Iseki, *An algebra related with propositional calculus*, Italian Journal of Pure and Applied Msthematics, 8, (2000), 127-136.
- [5] R.A.Borzooei, W.A.Dudek, and N.Koohestani, *On hyper BCC-algebras*, Hindawi Publishing Corporation, International Journal of Math. Sci., (2006), 1-18.
- [6] R. Wronski, BCK-algebras do not form a variety, Math. Japonica, 28 (1983), 211-213.
- [7] Y.B.Jun, M.M.Zahedi, X. L. Xin, and R.A.Borzooei, On hyper BCK-algebras, Italian Journal of Pure and Applied Mathematics, 8(2000),127-136.
- [8] Y.B.Jun, X.L.Xin, M.M.Zahedi, and E.H.Roh, Strong hyper BCK-ideals of hyper BCKalgebras, Math. Japonica 51(3), (2000), 493-498.
- [9] Y. Komori, *The class of BCC-algebras is not a variety*, Mathematica Japonica 29(3), (1984), 391-394.