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ABSTRACT 
 

 

In this paper we introduce and study some properties of the new sequence space of order   which is defined 

using almost convergence and the modulus function. Further, some connections between strong (( , , ))V B f M



- almost summability of sequences and  strong almost convergence of order   with respect to a 

modulus are studied.  
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1. INTRODUCTION AND BACKGROUND 
 

Let s  denote the set of all real and complex sequences )( kxx  . By l  and c , we 

denote the Banach spaces of bounded and convergent sequences )( kxx   normed by 

||sup|||| nn xx  , respectively. A linear functional   on l  is said to be a Banach limit if it 

has the following properties: 
 

1) 0)( x  if 0n  (i.e. 0nx  for all n ), 

2) 1)( e  where ),1,1( e , 

3) ( ) ( )Dx x  , where the shift operator D  is defined by }{)( 1 nn xxD . 
 

Let B  be the set of all Banach limits on l . A sequence x  is said to be almost 

convergent if all of its Banach limits coincide. Let ĉ  denote the space of almost convergent 

sequences . 

Lorentz [4] has shown that  
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Maddox [5]introduced the space ]ˆ[c  of strongly almost convergent sequence as follows:  

 . somefor  ,in uniformly  ,0|)(|lim:]ˆ[ , LnLxtlxc nm
m

 
 

Let )( i   be a non-decreasing sequence of positive numbers tending to   such that  
 

.1,1 11   ii  
 

The collection of such sequence   will be denoted by .   

The generalized de la Valée-Poussin mean is defined by  
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where ],1[ iiI ii   . A sequence )( kxx   is said to be ),( V -summable to a 

number L , if  iLxTi  as )(  (see [7]). 

The space ],[ V  of  -strongly convergent sequences was introduced by Malkowsky and 

Savaş [7] as follows: 
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Note that in the special case where ii  , the space ],[ V  reduces the space w  of 

strongly Cesàro summable sequences which is defined by  
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More results on  -strong convergence can be seen from [8, 12, 13, 14,15]. 

Following Ruckle [10], a modulus function M  is a function from ),0[   to ),0[   such 

that 
 

(i) 0)( xM  if and only if 0x , 

(ii) )()()( yMxMyxM   for all 0, yx , 

(iii) M  increasing, 

(iv) M  is continuous from the right at zero. 
 

Maddox [6] introduced and examined some properties of the sequence spaces )(0 Mw , 

)(Mw  and )(Mw  defined using a modulus M , which generalized the well-known spaces 

0w , w  and w  of strongly summable sequences.  
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In 1999, E. Savas [11] defined the class of sequences, which are strongly almost Cesàro 

summable with respect to modulus, as follows: 
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where )( kpp   is a sequence of strictly positive real numbers and M  be a modulus. 

Waszak [16] defined the lacunary strong ),( fA convergence with respect to a modulus 

function. 

If )( kxx   is a sequence and )( nkbB   is an infinite matrix, then Bx  is the sequence 

whose  nth  term is given by knkkn xbxB 

0)( . Thus we say that x  is B -summable to 

L  if LxBnn  )(lim . Let X  and Y  be two sequence spaces and )( nkbB   an 

infinite matrix. If for each Xx  the series knkkn xbxB 

0)(  converges for each n  and 

the sequence YxBBx n  )(  we say that B  maps X  into Y . By ),( YX  we denote the 

set of all matrices which maps X  into Y , and in addition if the limit is preserved then we 

denote the class of such matrices by regYX ),( . 

Let )( nkbB   be a nonnegative regular matrix summability method. Connor [3] further 

extended Maddox's results by giving the following definition:  
 

Definition 1.1. Let M  be a modulus and B  be a nonnegative regular summability method. We 

let 
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Later on Nuray and Savas [9] extended Connor's results by using almost convergence as 

follows: 
 

Definition 1.2. Let M  be a modulus and B  be a nonnegative regular summability method. We 

let 
 

1

ˆ ( , ) : lim (| |) 0,for some L, uniformly in nk k m
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By a f -function we understand a continuous non-decreasing function )(uf  defined for 

0u  and such that 0)(,0)0(  uff  ,for 0u  and )(uf  as u , 

(see, [16] ). 

A function f  is said to satisfy )( 2 -condition,(for all large u ) if there exists constant 

1K  such that )()2( uKfuf  . 

In the this paper, we introduce and study some properties of the almost convergence sequence 

space of order   which is establish using the modulus and infinite matrix and hence as special 

cases, some known results are also obtained . 

 

2. MAIN RESULTS 

 

Let )( j  be same as above, f  be given f -function and M  be given modulus 

function, respectively. Moreover, let )( nkbB   be the real matrix and 10    be given. 

Then we write, 
 

0

1

1ˆ ( , , , ) ( ) : lim (| |) 0,  uniformly in .( )
j

k nk k m
j

n I kj

V B f M p x x M a f x m

 





 

 
 

   
  

   

If 0
ˆ ( , , )x V B f M

 , the sequence x  is said to be  -strong ),( fB -almost convergent 

of order    to zero with respect to a modulus M . 

If ,jj   we have 
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1 1
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If we take  𝑓(𝑥) = 𝑥  for all  x , we write  
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If xxM )( , we write  
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If we take IB   and xxf )(  respectively, then we have  
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If we take IB  , xxf )(  and xxM )(  respectively, then we have  
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1ˆ ( ) ( ) : lim | | 0,uniformly in 
j
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which was defined and studied by Savaş and Savaş [11]. 

If we define the matrix )( nkbB   as follows: 
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then we have,  
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We now have 
 

Theorem 2.1. Let the f -function )(uf  satisfies the condition )( 2  and let the matrix has 

the property  
 

Kbb nn  ...21  
 

for ,...2,1n  Then the following conditions are true.  
 

(a) If ),,,(ˆ)( pMfBVxx k


  and   is an arbitrary number, then 

).,,(ˆ MfBVx 
   

(b) If ),,(ˆ, MfBVyx 
  where )( kxx  , )( kyy   and   ,    are given 

numbers, then ).,,(ˆ MfBVyx 
   

 

Proof. )(a  Let 0),,(ˆ MfBVx 
 . First let us remark that for 10    we get for all 

m   
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Hence, if  𝛾 > 1  then we may find a positive number s such that  𝛾 < 2𝑠  and we obtain 
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where d  and L  are constant connected with the properties of f  and modulus M . Finally 

we prove the condition (a). 
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)(b  In the following let the numbers  ,  and the elements 0),,(ˆ, MfBVyx 
  be 

given. From the part (a) it follows that the following inequality is true  
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where the constant 1L  and 2L  are defined as in (a). Hence ),,(ˆ, MfBVyx 
   

Now we shall prove some inclusion relations 
 

Theorem 2.2. 
 

).,,(ˆ),(ˆ MfBVfBV 



   

 

Proof. Let ),,(ˆ MfBVx 
 . For a given 0  we choose 10   such that 

)(xf  for every ],0[ x . We can write for all im   
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By definition of the modulus M  we have 
  )()(1

1 MMS
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moreover  
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Thus we have  )),,((ˆ MfBVx 
 . This completes the proof. 
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Theorem 2.3. Let ,, 1MM  be modulus functions. Then we have  

1 0 1 0
ˆ ˆ( , , ) ( , , )V B M f V B f MoM 

  . 
 

The proof is a routine verification by using standard techniques and hence is omitted. 
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