Sigma J Eng & Nat Sci 10 (2), 2019, 193-199

Publications Prepared for the Sigma Journal of Engineering and Natural Sciences Publications Prepared for the ICOMAA 2019 - International Conference on Mathematical Advances and Applications Special Issue was published by reviewing extended papers

Research Article A NEW ALMOST SEQUENCE SPACE OF ORDER β

Ekrem SAVAŞ*¹

¹Uşak Universty, Department of Mathematics, UŞAK; ORCID:0000-0003-2135-3094

Received: 01.08.2019 Revised: 03.10.2019 Accepted: 11.11.2019

ABSTRACT

In this paper we introduce and study some properties of the new sequence space of order β which is defined using almost convergence and the modulus function. Further, some connections between strong $V_{\lambda}^{\beta}((B, f, M))$ - almost summability of sequences and λ – strong almost convergence of order β with respect to a modulus are studied. **Keywords and phrases:** Modulus function, f -function, λ – strong almost convergence of order β , matrix transformations, new sequence spaces.

2010 Mathematics Subject Classification: Primary 40H05; Secondary 40C05.

1. INTRODUCTION AND BACKGROUND

Let S denote the set of all real and complex sequences $x = (x_k)$. By l_{∞} and C, we denote the Banach spaces of bounded and convergent sequences $x = (x_k)$ normed by $||x|| = \sup_n |x_n|$, respectively. A linear functional γ on l_{∞} is said to be a Banach limit if it has the following properties:

- 1) $\gamma(x) \ge 0$ if $n \ge 0$ (i.e. $x_n \ge 0$ for all n),
- 2) $\gamma(e) = 1$ where e = (1, 1, ...),
- 3) $\gamma(Dx) = \gamma(x)$, where the shift operator D is defined by $D(x_n) = \{x_{n+1}\}$.

Let **B** be the set of all Banach limits on l_{∞} . A sequence $x \in \ell_{\infty}$ is said to be almost convergent if all of its Banach limits coincide. Let \hat{c} denote the space of almost convergent sequences.

Lorentz [4] has shown that

^{*} Corresponding Author: e-mail: ekremsavas@yahoo.com, tel: (212) 444 04 13 / 4631

E. Savaş / Sigma J Eng & Nat Sci 10 (2), 193-199, 2019

$$\hat{c} = \left\{ x \in l_{\infty} : \lim_{m} t_{m,n}(x) \text{ exists uniformly in } n \right\}$$

where

$$t_{m,n}(x) = \frac{x_n + x_{n+1} + x_{n+2} + \dots + x_{n+m}}{m+1}$$

Maddox [5] introduced the space $[\hat{c}]$ of strongly almost convergent sequence as follows:

$$[\hat{c}] = \left\{ x \in l_{\infty} : \lim_{m} t_{m,n}(|x-L|) = 0, \text{ uniformly in } n, \text{ for some } L \right\}$$

Let $\lambda = (\lambda_i)$ be a non-decreasing sequence of positive numbers tending to ∞ such that

$$\lambda_{i+1} \leq \lambda_i + 1, \lambda_1 = 1.$$

The collection of such sequence λ will be denoted by Δ . The generalized de la Valée-Poussin mean is defined by

$$T_i(x) = \frac{1}{\lambda_i} \sum_{k \in I_i} x_i$$

where $I_i = [i - \lambda_i + 1, i]$. A sequence $x = (x_k)$ is said to be (V, λ) -summable to a number L, if $T_i(x) \to L$ as $i \to \infty$ (see [7]).

The space $[V, \lambda]$ of λ -strongly convergent sequences was introduced by Malkowsky and Savaş [7] as follows:

$$[V,\lambda] = \left\{ x = (x_k): \lim_{i} \frac{1}{\lambda_i} \sum_{k \in I_i} |x_k - L| = 0, \text{ for some } L \right\}.$$

Note that in the special case where $\lambda_i = i$, the space $[V, \lambda]$ reduces the space W of strongly Cesàro summable sequences which is defined by

$$w = \left\{ x = (x_k) : \lim_{i} \frac{1}{i} \sum_{k=1}^{i} |x_k - L| = 0, \text{ for some } L \right\}.$$

More results on λ -strong convergence can be seen from [8, 12, 13, 14,15].

Following Ruckle [10], a modulus function M is a function from $[0,\infty)$ to $[0,\infty)$ such that

- (i) M(x) = 0 if and only if x = 0,
- (ii) $M(x + y) \le M(x) + M(y)$ for all $x, y \ge 0$,
- (iii) M increasing,
- (iv) M is continuous from the right at zero.

Maddox [6] introduced and examined some properties of the sequence spaces $W_0(M)$, w(M) and $W_{\infty}(M)$ defined using a modulus M, which generalized the well-known spaces W_0 , W and W_{∞} of strongly summable sequences.

In 1999, E. Savas [11] defined the class of sequences, which are strongly almost Cesàro summable with respect to modulus, as follows:

$$[\hat{c}(M,p)] = \left\{ x : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} M(|x_{k+m} - L|)^{p_k} = 0, \text{ for some L, uniformly in } m \right\}$$

and

$$[\hat{c}(M,p)]_0 = \left\{ x : \lim_{n} \frac{1}{n} \sum_{k=1}^n M(|x_{k+m}|)^{p_k} = 0, \text{ uniformly in } m \right\}.$$

where $p = (p_k)$ is a sequence of strictly positive real numbers and M be a modulus.

Waszak [16] defined the lacunary strong (A, f) – convergence with respect to a modulus function.

If $x = (x_k)$ is a sequence and $B = (b_{nk})$ is an infinite matrix, then Bx is the sequence whose *nth* term is given by $B_n(x) = \sum_{k=0}^{\infty} b_{nk} x_k$. Thus we say that x is B-summable to L if $\lim_{n\to\infty} B_n(x) = L$. Let X and Y be two sequence spaces and $B = (b_{nk})$ an infinite matrix. If for each $x \in X$ the series $B_n(x) = \sum_{k=0}^{\infty} b_{nk} x_k$ converges for each n and the sequence $Bx = B_n(x) \in Y$ we say that B maps X into Y. By (X, Y) we denote the set of all matrices which maps X into Y, and in addition if the limit is preserved then we denote the class of such matrices by $(X, Y)_{reg}$.

Let $B = (b_{nk})$ be a nonnegative regular matrix summability method. Connor [3] further extended Maddox's results by giving the following definition:

Definition 1.1. Let M be a modulus and B be a nonnegative regular summability method. We let

$$w(B,M) = \left\{ x : \lim_{n} \sum_{k=1}^{\infty} b_{nk} M(|x_{k} - L|) = 0 \right\}$$

and

$$w(B,M)_0 = \left\{ x : \lim_{n} \sum_{k=1}^{\infty} b_{nk} M(|x_k|) = 0 \right\}.$$

Later on Nuray and Savas [9] extended Connor's results by using almost convergence as follows:

Definition 1.2. Let M be a modulus and B be a nonnegative regular summability method. We let

$$\hat{w}(B,M) = \left\{ x : \lim_{n} \sum_{k=1}^{\infty} b_{nk} M(|x_{k+m} - L|) = 0, \text{ for some L, uniformly in } m \right\}$$

and

$$\hat{w}(B,M)_0 = \left\{ x : \lim_{n} \sum_{k=1}^{\infty} b_{nk} M(|x_{k+m}|) = 0, \text{ uniformly in } m \right\}.$$

By a f-function we understand a continuous non-decreasing function f(u) defined for $u \ge 0$ and such that f(0) = 0, f(u) > 0, for u > 0 and $f(u) \to \infty$ as $u \to \infty$, (see, [16]).

A function f is said to satisfy (Δ_2) -condition,(for all large u) if there exists constant K > 1 such that $f(2u) \le Kf(u)$.

In the this paper, we introduce and study some properties of the almost convergence sequence space of order β which is establish using the modulus and infinite matrix and hence as special cases, some known results are also obtained.

2. MAIN RESULTS

Let $\Delta = (\lambda_j)$ be same as above, f be given f-function and M be given modulus function, respectively. Moreover, let $B = (b_{nk})$ be the real matrix and $0 < \beta \le 1$ be given. Then we write,

$$\hat{V}_{\lambda}^{\beta}(B,f,M,p)_{0} = \left\{ x = (x_{k}): \lim_{j} \frac{1}{\lambda_{j}^{\beta}} \sum_{n \in I_{j}} M\left(\left| \sum_{k=1}^{\infty} a_{nk} f(|x_{k+m}|) \right| \right) = 0, \text{ uniformly in } m \right\}$$

If $x \in \hat{V}_{\lambda}^{\beta}(B, f, M)_0$, the sequence x is said to be λ -strong (B, f)-almost convergent of order β to zero with respect to a modulus M.

If $\lambda_j = j$, we have

$$\hat{V}_{\lambda}^{\beta}(B,f,M)_{0} = \left\{ x = (x_{k}): \lim_{j} \frac{1}{j^{\beta}} \sum_{n=1}^{j} \mathcal{M}\left(\left| \sum_{k=1}^{\infty} b_{nk} f(|x_{k+m}|) \right| \right) = 0, \text{ uniformly in } m \right\}.$$

If we take f(x) = x for all x, we write

$$\hat{V}_{\lambda}^{\beta}(B,f,M,p)_{0} = \left\{ x = (x_{k}): \lim_{j} \frac{1}{\lambda_{j}^{\beta}} \sum_{n \in I_{j}} M\left(\left| \sum_{k=1}^{\infty} a_{nk}(|x_{k+m}|) \right| \right) = 0, \text{ uniformly in } m \right\}.$$

If M(x) = x, we write

$$\hat{V}_{\lambda}^{\beta}(B,f)_{0} = \left\{ x = (x_{k}): \lim_{j} \frac{1}{\lambda_{j}^{\beta}} \sum_{n \in I_{j}} \left(\left| \sum_{k=1}^{\infty} b_{nk} f(|x_{k+m}|) \right| \right) = 0, \text{ uniformly in } m \right\}.$$

If we take B = I and f(x) = x respectively, then we have

$$\hat{V}_{\lambda}^{\beta}(I,M)_{0} = \left\{ x = (x_{k}): \lim_{j} \frac{1}{\lambda_{j}^{\beta}} \sum_{k \in I_{j}} M\left(\left| x_{k+m} \right| \right) = 0, \text{ uniformly in } m \right\}.$$

If we take B = I, f(x) = x and M(x) = x respectively, then we have

A New Almost Sequence Space of Order β / Sigma J Eng & Nat Sci 10 (2), 193-199, 2019

$$\hat{V}_{\lambda}^{\beta}(I) = \left\{ x = (x_k) : \lim_{j} \frac{1}{\lambda_j^{\beta}} \sum_{k \in I_j} |x_{k+m}| = 0, \text{uniformly in } m \right\}$$

which was defined and studied by Savaş and Savaş [11]. If we define the matrix $B = (b_{nk})$ as follows:

$$b_{nk} := \{ \begin{matrix} \frac{1}{n}, & \text{if } n \ge k, \\ 0, & \text{otherwise.} \end{matrix}$$

then we have,

$$\hat{V}_{\lambda}^{\beta}(\mathbf{C},f,M)_{0} = \left\{ x = (x_{k}): \lim_{j} \frac{1}{\lambda_{j}^{\beta}} \sum_{n \in I_{j}} M\left(\left| \frac{1}{n} \sum_{k=1}^{n} f\left(|x_{k+m}| \right) \right| \right) = 0, \right\}.$$

We now have

Theorem 2.1. Let the f-function f(u) satisfies the condition (Δ_2) and let the matrix has the property

$$b_{n1} + b_{n2} + \dots \le K$$

for n = 1, 2, ... Then the following conditions are true.

(a) If $x = (x_k) \in \hat{V}_{\lambda}^{\beta}(B, f, M, p)$ and α is an arbitrary number, then $\alpha x \in \hat{V}_{\lambda}^{\beta}(B, f, M)$.

(b) If $x, y \in \hat{V}_{\lambda}^{\beta}(B, f, M)$ where $x = (x_k)$, $y = (y_k)$ and α, η are given numbers, then $\alpha x + \eta y \in \hat{V}_{\lambda}^{\beta}(B, f, M)$.

Proof. (a) Let $x \in \hat{V}_{\lambda}^{\beta}(B, f, M)_0$. First let us remark that for $0 < \gamma < 1$ we get for all m

$$\frac{1}{\lambda_j^{\beta}} \sum_{n \in I_j} M\left(\left|\sum_{k=1}^{\infty} b_{nk} f\left(|\gamma x_{k+m}|\right)\right|\right) \leq \frac{1}{\lambda_j^{\beta}} \sum_{n \in I_j} M\left(\left|\sum_{k=1}^{\infty} b_{nk} f\left(|x_{k+m}|\right)\right|\right).$$

Hence, if $\gamma > 1$ then we may find a positive number *s* such that $\gamma < 2^s$ and we obtain

$$\frac{1}{\lambda_{j}^{\beta}} \sum_{n \in I_{j}} M\left(\left|\sum_{k=1}^{\infty} b_{nk} f\left(|\alpha x_{k+m}|\right)\right|\right)$$

$$\leq \frac{1}{\lambda_{j}^{\beta}} \sum_{n \in I_{j}} M\left(d^{s}\left|\sum_{k=1}^{\infty} b_{nk} f\left(|x_{k+m}|\right)\right|\right),$$

$$\leq \frac{L}{\lambda_{j}^{\beta}} \sum_{n \in I_{j}} M\left(\left|\sum_{k=1}^{\infty} b_{nk} f\left(|x_{k+m}|\right)\right|\right),$$

where d and L are constant connected with the properties of f and modulus M . Finally we prove the condition (a).

(b) In the following let the numbers α, η and the elements $x, y \in \hat{V}_{\lambda}^{\beta}(B, f, M)_0$ be given. From the part (a) it follows that the following inequality is true

$$\frac{1}{\lambda_{j}^{\beta}} \sum_{n \in I_{j}} M\left(\left|\sum_{k=1}^{\infty} b_{nk} f\left(|\alpha x_{k+m} + \eta x_{k+m}|\right)\right|\right)$$
$$\leq L_{1} \frac{1}{\lambda_{j}^{\beta}} \sum_{n \in I_{j}} M\left(\left|\sum_{k=1}^{\infty} b_{nk} f\left(|x_{k+m}|\right)\right|\right)$$
$$+L_{2} \frac{1}{\lambda_{j}^{\beta}} \sum_{n \in I_{j}} f\left(\left|\sum_{k=1}^{\infty} b_{nk} f\left(|x_{k+m}|\right)\right|\right),$$

where the constant L_1 and L_2 are defined as in (a). Hence $x, y \in \hat{V}_{\lambda}^{\beta}(B, f, M)$ Now we shall prove some inclusion relations

Theorem 2.2.

$$\hat{V}_{\lambda}^{\beta}(B,f) \subset \hat{V}_{\lambda}^{\beta}(B,f,M).$$

Proof. Let $x \in \hat{V}_{\lambda}^{\beta}(B, f, M)$. For a given $\varepsilon > 0$ we choose $0 < \delta < 1$ such that $f(x) < \varepsilon$ for every $x \in [0, \delta]$. We can write for all im

$$\frac{1}{\lambda_j^{\beta}} \sum_{n \in I_j} M\left(\left|\sum_{k=1}^{\infty} b_{nk} f\left(|x_{k+m}|\right)\right|\right) = S_1 + S_2,$$

where $S_1 = \frac{1}{\lambda_j^{\beta}} \sum_{n \in I_j} M\left(\left|\sum_{k=1}^{\infty} b_{nk} f(|x_{k+m}|)\right|\right)$ and this sum is taken over $\sum_{k=1}^{\infty} b_{nk} f(|x_{k+m}|) \le \delta$

and

$$S_{2} = \frac{1}{\lambda_{j}^{\beta}} \sum_{n \in I_{j}} M\left(\left|\sum_{k=1}^{\infty} b_{nk} f\left(|x_{k+m}|\right)\right|\right)$$

and this sum is taken over

$$\sum_{k=1}^{\infty} b_{nk} \varphi(|x_{k+m}|) > \delta.$$

By definition of the modulus M we have $S_1 = \frac{1}{\lambda_j^{\beta}} \sum_{n \in I_j} M(\delta) = M(\delta) < \varepsilon$ and moreover

$$S_{2} = M(1) \frac{1}{\delta} \frac{1}{\lambda_{j}^{\beta}} \sum_{n \in I_{j}} \sum_{k=1}^{\infty} b_{nk}(i) f(|x_{k+m}|).$$

Thus we have $x \in \hat{V}^{\beta}_{\lambda}((B,f),M)$. This completes the proof.

Theorem 2.3. Let M, M_1 , be modulus functions. Then we have $\hat{V}^{\beta}_{\lambda}(B, M_1, f)_0 \subset \hat{V}^{\beta}_{\lambda}(B, f, MOM_1)_0$.

The proof is a routine verification by using standard techniques and hence is omitted.

REFERENCES

- [1] S. Banach, Theorie des Operations Lineaires (Warszawa)(1932).
- [2] R. Colak, C. A. Bektas, λ -statistical convergence of order α , Acta Math. Scientia, 31B (3) (2011), 953-959.
- [3] J. Connor, On strong matrix summability with respect to a modulus and statistical convergent, Canad. Math. Bull. 32(2),(1989), 194-198.
- [4] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta. Math. 80 (1948), 167-190.
- [5] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math., 18(1967), 345-355.
- [6] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc., 100 (1986), 161-166.
- [7] E. Malkowsksy and E. Savaş, Some λ -sequence spaces defined by a modulus, Archivum Math. 36, (2000), 219-228.
- [8] Mursaleen, λ -statistical convergence, Math. Slovaca, 50 (2000), 111-115.
- [9] F. Nuray and E. Savas, Some new sequence spaces defined by a modulus function, Indian J. Pure. Appl. Math. 24(11), (1993), 657-663.
- [10] W. H. Ruckle, \emph{ FK Spaces in which the sequence of coordinate vectors in bounded}, Canad. J. Math. 25 (1973) 973-978.
- [11] E. Savaş, and R. Savaş, Some λ -sequence spaces defined by Orlicz functions, Indian J. Pure. Appl. Math. 34(12), (2003), 1673-1680.
- [12] E. Savaş, On some generalized sequence spaces defined by a modulus, Indian J. Pur. Appl. Math. **30(5)**, (1999), 459-464.
- [13] E. Savaş, Strong almost convergence and almost λ -statistical convergence, Hokkaido Math. J. 24(3), (2000), 531–536.
- [14] E. Savaş, *Some sequence spaces and statistical convergence*, Inter.J. Math. and Math. Sci.29:303-306, 2002.
- [15] E. Savaş and A. Kiliç man, A note on some strongly sequence spaces. Abstr. Appl. Anal. 2011, Art. ID 598393, 8 pp.
- [16] E. Savaş, On some sequence spaces and A-statistical convergence, 2nd Strathmore International Mathematics Conference 12–16 August 2013, Nairobi, Kenya.
- [17] A. Waszak, On the strong convergence in sequence spaces, Fasciculi Math. 33, (2002), 125-137.