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ABSTRACT 

 

In this work, we have proposed a solution to multiobjective fractional programming problems (MFPPs) by 

using the first-order Multiplicative Taylor expansion of these objective functions at optimal points of each 

fractional objective functions in feasible region. MFPP reduces to an equivalent Multiobjective Linear 

Programming Problem (MLPP). The resulting MLPP is solved assuming that weights of these linear objective 
functions are equal and considering the sum of the these linear objective functions. Thus, the problem is 

reduced to a single objective. The proposed solution to MFPP always yields efficient solution. Therefore, the 

complexity in solving MFPP has reduced easy computational and to show the efficiency of the Multiplicative 
Taylor series method, we applied the method to some problems.  

Keywords: Fractional programming, multiobjective fractional programming, multiplicative derivation. 

 

 

1. INTRODUCTION 

 

The multiobjective fractional programming problems (MOFPPs) have received of much 

interest in recent past. This problems are applied to different disciplines such as engineering, 

business, finance, economics, etc. MOFPPs are generally used for modeling real life problems 

with one or more objectives such as profit/cost, inventory/sales, actual cost/ standart cost, 

output/employee etc. (see, for example, [1-8]).  

Multiobjective Fractional Programming Problems (MFPPs) pose some computational 

difficulties, so they are converted into single objective programming problems and then solved 

using the method of Bitran and Novaes [9] or Charnes and Cooper [10]. 

Michael Grossman and Robert Katz gave definitions of a new kind of derivative and integral, 

moving the roles of subtraction and addition to division and multiplication, and thus established a 

new calculus, called multiplicative calculus [11]. 

In this paper, we proposed a solution to Multiobjective Fractional Programming Problems 

using the first order Multiplicative Taylor polynomial series method at optimal point of each 

fractional objective function in feasible region. 
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2. PRELIMINARIES 
 

Definition: If the nu merator and denominator in the objective function as well as the constraints 

are linear, we have a linear fractional programming problem (LFPP) as follows:  
 

,
cx

Optimize
dx








                                                             (1) 

. . :  = | ,  0s t x S x Ax b x

   
  

    
       

 

where A  is a real m n   matrix, ,mb R  
nx R  and S  is a nonempty and bounded 

set. For some values of x , dx    may be equal to zero. To avoid such cases, is generally set 

to be greater than zero.  

Charnes and Cooper [10] showed that if the denominator is constant in sign on the feasible 

region, the LFPP can be optimized by solving a linear programming problem. However, in many 

applications, there are two or more conflicting objective functions which are relevant, and some 

compromise must be bought between them. Such types of problems are inherently multiobjective 

linear fractional programming problems and can be written as: 
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where , ,S A b  and x  are as defined in problem (1), and 

,  0 (k=1,...,K)k kx S d x     . 
 

Definition 1 Let f be a positive function on A ⊆ R, and it is derivative at x exists. The 

multiplicative derivation of f is given by  
 

𝑓⊛(𝑥) = lim
ℎ→0

(
𝑓(𝑥+ℎ)

𝑓(𝑥)
)

1

ℎ
= 𝑒(ln∘𝑓) ′(𝑥)                                                                                          (3) 

 

where (ln ∘ 𝑓)(𝑥) = ln𝑓(𝑥). If, additionaly, 𝑓 is a smooth function. then the higher order 

multiplicative derivation is given by the following formula [12]  
 

𝑓⊛(𝑛)(𝑥) = 𝑒(ln∘𝑓)(𝑛)(𝑥), 𝑛 = 0,1, . ..                                                                                          (4) 
 

The multiplicative derivation has the following rules: 
 

(a)(𝑐𝑓)⊛(𝑥) = 𝑓⊛(𝑥)  

(b)(𝑓𝑔)⊛(𝑥) = 𝑓⊛(𝑥). 𝑔⊛(𝑥)  

(c)(𝑓/𝑔)⊛(𝑥) = 𝑓⊛(𝑥)/𝑔⊛(𝑥)                                                                                                 (5) 

(d)(𝑓ℎ)⊛(𝑥) = 𝑓⊛(𝑥)ℎ(𝑥). 𝑓(𝑥)ℎ ′(𝑥)  

(e)(𝑓 ∘ ℎ)⊛(𝑥) = 𝑓⊛(ℎ(𝑥))ℎ ′(𝑥)  
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(f)(𝑓 + 𝑔)⊛(𝑥) = 𝑓⊛(𝑥)
𝑓(𝑥)

𝑓(𝑥)+𝑔(𝑥). 𝑔⊛(𝑥)
𝑔(𝑥)

𝑓(𝑥)+𝑔(𝑥).  
 

where 𝑐 is a positive c onstant, 𝑓 and 𝑔 are ⊛ differentiable, ℎ is differentiable and 𝑓 ∘ ℎ in 

part (e) is defined[12].  
 

Theorem 2 (Multiplicative Taylor’s Theorem for One Variable)[12]. Let A be an open interval 

and let 

f: A → R be n + 1 times ⊛ differentiable on A. Then for any x, x + h ∈ A, there exists a 

number θ ∈ (0,1) such that 
 

𝑓(𝑥 + ℎ) =𝑚=0
𝑛 (𝑓⊛(𝑚)(𝑥))

ℎ𝑚

𝑚! . ((𝑓⊛(𝑛+1)(𝑥 + 𝜃ℎ))
ℎ𝑛+1

(𝑛+1)!).                                                    (6) 

 

The above result can be extended to functions of several variables as well. For simplicity, 

consider the function 𝑓(𝑥, 𝑦) of two variables defined on some open subset of 𝑅2(= 𝑅 × 𝑅). We 

can define partial ⊛ derivative of 𝑓 in 𝑥, considering 𝑦 as fixed, which is denoted by 𝑓𝑥
⊛

 or 

𝜕⊛𝑓/𝜕𝑦. One can go on and define higher-order partial ⊛ derivatives of 𝑓 for which the 

respective ⊛ notations are used. 

Two results, generalizing the property (e) of ⊛ differentiation and Multiplicative Taylor’s 

Theorem for One Variable, are as follows. They can also be proved by application of the 

respective results of Newtonian calculus to the function ln ∘ 𝑓. 
 

Theorem 3 (Multiplicative Chain Rule). Let f be a function of two variables y and z with 

continuous partial ⊛ derivatives. If y and z are differentiable functions on (a, b) such that 

f(y(x), z(x)) is defined for every x ∈ (a, b), then  
 

𝑑⊛𝑓(𝑦(𝑥),𝑧(𝑥))

𝑑𝑥
= 𝑓𝑦

⊛(𝑦(𝑥), 𝑧(𝑥))𝑦′(𝑥). 𝑓𝑧
⊛(𝑦(𝑥), 𝑧(𝑥))𝑧′(𝑥).                                                           (7) 

 

Theorem 4 (Multiplicative Taylor’s Theorem for Two Variables)[13]. Let A be an open subset of 

R2. Assume that the function f: A → R has all partial ⊛ derivatives of order n + 1 on A. Then for 

every (x, y), (x + h, y + k) ∈ A so that the line segment connecting these two points belongs to A, 

there exits a number θ ∈ (0,1), such that  
 

𝑓(𝑥 + ℎ, 𝑦 + 𝑘) =𝑚=0
𝑛

𝑖=0

𝑚
(𝑓

𝑥𝑖𝑦𝑚−𝑖

⊛(𝑚)
(𝑥, 𝑦))

ℎ𝑖𝑘𝑚−𝑖

𝑖!(𝑚−𝑖)!

𝑖=0

𝑛+1

((𝑓
𝑥𝑖𝑦𝑛+1−𝑖

⊛(𝑛+1)
(𝑥 + 𝜃ℎ, 𝑦 + 𝜃𝑘))

ℎ𝑖𝑘𝑛+1−𝑖

𝑖!(𝑛+1−𝑖)!
).  (8) 

 

3. MULTIPLICATIVE TAYLOR METHOD 

 

In this section, we consider the Multiobjective Fractional Programming Problem (MFPP). If 

𝑍𝑖(𝑥) =
𝑐𝑖𝑥+𝛼𝑖

𝑑𝑖𝑥+𝛽𝑖
 then, 

 

𝑀𝑎𝑥  𝑍(𝑥) = (𝑍1(𝑥), 𝑍2(𝑥), . . . , 𝑍𝑘(𝑥)),  
𝑠. 𝑡.    𝑥 ∈ 𝑋 = {𝑥 ∈ 𝑅𝑛, 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0}                                                                                    (9) 

𝐴 ∈ 𝑅𝑚×𝑛, 𝑏, 𝑐𝑖 , 𝑑𝑖 ∈ 𝑅𝑛, 𝛼𝑖 , 𝛽𝑖 ∈ 𝑅  
 

We will transform the model (9) to a new model obtained by the following three steps: 
 

Step 1 : Determine 𝑥𝑖
∗ = (𝑥𝑖1

∗ , 𝑥𝑖2
∗ , . . . , 𝑥𝑖𝑛

∗ ) which is the value(s) that is used to maximize the 𝑖th 

objective function 𝑍𝑖(𝑥) (𝑖 = 1, . . . 𝑘) where 𝑛 is the number of the variable. 
 

Step 2: Transform each objective functions by using first-order Multiplicative Taylor polynomial 

series as follows: 
 

𝑍𝑖(𝑥) ≅ 𝐿𝑖1(𝑥) = 𝑍𝑖(𝑥𝑖
∗) ⋅ [(𝑥1 − 𝑥𝑖1

∗ )
𝑑⊛𝑍𝑖(𝑥𝑖

∗)

𝑑𝑥1
⋅. . .⋅ (𝑥𝑛 − 𝑥𝑖𝑛

∗ )
𝑑⊛𝑍𝑖(𝑥𝑖

∗)

𝑑𝑥𝑛
)] ⋅ 𝑂(ℎ2)                   (10) 

 

Step 3: Find 𝑥∗ = (𝑥1
∗, 𝑥2

∗, . . . , 𝑥𝑛
∗ ) by solving the reduced problem to a single objective. 
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Thus, MFPP (9) reduces the following MLPP (11) :  
 

max{𝐿1(𝑥), 𝐿2(𝑥), . . , 𝐿𝑘(𝑥)}                                                                                                     (11) 

𝑥 ∈ 𝑋 = {𝑥 ∈ 𝑅𝑛, 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0}  
 

if we assume that the weights of objective functions in problem (11) are equal, then the 

problem (11) is transformed to the following linear programming problem: 
 

max{𝐿1(𝑥) + 𝐿2(𝑥)+. . . +𝐿𝑘(𝑥)}                                                                                               (12) 

𝑥 ∈ 𝑋 = {𝑥 ∈ 𝑅𝑛, 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0}  
 

In problem (12), set 𝑋 is non-empty convex set having feasible points. The optimal solution 

of the problem (12) gives the efficient solution of the MFPP (9). 

 

4. NUMERICAL EXAMPLES 

 

Example 1 We consider the example studied by [4]  
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑍1(𝑥) =
−3𝑥1+2𝑥2

𝑥1+𝑥2+3
  

 

and 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑍2(𝑥) =
7𝑥1+𝑥2

5𝑥1+2𝑥2+1
                                                                                                     (13) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝑥1 − 𝑥2 ≥ 1  

2𝑥1 + 3𝑥2 ≤ 15  

𝑥1 ≥ 3  

𝑥1, 𝑥2 ≥ 0  
 

It is observed that 𝑍1 < 0, 𝑍2 ≥ 0, for each 𝑥 in the feasible region. If the problem is solved 

for each of objectives one by one 𝑍1
∗(3.6,2.6) = −14/23, and 𝑍2

∗(7.5,0) = 15/11, By expanding 

the first-order Multiplicative Taylor polynomial series for objective functions 𝑍1(𝑥) and 𝑍2(𝑥) 

about points (3.6,2.6) and (7.5,0) in feasible region, respectively are obtained from  
 

𝑍1(𝑥) = 𝑍1(3.6,2.6). [(𝑥1 − 3.6)
𝑑⊛𝑍1(3.6,2.6)

𝑑𝑥1
. (𝑥2 − 2.6)

𝑑⊛𝑍1(3.6,2.6)

𝑑𝑥2
]                                      (14) 

 = −0.60869565. 𝑒0.427(𝑥1−3.6)−0.4658385(𝑥2−2.6) 
 

𝑍2(𝑥) = 𝑍2(7.5,0). [(𝑥1 − 7.5)
𝑑⊛𝑍2(7.5,0)

𝑑𝑥1
. (𝑥2 − 0)

𝑑⊛𝑍2(7.5,0)

𝑑𝑥2
]                                            (15) 

 = 1.363636. 𝑒0.0034632(𝑥1−7.5)−0.0329𝑥2 
 

we get 
 

𝐿(𝑥) = 𝑍1(𝑥) + 𝑍2(𝑥)

= −0.60869565. 𝑒0.427(𝑥1−3.6)−0.4658385(𝑥2−2.6)

+ 1.363636. 𝑒0.0034632(𝑥1−7.5)−0.0329𝑥2 
 

Thus, the final form of the MLFP problem is obtained as follows: 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝐿(𝑥) 
 

𝑠. 𝑡. 𝑥1 − 𝑥2 ≥ 1 
 

2𝑥1 + 3𝑥2 ≤ 15 
 

𝑥1 ≥ 3 
 

𝑥1, 𝑥2 ≥ 0 
 

Optimal solution of the problem (13) is at point (3,2) and maximum value 0.634. The point 

(3,2) is efficient solution of the given problem in the feasible region. The solution for the 

problem (13) is obtained as: 
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𝑥1 = 3, 𝑥2 = 2, 𝑍1(𝑥) = −5/8, 𝑍2(𝑥) = 23/20 
 

Comparing our results and Guzel’s results [4] then it can be seen that the results are same.  
 

Example 2 We consider the example studied by [13] 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑍1(𝑥) =
−3𝑥1+2𝑥2

𝑥1+𝑥2+3
  

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑍2(𝑥) =
7𝑥1+2𝑥2

5𝑥1+2𝑥2+1
  

 

and 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑍3(𝑥) =
𝑥1 + 4𝑥2

2𝑥1 + 3𝑥2 + 2
 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝑥1 − 𝑥2 ≥ 1 
 

2𝑥1 + 3𝑥2 ≤ 15 
 

𝑥1 ≥ 3 
 

𝑥1 + 9𝑥2 ≥ 9 
 

𝑥1, 𝑥2 ≥ 0 
 

It is observed that 𝑍1 < 0, 𝑍2 ≥ 0, 𝑍3 ≥ 0, for each 𝑥 in the feasible region. If the problem is 

solved for each of objectives one by one 𝑍1
∗(3.6,2.6) = −0.608695652, 𝑍2

∗(7.2,0.2) =
1.35828877 and 𝑍3

∗(3.6,2.6) = 0.8235294. By expanding the first-order Multiplicative Taylor 

polynomial series for objective functions 𝑍1(𝑥), 𝑍2(𝑥) and 𝑍3(𝑥) about points (3.6,2.6), (7.2,0.2) 

and (3.6,2.6) in feasible region, respectively are obtained from  
 

𝑍1(𝑥) = 𝑍1(3.6,2.6). [(𝑥1 − 3.6)
𝑑⊛𝑍1(3.6,2.6)

𝑑𝑥1
. (𝑥2 − 2.6)

𝑑⊛𝑍1(3.6,2.6)

𝑑𝑥2
]                                      (16) 

 = −0.60869565. 𝑒0.427(𝑥1−3.6)−0.4658(𝑥2−2.6) 
 

𝑍2(𝑥) = 𝑍2(7.2,0.2). [(𝑥1 − 7.2)
𝑑⊛𝑍2(7.2,0.2)

𝑑𝑥1
. (𝑥2 − 0.2)

𝑑⊛𝑍2(7.2,0.2)

𝑑𝑥2
]                                      (17) 

 = 1.35828877. 𝑒0.0041(𝑥1−7.2)−0.0141(𝑥2−0.2) 
 

𝑍3(𝑥) = 𝑍3(3.6,2.6). [(𝑥1 − 3.6)
𝑑⊛𝑍3(3.6,2.6)

𝑑𝑥1
. (𝑥2 − 2.6)

𝑑⊛𝑍3(3.6,2.6)

𝑑𝑥2
]                                      (18) 

 = 0.8235294. 𝑒−0.0462(𝑥1−3.6)+0.1092(𝑥2−2.6) 
 

we get 
 

𝐿(𝑥) = 𝑍1(𝑥) + 𝑍2(𝑥) + 𝑍3(𝑥) 
 

Thus, the final form of the MLFP problem is obtained as follows: 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝐿(𝑥) 
 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜𝑥1 − 𝑥2 ≥ 1 
 

2𝑥1 + 3𝑥2 ≤ 15 
 

𝑥1 ≥ 3 
 

𝑥1 + 9𝑥2 ≥ 9 
 

𝑥1, 𝑥2 ≥ 0 
 

The problem is solved and the solution of the problem above is as follows: 
 

𝑥1 = 3.6, 𝑥2 = 2.6, 𝑍1(𝑥) = −0.60869565, 𝑍2(𝑥) = 1.29385437, 𝑍3(𝑥) = 0.8235294  
 

and maximum value is 1.508688.  

Comparing our results and Gupta’s results (𝑥1 = 3, 𝑥2 = 2, 𝑍1(𝑥) = −0.625, 𝑍2(𝑥) = 1.15, 
𝑍3(𝑥) = 0.7857) then it can be seen that our the results are very effective. 
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5. CONCLUSIONS 

 

I has been made in this paper to explore a procedure to solve Multiobjective Fractional 

Programming Problems (MFPPs) based on first-order Multiplicative Taylor series. With the help 

of first-order Multiplicative Taylor polynomial series at optimal points of each fractional 

objective function in feasible region. We assumed that the weights of the objective are equal. 

Then, the proposed solution method was applied to two numerical examples to test the effect of 

first-order Multiplicative Taylor series method and the results show that the proposed method is 

more effective when compared to the previous methods. This method is applied to different 

disciplines such as engineering, business, finance, economics, etc. 
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