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ABSTRACT 

 

Clustering is the process of sub-grouping data according to certain distance and similarity criteria. One of the 

most commonly used clustering algorithms in the literature is the Fuzzy C-Means (FCM) algorithm based on 
the fuzzy clustering principle. Although FCM is an efficient algorithm, random selection of initial cluster 

centers is a disadvantage since it easier trap the algorithm into local optimum. This problem can be solved by 

approaching the clustering problem as an optimization problem. In this article, Whale Optimization Algorithm 
(WOA), a global optimization algorithm developed by inspiration from hunting behaviors of humpback 

whales, has been improved with chaos maps using an adaptive normalization method and chaotic WOA 

algorithms are proposed. They are then hybridized with FCM algorithm. The performances of the proposed 
chaotic optimization algorithms are tested with thirteen different benchmark functions. Results are evaluated 

with means and standard deviations of the objective function values and with the Wilcoxon Sign Rank Test at 

0.05 significance level. The clustering performances of the proposed hybrid algorithms measured according to 
the objective function, the Rand Index and the Adjusted Rand Index values and compared with the K-Means, 

FCM and some of the other hybrid algorithms for six different data sets selected from the UCI Repository 

database. In addition, the new hybrid clustering algorithms are improved by using Chebyshev distance 
function instead of the classical Euclidean distance for the FCM algorithm in order to increase their data 

clustering performances. As a result, it has been seen that the used chaos functions improve the optimization 

performance of WOA algorithm, integrating chaotic WOA algorithms with FCM algorithm enhances the 
disadvantages of FCM algorithm and changing the distance function increases clustering performance of the 

proposed algorithms.  

Keywords: Data clustering, WOA, FCM, optimization, chaos. 
 

 

1. INTRODUCTION 

 

Population based meta-heuristic algorithms have been developed with inspiration from natural 

phenomena. These algorithms are often preferred since they do not require gradient information, 

exceeds to local optimum, are easy to implement, and can be used in many interdisciplinary fields 

[1]. These algorithms converge to an optimal solution rather than an exact solution. According to 

the NFL theorem [2], there is no algorithm that best solves all optimization problems. In other 
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words, a meta-heuristic algorithm may perform well for some problems while doing poorly for 

others. These algorithms are generally grouped in three different ways, physics-based, evolution-

based, and swarm-based. Physics-based algorithms are developed based on natural physics rules. 

Simulated Annealing (SA) [3] which mimics the physical annealing process of the solids, 

Gravitational Search Algorithm (GSA) [4] using Newton's gravity and motion laws, Big Bang Big 

Crunch Algorithm (BB-BC) [5] inspired by the big bang theory, Gravity Local Search (GLS) [6], 

Black Hole Optimization (BH) [7] and Beam Algorithm (BA) [8] are examples of physics-based 

algorithms. The source of inspiration for evolutionary algorithms is Darwin's theory of evolution. 

The process that begins with the creation of a random population continues with the survival and 

proliferation of the best and most compatible individual. Genetic Algorithm (GA) [9], Genetic 

Programming (GP) [10], Evolution Strategy (ES) [11], Probability Based Incremental Learning 

(PBIL) [12] and Biology Based Optimization (BTO) [13] can be given as examples of evolution-

based algorithms. Swarm-based algorithms have been enhanced with inspiration from behaviors 

of solving the problems encountered by living creatures acting collectively and behaviors of 

benefit from each other's experiences to solve a probable problem. Particle Swarm Optimization 

(PSO) [14] which models bird behaviors in order of food searches, Ant Colony Algorithm (ACA) 

[15] developed by mathematical modeling of ant colony behaviors, Artificial Bee Colony 

Algorithm (ABC) [16] inspired by the behaviors of honey bees’ food search, Grey Wolf 

Optimizer (GWO) [17],  Firefly Algorithm (FA) [18], The Ant Lion Optimizer (ALO) [19] and 

Sine Cosine Algorithm (SCA) [20] can be given as examples to these algorithms.   

Population based algorithms consist of two parts; exploration of the search field (exploration 

phase) and use of the best result found (exploitation phase). During the exploration phase, the 

selected parameters must be as random as possible for better scanning of the search field [1]. The 

collapsed search region in the exploration phase is tested with the exploitation phase. That is, the 

optimum point in the exploration phase is used during the exploitation operation and is 

approached to optimum throughout the iteration. Thus, provide a good balance between 

exploration and exploitation phases is important for the performance of the algorithm [21]. 

However, due to the probabilistic behavior of population-based algorithms this balance is not easy 

to achieve [22]. When the literature is examined, it is seen that the integration of population-based 

algorithms with chaos theory increases the performance of both the exploration and exploitation 

phase. Zhang et al. in 2009, applied two chaotic maps to the PSO and the performance of the 

algorithm was improved [23]. In 2009, Wang and Yao proposed a Hybrid Genetic Algorithm 

based on chaos and PSO to improve the convergence and inadequate run-time performance of the 

genetic algorithm [24]. Atalas and his colleagues have improved the performance of the PSO by 

applying 12 chaotic maps to the PSO in 2009 [25]. They have also shown that the performance of 

the ABC [26] and Harmony Search (HS) algorithms [27] can be improved by chaos. In the work 

performed by Yan H. et al. in 2014, chaos has been used to improve the exploitation phase of the 

genetic algorithm and to increase the accuracy [28]. In addition, meta-heuristic algorithms also 

used in conjunction with chaos are GA [29], FA [30], SA [31], Differential Evolution (DE) [32] 

and Krill Herd Algorithm [33]. The examples given support the increase in performance when 

meta-heuristic optimization algorithms are used together with chaos. In this paper, Whale 

Optimization Algorithm (WOA) [1], developed by Mirjalili and Lewis based on the hunting 

behaviors of whales, is used together with chaotic maps to improve the performance of the 

algorithm. There are studies in the literature where the WOA algorithm was used with chaos 

functions. In the study done by Tanyıldızı and Cigal, the Logistic map was added to the WOA 

algorithm and WOA algorithms based on chaos were proposed [34]. Sun and Wang tried to solve 

the problem of trapped to local optimum by using the WOA algorithm to optimize the Elman 

neural network. Besides, a chaotic WOA algorithm was proposed to improve the diversity and 

eccentricity of search agents [35]. Oliva and colleagues applied four different chaos maps to the 

WOA algorithm for parameter estimation of solar batteries [36]. In this article, unlike other 

studies, 10 different chaotic maps are applied to the WOA after being passed through the 

H. Arslan, M. Toz     / Sigma J Eng & Nat Sci 37 (4), 1107-1128, 2019 



1109 

 

 

normalization process proposed in [22]. The efficiency of the proposed algorithms is tested using 

13 benchmark functions. Scientific significance of the results is measured by the Wilcoxon Sign 

Rank Test. In addition, a new approach has been improved to the solution of the data clustering 

problem by means of the proposed chaotic algorithms. 

Clustering is the process of dividing a data set into different subsets where similar data are 

found in the same cluster. It is indicative of a good clustering being intra-cluster similarity is 

maximum and inter-cluster similarity is minimum [37]. Clustering is used in scientific and 

engineering applications such as image recognition, data mining, machine learning, signal 

processing and biology [38]. In the literature there are many clustering algorithms proposed for 

solving clustering problems. One of these algorithms is the fuzzy clustering based Fuzzy C-

Means (FCM) algorithm proposed by Dunn [39] and developed by Bezdek [40]. In this algorithm, 

the data belongs to a cluster with certain membership grades. Therefore, one element in database 

can belong to more than one cluster at the same time. Although the FCM is an efficient algorithm, 

random selection of the initial cluster centers creates a disadvantage by making it easier to trap 

the algorithm to the local optimum. Clustering problem can also be considered as a kind of 

optimization problem. In recent years, meta-heuristic algorithms have begun to be widely used to 

solve such clustering problems [41]. Such algorithms look for an optimal solution for clustering 

problems and reduce the risk of trapping to the local optimum [38]. For this reason, the FCM 

algorithm is also combined with many meta-heuristic algorithms. According to the literature, the 

FCM is integrated with the meta-heuristic algorithms such as GA [42], DE [43], Ant Colony 

Optimization [44], PSO [45], Artificial Fish Swarm Optimization [46], fuzzy PSO [47], Support 

Vector Machines [48]. In this paper, FCM and chaotic WOA algorithms are combined and new 

hybrid clustering algorithms are developed. The proposed algorithms are based on optimizing the 

cluster centers with the chaotic WOA algorithms. For each cluster center, the FCM-CWOA 

algorithms updates the cluster centers while trying to minimize the objective function of the FCM 

algorithm. In addition, to improve performance of the proposed clustering algorithms, Euclid 

distance function of the FCM algorithm is replaced by the Chebyshev distance function. FCM-

CWOA algorithms, the classical FCM algorithms and other optimization based hybrid algorithms 

are tested with six datasets selected from the UCI database [49]. The effect of changing the 

distance function of the FCM algorithm and of the normalization of chaos maps on the data 

clustering are evaluated by proposed algorithms (FCWOA-c and FCMWOA* algorithms). The 

obtained results are compared with the Rand Index and Adjusted Rand Index values and 

according to these indexes it is seen that the proposed clustering algorithms gives better results 

than the compared algorithm. As a result, it is observed that using WOA algorithm with 

normalized chaos maps increases the performance of the algorithm, integrating chaotic WOA 

algorithms with FCM algorithm improves disadvantages of FCM algorithm and changing distance 

function increases clustering performance of algorithms. 

In the second part, WOA algorithm is explained in details; in the third part chaos maps and 

application methods are given. In the fourth part, the problem of data clustering is identified. 

Finally, in the fifth section, the study is briefly summarized and evaluated. 

 

2. WHALE OPTIMIZATION ALGORITHM (WOA) 

 

  The whale optimization algorithm (WOA) is a global optimization algorithm developed by 

Mirjalili and Lewis [1], inspired by the hunting strategies of humpback whales. Humpback whales 

have a unique hunting behavior. They dive about 12 meters down in the water and form spiral-

shaped bubbles around their prey, trapping their prey in air bubbles. Then, they swim to the 

surface to swallow their prey. These unique hunting behaviors of humpback whales are illustrated 

in figure 1.  

 

Data Clustering Based on Fuzzy C-Means and  …      /   Sigma J Eng & Nat Sci 37 (4), 1107-1128, 2019 



1110 

 

 

 
 

Figure 1. Hunting behavior of humpback whale 

 

The mathematical model of the WOA algorithm consists of three basic steps; spinning, air 

bubble attack, and hunting. The algorithm assumes that the target hunt is the closest candidate 

solution to the optimal hunt model. Each humpback whale is considered a search agent. After the 

best search agent is identified according to the target prey, other search agents update their 

location accordingly. The mathematical model of this behavior is defined as follows [1]. 
 

�⃗⃗� = |𝐶 . 𝑋∗⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)|                                                                                                                    (1) 
 

𝑋 (𝑡 + 1) = 𝑋∗⃗⃗ ⃗⃗  (𝑡) − 𝐴.⃗⃗  ⃗ �⃗⃗�                                                                                                                (2) 
 

where, t is current iteration number,  𝐴  and 𝐶  are two coefficient vectors, 𝑋∗⃗⃗ ⃗⃗   is the best 

solution of position vector obtained so far,  𝑋  is the position vector and |  | and ∙ means absolute 

value and elementary multiplication, respectively. If there is a better solution 𝑋∗⃗⃗ ⃗⃗   should be 

updated in every iteration. The vectors 𝐴  and 𝐶  are calculated as follows [1]: 
 

𝐴 = 2𝑎 . 𝑟 − 𝑎                                                                                                                                  (3) 
 

𝐶 = 2𝑟                                                                                                                                             (4) 
 

where, 𝑎  is a linearly decreasing number from 2 to 0 throughout the iterations (both during the 

exploration and exploitation phases) and 𝑟  is a random vector in the range [0,1]. 

The search agent (𝑋, 𝑌) can update the location according to the best available (𝑋∗, 𝑌∗) 

location and by chancing the values of 𝐴  and 𝐶 , it can reach to different places near the best 

search agent. By randomly defining the vector 𝑟 , it is possible to reach any position in the search 

space located between the lock points. Equation 2 allows the search agent to update its position in 

the neighborhood of the best solution available and to model encircling the prey. The modeling of 

the bubble-net attacking method of humpback whales involves two approaches [1].   

Shrinking encircling mechanism represents the reduction of the circle around the prey by 

updating the value of 𝑎  in the equation 3 with the following equation [1]. 
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𝑎 = 2 − 𝑡
2

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
                                                                                                                            (5) 

 

Thus, 𝐴  takes a random value in the interval [-a, a] with decreasing  𝑎 from 2 to 0 during the 

iteration. The new position of a search agent can be defined anywhere between the starting 

position of the agent and the position of the best available agent, if we assign random values in 

the range [-1,1] for A [1].  

Spiral updating computes the distance between the whale located at (𝑋, 𝑌) and the prey 

located at (𝑋∗, 𝑌∗). To model the helical movements of humpback whales, the following equation 

is established between the whale and the prey positions [1].   
 

𝑋 (𝑡 + 1) = 𝐷′⃗⃗⃗⃗ . 𝑒𝑏𝑙 cos(2𝜋𝑙) + 𝑋∗⃗⃗ ⃗⃗  (𝑡)                                                                                            (6) 
 

where 𝐷′⃗⃗⃗⃗ = |𝑋∗⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)| and shows the distance of the ith whale to prey. b is a constant 

that defines the logarithmic spiral shape; l is a random number in the range [-1,1], and ∙ is 

elementary product. 

The humpback whales swim creating shrinking spirals around their prey, simultaneously. To 

simulate this synchronous behavior, it is assumed that during optimization, the location of the 

whales has been updated with a probability of 50% among shrinking encircling mechanism and 

the spiral updating. It is mathematically expressed by the following equation [1]. 
 

𝑋 (𝑡 + 1) = {
𝑋∗⃗⃗ ⃗⃗  (𝑡) − 𝐴.⃗⃗  ⃗ �⃗⃗�                                      𝑖𝑓 𝑝 < 0.5

𝐷′⃗⃗⃗⃗ . 𝑒𝑏𝑙 cos(2𝜋𝑙) + 𝑋∗⃗⃗ ⃗⃗  (𝑡)              𝑖𝑓 𝑝 ≥ 0.5
                                                            (7) 

 

where p is a random number between [-1,1]. 

Search for prey (exploration phase) imitates humpback whales doing random research 

according to each other's position. To make the search more comprehensive and to keep the 

whales away from each other, 𝐴  is selected randomly as greater than 1 and less than -1. In 

contrast to the exploitation phase, during the exploration phase, the position of a search agent is 

updated with a randomly selected search agent. Selecting |𝐴 | > 1 allows the WOA algorithm to 

conduct a global search. The mathematical model is as follows [1]:    
 

�⃗⃗� = |𝐶 . 𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑋 |                                                                                                                        (8) 
 

𝑋 (𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝐴.⃗⃗  ⃗ �⃗⃗�                                                                                                                (9) 
 

where 𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   is a random position vector selected from the current population. 

To summarize, the WOA algorithm begins with a series of random solutions. In each 

iteration, search agents update their positions to 50% probability, either randomly selected search 

agents, or the best solution so far. Depending on the value of p, WOA can choose between spiral 

or circular motion. Finally, the WOA is terminated by provide of the stopping criterion. 

 

3. CHAOTIC MAPS 

 

Chaos is defined as the randomness produced by mathematically simple deterministic systems 

[25]. It can also be expressed as an arrangement within the irregularity that focuses on the 

behavior of dynamic systems that are highly sensitive to their initial values. That is, small changes 

in the initial conditions can result in large differences (sensitivity). Chaos has similar scatter 

performance for a random value (randomness). It also consists of values that do not repeat within 

a certain interval (ergodicity) [26], [50]. Therefore, using chaotic variables instead of random 

variables in optimization algorithms reduces the likelihood of repeating randomly selected 

numbers and accumulating at a certain interval. Thus, the problem of trapping to the local 

optimum of the optimization problems can be solved [50]. The chaotic maps used in this study are 

shown in Table 1 [22], [50].  
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Table 1. Equations of and range of chaotic maps 
 

Chaotic Maps Equation Interval 

Chebyshev 𝑥𝑖+1 = cos(𝑖 cos
−1(𝑥𝑖)) (-1,1) 

Circle 𝑥𝑖+1 = 𝑚𝑜𝑑 (𝑥𝑖 + 𝑏 − (
𝑎

2𝜋
) sin 2𝜋𝑥𝑖 , 1) , 𝑎 = 0.5 𝑏 = 0.2 

(0,1) 

Gauss/mouse 

𝑥𝑖+1 {

𝑥𝑖 = 0
1

𝑚𝑜𝑑(𝑥𝑖 , 1)
    𝑑𝑖ğ𝑒𝑟

 

(0,1) 

Iterative 𝑥𝑖+1 = sin
𝑎𝜋

𝑥𝑖
    𝑎 = 0.7 

(-1,1) 

Logistic 𝑥𝑖+1 = 𝑎𝑥𝑖(1 − 𝑥𝑖)     𝑎 = 4 (0,1) 

Piecewise 

𝑥𝑖+1 =

{
 
 
 

 
 
 

𝑥𝑖
𝑑
                       0 ≤ 𝑥𝑖 < 𝑑

𝑥𝑖 − 𝑑
0.5 − 𝑑

                 𝑑 ≤ 𝑥𝑖 <
1
2

1 − 𝑑 − 𝑥𝑖
0.5 − 𝑑

      
1
2
≤ 𝑥𝑖 < 1 − 𝑑

1 − 𝑥𝑖
𝑑

       1 − 𝑑 ≤ 𝑥𝑖 < 1

 

(0,1) 

Sine 𝑥𝑖+1 =
𝑎

4
sin(𝜋𝑥𝑖)       𝑎 = 4 (0,1) 

Singer 𝑥𝑖+1 = 𝜇(7.86𝑥𝑖 − 23.31𝑥𝑖
2 + 28.75𝑥𝑖

3 − 13.302875𝑥𝑖
4),   𝜇

= 2.3 

(0,1) 

Sinusoidal 𝑥𝑖+1 = 𝑎𝑥𝑖
2 sin(𝜋𝑥𝑖),       𝑎 = 2.3 (0,1) 

Tent 

𝑥𝑖+1 = {

𝑥𝑖
0.7

𝑥𝑖 < 0.7

10

3
(1 − 𝑥𝑖)𝑥𝑖 ≥ 0.7

 

(0,1) 

 

The graphs of the chaotic maps are given in figure 2. 
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Figure 2. Graphs of Chaotic Maps 
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3.1. Application of Chaotic Maps to the WOA Algorithm 

 

In the WOA algorithm, hunting strategy of humpback whales is modeled. The whales create 

air bubbles around their prey and surround them and prevent them from escaping. This behavior 

is modeled by the Equation 2. By updating the value 𝑎 in the Equation 3, it is possible to narrow 

the circle around the prey. In the WOA algorithm, 𝑎 value is chosen from randomly generated 

numbers. In this work, 𝑎 value has been replaced by chaotic maps to provide both decreasing 

linearly in the range [0,2] and randomness obtained by chaos maps. In the WOA algorithm, 𝑎 

value decreases linearly in the range [0,2]. Accordingly, each of the chaotic maps has been 

normalized to a predefined range [𝑘, 𝑙], this range represents the added chaos effect to the 𝑎 value. 

Normalized chaos maps have been added to the current 𝑎 value. The normalization process is 

performed using the following formulas as done in [22].   
 

𝑥(𝑡)𝑛 =
(𝑥(𝑡)−𝑚)×(𝑙−𝑘)

(𝑚−𝑛)
+ 𝑐                                                                                                     (10) 

 

Where 𝑥(𝑡) and 𝑥(𝑡)𝑛 are non-normalized and normalized values of the chaotic map at t’th 

iteration, [𝑚, 𝑛] is the interval of the chaos map given in Table 1, and [𝑘, 𝑙] = [0 0.05] is the 

normalization interval used in this study. d value is reduced throughout iterations by the following 

formula [22]. 
 

𝑑(𝑡) = 𝑑 −
𝑡

𝑇
(𝑙 − 𝑘)                                                                                                              (11)        

 

In this Equation, t represents the current iteration and T represents the maximum number of 

iterations. Chaotic maps are normalized and then combined with 𝑎 value. This process is shown 

in Figure 3-4 for Chebyshev Map. 

 

           
 

Figure 3. Normalization graph of Chebyshev Map 
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Figure 4. Sum of normalized Chebyshev map with 𝑎 value  

 

In Figure 5 all the normalized chaos maps with 𝑎 value is shown. 
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Figure 5. Normalized chaos maps with 𝑎 values 
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4. EXPERIMENTAL STUDIES 

 

The performance of chaos-based WOA algorithms developed in this paper has been tested 

with 13 different benchmark functions that are frequently used in optimization problems [1]. 

These functions are composed from both single-mode functions (F1-F7) and multi-mode (F8-F13) 

functions  [1]. The equations of these functions are given in Table 2. 

 

Table 2. Equations of benchmark functions 
 

benchmark functions Dimension range 𝒇𝒎𝒊𝒏 

 

𝑭𝟏(𝒙) =∑ 𝒙𝒊
𝟐

𝒏

𝒊=𝟏
 

 

30 

 

[-100,100] 

 

 

0 

𝑭𝟐(𝒙) =∑ |𝒙𝒊|
𝒏

𝒊=𝟏
+∏ |𝒙𝒊|

𝒏

𝒊=𝟏
 

30  
[-10,10] 

0 
 

𝑭𝟑(𝒙) =∑ (∑ 𝒙𝒋
𝒊

𝒋−𝟏
)

𝟐𝒏

𝒊=𝟏
 

30  

[-100,100] 
 

0 

 

𝑭𝟒(𝒙) = 𝒎𝒂𝒙𝒊{|𝒙𝒊|, 𝟏 ≤ 𝒊 ≤ 𝒏} 30  

[-100,100] 

 

0 

𝑭𝟓(𝒙) =∑ [𝟏𝟎𝟎(𝒙𝒊+𝟏 − 𝒙𝒊
𝟐)
𝟐
+ (𝒙𝒊 − 𝟏)

𝟐]
𝒏−𝟏

𝒊=𝟏
 

 

30  

[-30,30] 

0 

 

𝑭𝟔(𝒙) =∑ (|𝒙𝒊 + 𝟎. 𝟓|)
𝟐

𝒏

𝒊=𝟏
 

 

30 

 

[-100,100] 

 

0 
 

 

 

𝑭𝟕(𝒙) =∑ 𝒊𝒙𝒊
𝟒

𝒏

𝒊=𝟏
+ 𝒓𝒂𝒏𝒅𝒐𝒎(𝟎, 𝟏) 

 

 
30 

 
[-1.28,1.28] 

 

 
0 

𝑭𝟖(𝒙) =∑ −𝒙𝒊 𝐬𝐢𝐧 (√|𝒙𝒊|)
𝒏

𝒊=𝟏
 

 

30  
[-500,500] 

 

 
-418.982x5 

 

𝑭𝟗(𝒙) =∑ [𝒙𝒊
𝟐 − 𝟏𝟎𝐜𝐨𝐬(𝟐𝝅𝒙𝒊) + 𝟏𝟎]

𝒏

𝒊=𝟏
 

 

30  

[-5.12,5.12] 

0 

 

𝑭𝟏𝟎(𝒙) = −𝟐𝟎𝒆𝒙𝒑(−𝟎.𝟐√
𝟏

𝒏
∑ 𝒙𝒊

𝟐
𝒏

𝒊=𝟏
)

− 𝒆𝒙𝒑(
𝟏

𝒏
∑ 𝐜𝐨𝐬(𝟐𝝅𝒙𝒊)

𝒏

𝒊=𝟏
) + 𝟐𝟎 + 𝒆 

 

 

30 

 

[-32,32] 
 

 

0 

𝑭𝟏𝟏(𝒙) =
𝟏

𝟒𝟎𝟎𝟎
∑ 𝒙𝒊

𝟐
𝒏

𝒊=𝟏
−∏ 𝐜𝐨𝐬 (

𝒙𝒊

√𝒊
)

𝒏

𝒊=𝟏
+ 𝟏 

 

 

30  
[-600,600] 

0 

𝑭𝟏𝟐(𝒙) =
𝝅

𝒏
{𝟏𝟎 𝐬𝐢𝐧(𝝅𝒚𝟏) + ∑ (𝒚𝒊 − 𝟏)

𝟐[𝟏 +𝒏
𝒊=𝟏

𝟏𝟎𝒔𝒊𝒏𝟐(𝝅𝒚𝒊+𝟏)] + (𝒚𝒏 − 𝟏)
𝟐} + ∑ 𝒖(𝒙𝒊, 𝟏𝟎, 𝟏𝟎𝟎, 𝟒)

𝒏
𝒊=𝟏  

30  

[-50,50] 

0 
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𝒚𝒊 = 𝟏 +
𝒙𝒊+𝟏

𝟒
𝒖(𝒙𝒊, 𝒂, 𝒌,𝒎) = {

𝒌(𝒙𝒊 − 𝒂)
𝒎      𝒙𝒊 > 𝒂

𝟎            − 𝒂 < 𝒙𝒊 < 𝒂 

𝒌(−𝒙𝒊 − 𝒂)
𝒎    𝒙𝒊 < −𝒂

 

 

𝑭𝟏𝟑(𝒙) = 𝟎. 𝟏 {𝒔𝒊𝒏
𝟐(𝜷𝝅𝒙𝟏)

+∑ (𝒙𝒊 − 𝟏)
𝟐

𝒏

𝒊=𝟏

[𝟏

+ 𝒔𝒊𝒏𝟐(𝟑𝝅𝒙𝒊 + 𝟏)]

+ (𝒙𝒏 − 𝟏)
𝟐[𝟏 + 𝒔𝒊𝒏𝟐(𝟐𝝅𝒙𝒏)]}

+∑ 𝒖(𝒙𝒊, 𝟓, 𝟏𝟎𝟎, 𝟒)
𝒏

𝒊=𝟏
 

30  

[-50,50] 

0 

 
 

 

The WOA algorithm and the proposed CWOA algorithms have been run 30 times in 

succession. Besides, maximum number of iteration was defined as 1000 and population size was 

50. In order to evaluate the mutual performances of the algorithms, mean and standard deviation 

values were calculated for each run. The best results are indicated in bold type. In addition, 

nonparametric Wilcoxon Sign Rank Test [51] was calculated at the significance level of 0.05 in 

order to show the significant differences between the performance of the algorithms. According to 

Wilcoxon sign rank test used for statistical evaluation of the results, p-values that are less than 

0.05 can be considered as strong evidences against the null hypothesis. The p value of less than 

0.05 is underlined. All work was done by using MATLAB R2017b program on a computer with 

Intel Core i7-7700HQ CPU 2.80GHz processor and 16GB Ram in the same conditions. The 

obtained results of chaos-based WOA algorithms are given in Table 3. 

The F1-F7 functions are single-mode functions since they have a single local optimum. These 

functions allow to evaluate the exploitation phase performance of meta-heuristic algorithms [1]. 

When Table 3 is examined, it is seen that chaos-based WOA algorithms for F1, F2, F3, F5, and 

F6 functions all yield better results than the WOA algorithm in terms of mean of the objective 

function values and their standard deviations. At the same time, when p values are examined, it is 

observed that these results are significantly different. Although the CWOA1, CWOA3, CWOA4, 

CWOA7, CWOA9 and CWOA10 for the F4 function give better results on average, the results 

are not significant when p values are considered. All chaos-based algorithms for F7 function are 

better in terms of average and standard deviation values, but there is a significant difference only 

for the CWOA4 algorithm. As a result, chaos-based WOA algorithms perform better for 5 out of 

the 7 functions, so the performance of the exploitation phase seems to be increased. The graphs of 

benchmark functions for two dimensions are illustrated in figure 6. 

The functions F8-F13 are multimodal functions with more than one local optimum. For this 

reason, multimodal functions also allow us to evaluate the performance of the exploration phase 

[1]. When the results are examined, for F8 function in CWOA1 and CWOA8 algorithms, for F10 

function in all algorithms except CWOA1, CWAO5 and CWOA7, for F9 function in all 

algorithms except CWOA1 and CWOA7, for F11 function in all algorithms except CWOA2 and 

CWOA6, in all algorithms for F12 function and for F13 function in CWOA1, CWOA5, CWOA6 

and CWOA8 algorithms, no significant difference is found although better results are obtained 

than WOA in terms of standard deviation and mean values. 
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Table 3. Statistical results of chaos-based WOA algorithms 
 

F1 Woa CWoa1 CWoa2 CWoa3 CWoa4 CWoa5 CWoa6 CWoa7 CWoa8 CWoa9 CWoa10 

Mean  9,82E-150 1,20E-166 1,20E-166 1,20E-166 1,20E-166 1,20E-166 1,20E-166 1,20E-166 1,20E-166 1,20E-166 1,20E-166 

Std 5,37E-149 0 0 0 0 0 0 0 0 0 0 

p value 1,73E-06 1,73E-06 1,73E-06 1,73E-06 1,73E-06 1,73E-06 1,73E-06 1,73E-06 1,73E-06 1,73E-06 1,73E-06 

F2 Woa CWoa1 CWoa2 CWoa3 CWoa4 CWoa5 CWoa6 CWoa7 CWoa8 CWoa9 CWoa10 

Mean  4,95E-103 7,41E-108 2,29E-107 1,21E-108 2,62E-108 1,37E+105 1,84E-106 4,64E-107 4,95E-106 7,80E+109 7,05E-107 

Std 2,66E-102 2,32E-107 1,07E+106 6,36E+108 5,97E-108 7,52E-105 6,33E-106 2,47E-106 1,81E-105 2,27E+108 2,81E-106 

p value 0 0,0007 0,0017 0,0001 0,0014 0,0034 0,0316 0,0001 0,0082 0 0,001 

F3 Woa CWoa1 CWoa2 CWoa3 CWoa4 CWoa5 CWoa6 CWoa7 CWoa8 CWoa9 CWoa10 

Mean  20412,19 10500 9600 10600 18100 10000 12400 10700 9420 11900 10600 

Std 11982,64 7006,34 6881,43 6748,98 5173,25 5821,39 8403,73 8589,64 5665 7441,81 5622,94 

p value 0 0,0012 0,0004 0,0006 0,0047 0,0001 0,0093 0,0032 0,001 0,0021 0,0003 

F4 Woa CWoa1 CWoa2 CWoa3 CWoa4 CWoa5 CWoa6 CWoa7 CWoa8 CWoa9 CWoa10 

Mean 30,7143 20,899 40,4574 22,2949 28,0525 30,7529 35,6355 25,058 35,439 30,538 27,3173 

Std 28,5513 24,5102 28,2303 24,8089 28,085 29,7233 28,8572 24,3903 30,019 27,9364 25,6309 

p value 0 0,1714 0,165 0,3389 0,6288 0,9099 0,3493 0,4048 0,544 0,8451 0,8612 

F5 Woa CWoa1 CWoa2 CWoa3 CWoa4 CWoa5 CWoa6 CWoa7 CWoa8 CWoa9 CWoa10 

Mean 27,2006 26,6553 25,8317 36,6487 26,672 26,6498 26,5722 26,7133 26,6659 26,651 26,606 

Std 0,4039 0,4125 4,7743 0,3165 0,2537 0,2566 0,3168 0,478 0,5211 0,2545 0,3113 

p value 0 0,0001 0,0001 0 0 0 0 0,0001 0,0005 0 0 

F6 Woa CWoa1 CWoa2 CWoa3 CWoa4 CWoa5 CWoa6 CWoa7 CWoa8 CWoa9 CWoa10 

Mean 0,0935 0,0045 0,0038 0,0054 0,0034 0,0033 0,0073 0,0031 0,0033 0,004 0,0044 

Std 0,1123 0,007 0,0015 0,0047 0,0014 0,0016 0,0199 0,0013 0,0015 0,0026 0,0026 

p value 0 0 0 0 0 0 0 0 0 0 0 

F7 Woa CWoa1 CWoa2 CWoa3 CWoa4 CWoa5 CWoa6 CWoa7 CWoa8 CWoa9 CWoa10 

Mean 0,0014 0,0008 0,001 0,001 0,0008 0,0013 0,001 0,0009 0,0009 0,0017 0,0009 

Std 0,0016 0,001 0,001 0,001 0,0011 0,0013 0,0013 0,001 0,0008 0,0026 0,0008 

p value 0 0,0687 0,102 0,2712 0,0111 0,7655 0,0598 0,0719 0,1986 0,7036 0,0545 

F8 Woa CWoa1 CWoa2 CWoa3 CWoa4 CWoa5 CWoa6 CWoa7 CWoa8 CWoa9 CWoa10 

Mean -11893,89 -11970,86 -11541,29 -11884,6 -11681,34 -11860,94 -11652,51 -11606,59 -12091,77 -11496,99 -11839,47 

Std 1174,24 832,63 1424,41 1107,18 1244,34 1184,17 1176,79 1398,24 985,96 1506,79 1231,29 

p value 0 0,3709 0,3185 0,8451 0,4048 0,813 0,165 0,4405 0,3185 0,3709 0,8612 

F9 Woa CWoa1 CWoa2 CWoa3 CWoa4 CWoa5 CWoa6 CWoa7 CWoa8 CWoa9 CWoa10 

Mean 1,89E-15 5,68E-15 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 5,68E-15 0,00E+00 0,00E+00 0,00E+00 

Std 1,04E-14 2,29E-14 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 2,29E-14 0,00E+00 0,00E+00 0,00E+00 

p value 1 0,75 1 1 1 1 1 0,75 1 1 1 

F10 Woa CWoa1 CWoa2 CWoa3 CWoa4 CWoa5 CWoa6 CWoa7 CWoa8 CWoa9 CWoa10 

Mean 4,32E-15 4,80E-15 3,85E-15 3,73E-15 3,73E-15 4,32E-15 3,61E-15 4,44E-15 3,49E-15 3,97E-15 3,97E-15 

Std 2,72E-15 2,16E-15 2,10E-15 2,36E-15 2,54E-15 2,55E-15 2,22E-15 2,47E-15 2,79E-15 2,42E-15 2,03E-15 

p value 0 0,4986 0,4283 0,3173 0,375 1 0,2435 0,8332 0,1938 0,6076 0,5586 

F11 Woa CWoa1 CWoa2 CWoa3 CWoa4 CWoa5 CWoa6 CWoa7 CWoa8 CWoa9 CWoa10 

Mean 0,0013 0,0019 0,001 0,0028 0,0019 0,0068 0 0,0019 0,0033 0,0059 0,0062 

Std 0,0071 0,0107 0,0054 0,0106 0,0072 0,0184 0 0,0106 0,0103 0,0206 0,0164 

p value 1 1 1 0,75 1 0,125 1 1 0,625 0,375 0,125 

F12 Woa CWoa1 CWoa2 CWoa3 CWoa4 CWoa5 CWoa6 CWoa7 CWoa8 CWoa9 CWoa10 

Mean 0,0077 0,001 0,0019 0,0031 0,0015 0,0022 0,0026 0,0016 0,0008 0,0008 0,0027 

Std 0,0345 0,0017 0,0035 0,0092 0,0036 0,0043 0,0058 0,0026 0,001 0,0016 0,0102 

p value 0 0,1915 0,8612 0,6733 0,1109 0,6884 0,7655 0,813 0,3933 0,1359 0,1714 

F13 Woa CWoa1 CWoa2 CWoa3 CWoa4 CWoa5 CWoa6 CWoa7 CWoa8 CWoa9 CWoa10 

Mean 0,0294 0,0251 0,045 0,0614 0,0332 0,023 0,0272 0,0334 0,0276 0,0393 0,0366 

Std 0,0304 0,029 0,0424 0,0715 0,0545 0,0222 0,0327 0,0372 0,0267 0,0477 0,0726 

p value 0 0,829 0,1254 0,0545 0,9754 0,544 0,36 0,7189 0,5716 0,4653 0,6435 
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Figure 6. Graph of benchmark functions 

 

Overall, when evaluated, the best performance is shown by the CWOA4 and CWOA8 

algorithms, the performance of other algorithms is close to each other, and the performance of the 

exploitation phase is improved rather than the exploration phase.  

 

4.1. Data Clustering Application 

 

In this section, data clustering problem is solved by combining FCM and the proposed chaos 

based WOA algorithms. In addition to, the effect of changing the distance function of the FCM 

algorithm and of the normalization of chaos maps on the data clustering are evaluated. 

 

Fuzzy C-Means Algorithm (FCM) 

The FCM clustering divides a given set of n elements of 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} data into c fuzzy 

sets [48]. A vector 𝑣𝑖 = [𝑣1, 𝑣2, … , 𝑣𝑐], represents the ith cluster center. Each data sample has a 

membership degree represented by the membership matrix. The sum of the membership grades of 

all the clusters of a dataset should be 1. If data is closest to that cluster, then the membership level 

of the cluster will be larger. The membership matrix is represented as follows [48]. 
 

∑ 𝑈𝑖𝑗 = 1
𝑐
𝑖=1          𝑗 = 1,2,… 𝑛                                                                                                     (12) 

 

The FCM algorithm is an objective function-based algorithm that tries to minimize the 

following objective function, which is the generalization of the least squares method [48]. 
 

𝐽𝑚(𝑈, 𝑉) = ∑ ∑ 𝑈𝑖𝑗
𝑚‖𝑥𝑖 − 𝑣𝑗‖

2
 𝑐

𝑗=1 ,    1 ≤ 𝑚 <𝑛
𝑖=1                                                                   (13) 

 

The algorithm is initiated by the random assignment of the membership matrix. Then cluster 

centers are calculated according to Equation 3 [48].  
 

𝑣𝑗 =
∑ 𝑈𝑖𝑗

𝑚𝑥𝑖
𝑛
𝑖=1

∑ 𝑈𝑖𝑗
𝑚𝑛

𝑖=1

                                                                                                                                (14) 

 

According to the calculated cluster centers, U matrix is updated using the following formula 

[48]. 
 

𝑈𝑖𝑗 =
1

∑ (
‖𝑥𝑖−𝑣𝑖‖

‖𝑥𝑖−𝑣𝑘‖
)

2
(𝑚−1)⁄

𝑐
𝑘=1

                                                                                                                (15) 

 

The above operations are repeated until the difference between the old matrix and the new 

matrix is smaller than stopping criteria (𝜀).  

In FCM algorithm, distance of data to cluster centers is measured by Euclidean distance 

function which is the shortest distance between two points. The distance between point A and 

point B is calculated by the following formula, where 𝐴(𝑥1, 𝑦1) and 𝐵(𝑥2, 𝑦2) are two different 
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points in a plane [52]. 
 

𝑑𝑜𝑘𝑙𝑖𝑑 = √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2                                                                                            (16) 
 

There are many different techniques for calculating the distance between two points. The 

suitability of the selected technique may vary according to the nature of the given data and the 

size of the data set [53]. Since the Euclidean distance is not always efficient in complex shapes 

[54], in this study Chebyshev distance is selected as the distance function of the FCM algorithm 

rather than Euclidean distance. The Chebyshev distance is the number of chess moves that must 

be made to pass another square in the chessboard. Thus, it is also known as the distance of the 

chessboard. The distance between the points 𝐴(𝑥1, 𝑦1) and 𝐵(𝑥2, 𝑦2) is calculated by the distance 

function Chebyshev as [52]:  
 

𝑑𝑐ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 = 𝑚𝑎𝑥(|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|)                                                                                     (17) 

 

4.2. Data Clustering with FCM and CWOA Algorithms 

 

Data clustering aims to cluster a data set that composed of a number of data rows in a certain 

number of clusters according to the ratio of their similarities to each other.  A data row can 

include several features in its columns according to the properties of the data set. In this study the 

population matrix X for the FCM-CWOA algorithms are defined as follows:  
 

𝑋 = [

𝑥11 ⋯ 𝑥1,𝑐𝑥𝑘
⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛,𝑐𝑥𝑘

]                                                                                                                (18)  

 

where n is the number of elements in the data set, k is the number of features in the k data set, 

and c is the number of clusters. Each row of the matrix X represents a candidate cluster centers 

and FCM-CWOA algorithms tries to minimize the FCM objective function. The pseudo code of 

the FCM-CWOA algorithms are given in Figure 7. 

 

Start the whale population, 𝑋𝑖 (𝑖 = 1, 2,… , 𝑛) , with randomly generated cluster centers 

Calculate FCM objective function for each candidate cluster center 

𝑋∗: the best cluster centers 

While (t<maximum iteration) 

        For each candidate cluster center 

             update a, A, C, l, P 

           update membership matrix U 

          update the location of the current cluster center according to p. 

      end for 

Check if that any candidate cluster center has exceeded the research space and correct it. 

Calculate FCM objective function for each candidate cluster center 

Update 𝑋∗ if there is a better solution. 

t=t+1 

end while 

back to 𝑋∗ 
 

Figure 7. The pseudo code of the FCM-CWOA Algorithms 

 

4.3. Evaluation Criteria 

 

In order to evaluate the performance of the proposed algorithm on solving data clustering 

problem, in this study the Rand and the Adjusted Rand Indexes are used. 
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Rand and Adjusted Rand Index 

The Rand index, which calculates the similarity ratio between two clusters, is one of the most 

commonly used indices. It calculates the accuracy of clustering by finding how similar new 

clusters are to the actual clusters after clustering. The Rand Index is calculated using the 

following formula [55]: 
 

𝑅𝐼 = (𝑛𝑠 + 𝑛𝑑)/𝑁                                                                                                                        (19) 
 

where 𝑛𝑠 is the number of point pairs assigned to the same cluster, 𝑛𝑑 is the number of pairs 

of points assigned to different clusters, and N is the number of all pairs of points in the dataset. If 

the two sets being compared are exactly the same, the Rand Index is 1 and if it is completely 

different, or if it contains a single element, the Rand Index is 0 [55].  

The Adjusted Rand Index is the corrected version of the Rand Index. Similarity calculations 

based on estimation. The Adjusted Rand index gets -1 in the worst estimate and gets 1 the best 

estimate. The Adjusted Rand Index is calculated by the following formula [56]. 
 

𝐴𝑅𝐼 =
𝑎𝑖−𝑏𝑖

max(𝑎𝑖)−𝑏𝑖
                                                                                                                           (20) 

 

where 𝑎𝑖 is the current index value, 𝑏𝑖 is the expected index value, and max (𝑎𝑖) is the 

maximum index value. 

 

4.4. Experimental Results 

 

Each of the CWOA1, CWOA2…, CWOA10 algorithms were hybridized to the FCM 

algorithm and data clustering algorithms, named FCM-CWOA1, FCM-CWOA2..., FCM-

CWOA10, were proposed. In section 3.1, it was mentioned that the chaos maps used were passed 

through an adaptive normalization process. For better understanding of effect of this 

normalization process, data clustering was performed with chaotic WOA algorithms integrated 

with non-normalized chaos maps. These hybrid algorithms were named CWOA1*, CWOA2*…, 

CWOA10*. In addition, to avoid the existing disadvantages of the Euclidean distance, all 

distances in the FCM algorithm was calculated with the Chebyshev distance function. And the 

revised FCM algorithm was integrated with chaotic WOA algorithms and proposed new hybrid 

algorithms called FCWOA1-c, FCWOA2-c..., FCWOA10-c. Clustering performance of the FCM-

WOA, FCM-CWOA and FCWOA-c algorithms was evaluated with six different data sets 

selected from the UCI Machine Learning Repository. These data sets have the following 

characteristics; Iris dataset that has 150 data with 4 attributes, Balance Scale dataset has 625 data 

with 4 attributes, User Modeling dataset has 403 data with 5 attributes, Breast Cancer dataset has 

699 data with 10 attributes, Seeds dataset has 210 data with 7 attributes, Fertility dataset has 100 

data with 10 attributes. Proposed algorithms were compared with each other, K-Means, FCM, 

FCMALO, FCMGWO, FCMPSO and FCMSCA algorithms. ALO, GWO, PSO and GWO 

algorithms were hybridized with FCM in the same way as the WOA algorithm. All algorithms 

have been run 30 times. In the all of the algorithms parameter of m has been selected as 2, 

maximum number of iterations as 1000 and population size as 50. The closeness of the clustering 

results of algorithms to the real results was tested with two indexes, Rand Index and Adjusted 

Rand Index, which are frequently used in the literature. All the work is done under the same 

conditions as the Intel Core i7-7700HQ CPU with a 2.80GHz processor and 16 GB Ram on a 

computer with MATLAB R2017b program. The obtained results are shown in Table 4-6.   

Table 4 shows that in most cases the proposed algorithms give better results than the 

compared algorithms. When the mean benchmark function, mean Rand Index and mean Adjusted 

Rand Index values for the Iris dataset are examined, it is seen that all of FCWOA-c algorithms 

give better results. Although the best maximum index values are obtained by FCMSCA 

algorithm, the average index values are low. The FCWOA-c algorithms for the Balance Scale 

dataset yield better results in terms of benchmark function, but only FCWOA2, FCWOA4, 
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FCWOA6, and FCWOA7 algorithms perform well in terms of mean index values. Also, the 

clustering performance of the FCMWOA algorithm is significantly better than the FCM. For the 

User Modeling dataset, the FCMWOA algorithm yield better results than other algorithms. 

Although FCWOA-c algorithms have minimized the objective function better, it seems that this 

situation has no effect on clustering accuracy. In addition, the best clustering for this dataset is 

performed by FCM, FCMALO, FCMPSO, and FCMGWO algorithms. In the Breast Cancer 

dataset, although the FCM algorithm minimized the benchmark function better, K-means is 

observed to have higher clustering accuracy. In addition, the best result for maximum index 

values is obtained by FCWOA3-c algorithm. As for Seeds dataset, the maximum index values in 

all of the proposed algorithms are higher than the compared algorithms. However, FCWOA2-c, 

FCWOA7-c and FCWOA9-c algorithms have low mean index values. Lastly, in the Fertility 

dataset, all of the FCWOA-c algorithms are better than the other algorithms in terms of average 

benchmark function, maximum and mean index values. Though the aim is to minimize the 

benchmark function, it is important to note that the benchmark function is not critical in 

comparing the data clustering results since the distance function is changed here. While the 

benchmark function values are good, index values may be low.  

 

Table 4. The data clustering results of the proposed algorithms 
 

 

Therefore, Rand and Adjust Rand index values are considered as priorities when evaluating 

the results. In order to better observe the effect of the distance function on data clustering Table 4, 

Table 5 and Table 6 should be considered together. 5 out of the FCM-CWOA algorithms for the 

Iris dataset yield better than FCM, while all of FCWOA-c algorithms are better than FCM. 8 out 

of the FCM-CWOA algorithms for Balance Scale dataset perform better than FCM but with a 

minor difference. 4 out of FCWOA-c algorithms are significantly better than FCM for this 

dataset. In User Modeling dataset, all FCM-CWOA algorithms are better than FCM, however, 

FCWOA-c algorithms are far behind the FCM in terms of clustering performance. No 

performance improvement is observed in the FCM-CWOA algorithms for the Seeds dataset. 

Contrary to this, 7 out of the FCWOA-c algorithms yield better result than existing algorithms for 

this dataset. The FCM-CWOA algorithms in the Fertility dataset are not better than K-Means, but 

Data Clustering Based on Fuzzy C-Means and  …      /   Sigma J Eng & Nat Sci 37 (4), 1107-1128, 2019 



1124 

 

 

perform slightly better than FCM. Namely, it observed that performance of FCWOA-c algorithms 

is better than FCM-CWOA algorithms.  

As a result, it can be said that changing the distance function has a positive effect on the 

clustering performance. Comparison of clustering results of FCM-CWOA and FCM-CWOA* 

algorithms are given in Table 5 and Table 6. When the results are examined, it is seen that 

normalization of chaos functions increases the data clustering performance of algorithms. For 

example, FCM-CWOA* algorithms in Iris and Breast Cancer datasets have very good results in 

maximum index values but average index values are low. That is, algorithms can achieve good 

results in only a few of 30 consecutive runs. It is observed that normalization of chaos functions 

increases the number of successful results by making this situation more stable. Although there is 

a similar case for the User Modeling and Seeds dataset, FCM-CWOA algorithms are by far better 

than FCM-CWOA* algorithms. In contrast to these examples, the use of non-normalized chaos 

functions in the Balance Scale and Fertility datasets are more useful and FCM-CWOA* 

algorithms perform better than FCM-CWOA algorithms. As a result, it can be concluded that the 

proposed hybrid algorithms successfully clusters most of the dataset tested and show better 

clustering performance than the compared algorithms.  

 

Table 5. Comparison of clustering results of FCM-CWOA and FCM_CWOA* algorithms 
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Table 6. Comparison of clustering results of FCM-CWOA and FCM_CWOA* algorithms 
 

 
 

5. CONCLUSION 

 

  In this paper, the Whale Optimization Algorithm (WOA), a global optimization algorithm 

inspired by the hunting behavior of humpback whales, has been hybridized with the Fuzzy C-

Means (FCM) algorithm after its performance was improved with chaos maps using an adaptive 

normalization method. To improve the performance of the WOA algorithm, a randomly selected 

parameter of the algorithm (a) was modified with 10 different chaos maps which each collected 

with a value after normalization process. And chaotic WOA algorithms were proposed. The 

performances of these algorithms were evaluated in terms of mean benchmark function, standard 

deviation, and Wilcoxon Sign Rank Test at 0.05 significance level and they were tested with 13 

different benchmark functions. In addition, hybrid data clustering algorithms were developed by 

integrating FCM with proposed chaotic algorithms. In order to increase the data clustering 

performance of the proposed hybrid algorithms, all the distances in the FCM algorithm were 

calculated by using the Chebyshev distance function instead of Euclidean and the new hybrid 

clustering algorithms were proposed. The clustering performances of the hybrid data clustering 

algorithms were measured with the benchmark function, Rand Index and Adjusted Rand Index 

values for 7 different datasets selected from the UCI Repository database and then compared with 

the K-means, FCM, FCMWOA, FCMPSO, FCMALO, FCMGWO and FCMSCA algorithms. 

Also, the effect of changing the distance function of the FCM algorithm and of the normalization 
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of chaos maps on the data clustering were evaluated. As a result, it has been seen that chaos 

functions improve the optimization performance of WOA algorithm, integrating chaotic WOA 

algorithms with FCM algorithm improves disadvantages of FCM algorithm, changing distance 

function increases clustering performance of algorithms. 
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