Research Article

ON INFINITE MATRICES AND SEQUENCE SPACES

Rahmet SAVAŞ* ${ }^{1}$
${ }^{1}$ Istanbul Medeniyet University, Department of Mathematics, ISTANBUL; ORCID:0000-0002-3670-622X

Received: 29.07.2019 Revised: 01.10.2019 Accepted: 11.11.2019

Abstract

The purpose of this paper is to define the spaces $\mathrm{V}_{\lambda}^{\sigma}(\mathrm{p})$ and $V_{\lambda}^{\sigma}(p)$ by using de la Valée poussin and invariant mean. Furthermore we characterize certain matrices in $\left(V_{\lambda}^{\sigma}\right)_{\infty}$ which will up a gap in the existing literature. Keywords: Infinite matrices, de la Vallée poussin, invariant mean, matrix transformations.

2000 Mathematics Subject Classification: 40C05, 40H05.

1. INTRODUCTION

Let w denote the set of all real and complex sequences $x=\left(x_{k}\right)$. By l_{∞} and c, we denote the Banach spaces of bounded and convergent sequences $x=\left(x_{k}\right)$ normed by $\|x\|=\sup _{k}\left|x_{k}\right|$, respectively. A linear functional L on l_{∞} is said to be a Banach limit [1] if it has the following properties:

1. $L(x) \geq 0$ if $n \geq 0$ (i.e. $x_{n} \geq 0$ for all n),
2. $L(e)=1$ where $e=(1,1, \ldots)$,
3. $L(D x)=L(x)$, where the shift operator D is defined by $D\left(x_{n}\right)=\left\{x_{n+1}\right\}$.

Let B be the set of all Banach limits on ℓ_{∞}. A sequence $x \in \ell_{\infty}$ is said to be almost convergent if all Banach limits of x coincide. Let \hat{c} denote the space of almost convergent sequences. Lorentz [8] has shown that

$$
\hat{c}=\left\{x \in l_{\infty}: \lim _{m} d_{m, n}(x) \text { exists uniformly in } n\right\}
$$

[^0]where
$$
d_{m, n}(x)=\frac{x_{n}+x_{n+1}+x_{n+2}+\cdots+x_{n+m}}{m+1}
$$

If p_{k} is real and $p_{k}>0$, we define (see, Maddox [9])

$$
c_{0}(p)=\left\{x: \lim _{k \rightarrow \infty}\left|x_{k}\right|^{p_{k}}=0\right\}
$$

and

$$
c(p)=\left\{x: \lim _{k \rightarrow \infty}\left|x_{k}-l\right|^{p_{k}}=0, \text { for some } l\right\}
$$

If p_{m} is real such that $p_{m}>0$ and sup $p_{m}<\infty$, we define (see, Nanda [13])

$$
\hat{c}_{0}(p)=\left\{x: \lim _{m \rightarrow \infty}\left|d_{m, n}(x)\right|^{p_{m}}=0, \text { uniformly in } n\right\}
$$

and

$$
\hat{c}(p)=\left\{x: \lim _{m \rightarrow \infty}\left|d_{m, n}(x-l e)\right|^{p_{m}}=0, \text { for some } l, \text { uniformly in } n\right\}
$$

Shaefer [23] defined the σ-convergence as follows: Let σ be a one-to-one mapping from the set of natural numbers into itself. A continuous linear functional ϕ on l_{∞} is said to be an invariant mean or a σ-mean provided that
(i) $\phi(x) \geq 0$ when the sequence $x=\left(x_{k}\right)$ is such that $x_{k} \geq 0$ for all k ,
(ii) $\phi(e)=1$ where $e=(1,1,1, \ldots)$, and
(iii) $\phi(x)=\phi\left(x_{\sigma(k)}\right)$ for all $x \in l_{\infty}$.

We denote by V_{σ} the space of σ-convergent sequences. It is known that $x \in V_{\sigma}$ if and only if

$$
\frac{1}{m} \sum_{k=1}^{m} x_{\sigma^{k}(n)} \rightarrow \text { a limit }
$$

as $m \rightarrow \infty$, uniformly in n. Here $\sigma^{k}(n)$ denotes the k th iterate of the mapping σ at n.
A σ-mean extends the limit functional on c in the sense that $\phi(x)=\lim \mathrm{x}$ for all $x \in c$ if and only if σ has no finite orbits, that is to say, if and only if, for all $n>0, k \geq 1 \sigma^{k}(n) \neq n$.

In case σ is the translation mapping $n \rightarrow n+1$, a σ-mean reduces to the unique Banach limit and V_{σ} reduces to \hat{c}.

In [23], Schaefer has defined the concept of σ-conservative, σ - regular and σ-coercive matrices and characterized matrix classes $\left(c, V_{\sigma}\right),\left(c, V_{\sigma}\right)_{r e g}$ and $\left(l_{\infty}, V_{\sigma}\right)$ where V_{σ} denote
the set of all bound sequences all of whose i nvariant means (or σ - means) are equal. In [11], Mursaleen characterized the class $\left(c(p), V_{\sigma}\right),\left(c(p), V_{\sigma}\right)_{r e g}$ and $\left(l_{\infty}(p), V_{\sigma}\right)$ matrices which generalized the results due to Schaefer [23].

Matrix transformations between sequence spaces have been discussed by Savas and Mursaleen [21], Basarir and Savas [2], Vatan [4], Vatan and Simsek [5], Savas ([14],[15], [16], [17], [18], [19],[20]) and many others.

Recently, Khan and Rahman [3] studied the sequence space $\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$ and investigated some properties. Let $\left(q_{r}\right)$ be positive sequence of real numbers for $p=\left(p_{j}\right)$ with $\inf p_{j}>0$, we have

$$
\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]=\left\{x: \sum_{j=0}^{\infty}\left(\frac{1}{Q_{2} j} \sum_{j} q_{k}\left|x_{k}\right|\right)^{p_{j}}<\infty\right\}
$$

where

$$
Q_{2 j}=q_{2} j+q_{2} j_{+1}+q_{2} j_{+2}+\ldots+q_{2} j+1
$$

and \sum_{j} denotes summation over the range $2^{j} \leq k \leq 2^{j+1}$. It is easy to see that this space is paranormed space under the paranorm

$$
\begin{equation*}
g(x)=\left(\sum_{j=0}^{\infty}\left(\frac{1}{Q_{2^{j}}} \sum_{j} q_{k}\left|x_{k}\right|\right)^{p_{j}}\right)^{\frac{1}{M}} \tag{1.1}
\end{equation*}
$$

where

$$
H=\sup p_{j}<\infty \text { and } M=(1, H) .
$$

If we take $q_{r}=1$ for all r, then the space $\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$ reduces to the space $\operatorname{ces}\left(p_{r}\right)$ studied by [6]. Also, if $p_{r}=p$ for all r, then the space $\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$ reduces to the space $c e s_{p}$ due to $\operatorname{Lim}[7]$.

It is easy to show that $\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$ is complete with paranorm (1.1) and it has KötheToeplitz dual $\operatorname{ces}^{+}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$ defined by ces $^{+}\left[\left(p_{r}\right),\left(q_{r}\right)\right]=\left\{a=\left(a_{k}\right): \sum_{j=0}^{\infty}\left(Q_{2} \max _{j}\left(\frac{\left|a_{k}\right|}{q_{k}}\right)\right)^{t} B^{-t} j<\infty\right.$ for some $\left.B>1\right\}$.

It can be shown that ces $^{+}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$ is isomorphic to $\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$ which is the dual space of $\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$, i.e., the space of all continuous linear functional on $\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$.

We write the following inequality which will be used later. For any $B>0$ and any two complex numbers a and b, we have

$$
\begin{equation*}
|a b| \leq B\left(|a|^{t} B^{-t}+|b|^{p}\right) \tag{1.2}
\end{equation*}
$$

where $p>1$ and $\frac{1}{p}+\frac{1}{t}=1$ (see, Maddox [9]).

2. (σ, λ)-CONVERGENCE

We define the following:
Let $\lambda=\left(\lambda_{m}\right)$ be a non-decreasing sequence of positive numbers tending to ∞ such that

$$
\lambda_{m+1} \leq \lambda_{m}+1, \lambda_{1}=1
$$

A sequence $x=\left(x_{k}\right)$ of real numbers is said to be (σ, λ) - convergent to a number L if and only if $x \in V_{\sigma}^{\lambda}$, where

$$
\begin{gathered}
V_{\lambda}^{\sigma}=\left\{x \in l_{\infty}: \lim _{m \rightarrow \infty} t_{m n}(x)=L \text { uniformly in } \mathrm{n} ; L=(\sigma, \lambda)-\lim x\right\}, \\
t_{m n}(x)=\frac{1}{\lambda_{m}} \sum_{i \in I_{n}} x \sigma^{i}(n)
\end{gathered}
$$

and $I_{n}=\left[n-\lambda_{n}+1, n\right]$ (see, [11]). Note that $c \subset V_{\lambda}^{\sigma} \subset l_{\infty}$. For $\sigma(n)=n+1, V_{\lambda}^{\sigma}$ is reduced to the space \hat{V}_{λ} of almost λ-convergent sequences and if we take $\sigma(n)=n+1$ and $\lambda=n, V_{\sigma}^{\lambda}$ reduce to $\hat{c}(\mathrm{see},[8])$.

It is quite natural to expect that the sequence V_{λ}^{σ} and $V_{\lambda_{0}}^{\sigma}$ can be extended to $V_{\lambda}^{\sigma}(p)$ and $V_{\lambda_{0}}^{\sigma}(p)$ just as \hat{c} and \hat{c}_{0} were extended to $\hat{c}(p)$ and $\hat{c}_{0}(p)$ respectively.

The main object of this paper is to characterize matrix transformations between some sequence spaces. We first define the sequence spaces $V_{\lambda}^{\sigma}(p)$ and $V_{\lambda_{0}}^{\sigma}(p)$ (the definitions are given below) and characterize certain matrices in $\left(V_{\lambda}^{\sigma}\right)_{\infty}$.

If p_{m} is real such that $p_{m}>0$ and $\sup p_{m}<\infty$, we define

$$
\begin{gathered}
V_{\lambda_{0}}^{\sigma}(p)=\left\{x: \lim _{m \rightarrow \infty}\left|t_{m, n}(x)\right|^{p_{m}}=0, \text { uniformly in } n\right\} \\
V_{\lambda}^{\sigma}(p)=\left\{x: \lim _{m \rightarrow \infty}\left|t_{m, n}(x-l e)\right|^{p_{m}}=0 \text {, for some } l, \text { uniformly in } n\right\} .
\end{gathered}
$$

and

$$
\left(V_{\lambda}^{\sigma}\right)_{\infty}(p)=\left\{x: \sup _{m, n}\left|t_{m, n}(x)\right|^{p_{m}}<\infty\right\} .
$$

In particular, if $p_{m}=p>0$ for all m, we have $V_{\lambda_{0}}^{\sigma}(p)=V_{\lambda_{0}}^{\sigma}, \quad V_{\lambda}^{\sigma}(p)=V_{\lambda}^{\sigma}$ and $\left(V_{\lambda}^{\sigma}\right)_{\infty}(p)=\left(V_{\lambda}^{\sigma}\right)_{\infty}$.

3. MAIN RESULTS

Let X and Y be two nonempty subsets of the space W of complex sequences. Let $A=\left(a_{n k}\right),(n, k=1,2, \ldots)$ be an infinite matrix of complex numbers. We write $A x=\left(A_{n}(x)\right)$ if $A_{n}(x)=\sum_{k} a_{n k} x_{k}$ converges for each n. (Throughout Σ_{k} denotes summation over k from $k=1$ to $k=\infty$). If $x=\left(x_{k}\right) \in X \Rightarrow A x=\left(A_{n}(x)\right) \in Y \quad$ we say that A defines a (matrix) transformation from X to Y and we denote it by $A: X \rightarrow Y$. By (X, Y) we mean the class of matrices A such that $A: X \rightarrow Y$.

We now characterize the matrices in the class $\left(\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right],\left(V_{\lambda}^{\sigma}\right)_{\infty}\right)$. We write

$$
t_{m, n}(x)=t_{m, n}(A x)=\sum_{k} a(m, n, k) x_{k}
$$

where

$$
a(m, n, k)=\frac{1}{\lambda_{m}} \sum_{i \in I_{n}} a \sigma^{i}(n), k .
$$

Theorem 3.1 Let $1<p_{j}<\sup p_{j}<\infty \quad$ and $\quad \frac{1}{p_{j}}+\frac{1}{t_{j}}=1 \quad$ for $j=0,1,2, \ldots A \in\left(\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right],\left(V_{\lambda}^{\sigma}\right)_{\infty}\right)$ if and only if there exists an integer $B>1$ such that

$$
\begin{equation*}
W(B)=\sup _{m, n} \sum_{j=0}^{\infty}\left(Q_{2^{j}} A_{j}(m, n)\right)^{t_{j}} B^{-t_{j}}<\infty \tag{3.1}
\end{equation*}
$$

where $A_{j}(r, n)=\max j\left(\frac{a(m, n, k)}{q_{k}}\right)$ and for every $m, \max _{j}$ means maximum over $\left[2^{j}, 2^{j+1}\right]$.
Proof. Sufficiency: Suppose that there exists an integers $B>1$ such that $W(B)<\infty$. Then by inequality (1.2), we have

$$
\begin{gathered}
\sum_{k=0}^{\infty}\left|a(m, n, k) x_{k}\right|=\sum_{j=0}^{\infty} \sum_{j}\left|a(m, n, k) x_{k}\right| \\
\leq \sum_{j=0}^{\infty} Q_{2^{j}} \max _{j}\left(\frac{a(m, n, k)}{q_{k}}\right) \frac{1}{Q_{2} j} \sum_{j} q_{k}\left|x_{k}\right| \\
\leq B\left[\sup _{m, n} \sum_{j=0}^{\infty}\left(Q_{2} j^{A_{j}}(m, n)\right)^{t} B^{-t} j+\sum_{j=0}^{\infty}\left(\frac{1}{Q_{2} j} \sum_{j} q_{k}\left|x_{k}\right|\right)^{p}\right] \\
\leq B\left[\sup _{r, n} \sum_{j=0}^{\infty}\left(Q_{2} j_{j} A_{j}(m, n)\right)^{t} B^{-t} j+\sum_{j=0}^{\infty}\left(\frac{1}{Q_{2} j} \sum_{j} q_{k}\left|x_{k}\right|\right)^{p}\right]<\infty
\end{gathered}
$$

Therefore $A \in\left(\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right],\left(V_{\sigma}^{\lambda}\right)_{\infty}\right)$.
Necessity: Suppose that $A \in\left(\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right],\left(V_{\lambda}^{\sigma}\right)_{\infty}\right)$ but

$$
\sup _{m, n} \sum_{j=0}^{\infty}\left(Q_{2}{ }_{j} A_{j}(m, n)\right)^{t}{ }_{B}{ }_{B}^{-t}{ }^{-t}=\infty
$$

for all $B>1$. Then $\sum_{k=1}^{\infty} a(m, n, k) x_{k}$ converges uniform in n for all m and $x \in \operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$, hence $a(r, n, k)_{k=1,2, \ldots} \in \operatorname{ces}^{+}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$ for all m and n . It is easy to see that each $t_{m, n}$ defined by $t_{m, n}(x)=\sum_{k=1}^{\infty} a(m, n, k) x_{k}$ is an element of ces $^{+}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$. Since $\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$ is complete and since $\sup _{m, n}\left|t_{m, n}(x)\right|<\infty$ on $\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$, by the uniform boundedness principle, there exists a number L independent $\mathrm{m}, \mathrm{n}, \mathrm{x}$ and a number $\delta>1$ such that

$$
\begin{equation*}
\left|t_{m, n}(x)\right|<L \tag{3.2}
\end{equation*}
$$

for all n, m and $x \in S[0, \delta]$ where $S[0, \delta]$ is the closed sphere in $\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$ with center at the origin 0 and radius δ. We now choose integer $E>1$ such that $E \delta^{M}>L$. Since

$$
\sup _{m, n} \sum_{j=0}^{\infty}\left(Q_{2} j_{j}(m, n)\right)^{t} E^{-t} j=\infty
$$

there exists $m_{0}>1$ such that

$$
R=\sum_{j=0}^{m_{0}}\left(Q_{2^{j}} A_{j}(m, n)\right)^{t_{j}} E^{-t_{j}}>1
$$

Define a sequence

$$
x_{k}=0 \text { if } k \geq 2^{m_{0}+1}
$$

and

$$
\begin{gathered}
x_{N(j)}=Q_{2_{j}}^{t_{j}} \delta^{\frac{M}{p_{j}}}[\{\operatorname{sgna}(m, n, N(j))\}]|a(m, n, N(j))|^{t_{j-1}} R^{-1} E^{-\frac{t_{j}}{p_{j}}}, \\
x_{k}=0 \text { if } 0 \leq j \leq m_{0} \text { and } k \neq N(j)
\end{gathered}
$$

where $N(j)$ is the smallest integer such that

$$
|a(m, n, N(j))|=\max _{j}\left(\frac{|a(m, n, k)|}{q_{k}}\right)
$$

So we get $g(x)<\delta$ but $\left|t_{m n}(x)\right|>L$, which contradicts by (3.2). This completes the proof.

By specializing the sequences $\left(p_{r}\right)$ and $\left(q_{r}\right)$ of the spaces $\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$ in Theorem 1. We get the spaces $\operatorname{ces}\left(p_{r}\right)$ and ces_{p} defined by [6] and Lim [7].

We have
Corollary 3.1 Let $1<p_{j}<\sup p_{j}<\infty$. Then $A \in\left(\operatorname{ces}(p),\left(V_{\sigma}^{\lambda}\right)_{\infty}\right)$ if and only if there exists an integer $B>1$ such that $W(B)<\infty$, where

$$
W(B)=\sup _{m, n} \sum_{j=0}^{\infty}\left(2^{j} A_{j}(m, n)\right)^{t} B^{-t}{ }^{-t} \text { and } \frac{1}{p_{j}}+\frac{1}{t_{j}}=1(j=0,1,2, \ldots) .
$$

Proof. If we take $q_{r}=1$ for every r in Theorem 1 , then we obtain the result.

Corollary 3.2 Let $1<p<\infty$ and $\frac{1}{p}+\frac{1}{t}=1$. Then $A \in\left(\operatorname{ces}_{p},\left(V_{\lambda}^{\sigma}\right)_{\infty}\right)$ if and only if

$$
\sup _{m, n}\left(\sum_{j=0}^{\infty}\left(2^{j} A_{j}(m, n)\right)^{t}\right)^{\frac{1}{t}}<\infty
$$

Proof. If we take $q_{r}=1$ and $p_{r}=p$ for every r in Theorem 1, then we obtain the proof of Corollary.
Theorem 3.2 Let $1<p_{j}<\sup p_{j}<\infty$ and

$$
\frac{1}{p_{j}}+\frac{1}{t_{j}}=1,(j=1,2, \ldots) \cdot A \in\left(\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right],\left(V_{\sigma}^{\lambda}\right)_{\infty}\right) \text { if and only if }
$$

(i) $\lim _{m \rightarrow \infty} a(m, n, k)=a_{k}$ uniformly in n and for fixed k,
(ii) there exists $B>1$ such that $W(B)<\infty$,
where

$$
W(B)=\sup _{r, n} \sum_{j=0}^{\infty}\left(Q_{2} A_{j}(m, n)\right)^{t} B^{-t} j
$$

Proof. Suppose that $A \in\left(\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right],\left(V_{\lambda}^{\sigma}\right)_{\infty}\right)$. Then $t_{m, n}(x)=\sum_{k=1}^{\infty} a(m, n, k) x_{k}$ exists for every $m \geq 1$ and $\lim _{m \rightarrow \infty}\left|t_{m n}(x)\right|$ uniformly in n exists for every $x \in \operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$. Therefore by a similar argument to that in Theorem 1 we have the condition (i) is obtained by taking $x=e_{k} \in \operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$, where e_{k} is a sequence with 1 at the $k^{t h}$ place and zero elsewhere.

Sufficiency: The conditions (i)-(ii) hold. From (i), we have

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left(Q_{2^{j}} A_{j}(m, n)\right)^{t_{j}} B^{-t_{j}} \leq W(B)<\infty \tag{3.3}
\end{equation*}
$$

By using (3.3) it is easy to check that $\sum_{k=1}^{\infty} a_{k} x_{k}$ is absolutely convergent for each $x \in \operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$. Moreover for each $x \in \operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right]$ and $\epsilon>0$, we choose integer number $m_{0}>1$ such that

$$
g_{m_{0}}(x)=\sum_{j=0}^{\infty}\left(\frac{1}{Q_{2 j}} \sum_{j} q_{k}\left|x_{k}\right|\right)^{p_{j}}<\epsilon^{M}
$$

Define the matrix $(b(m, n, k))_{r=1}^{\infty}$ where $(b(m, n, k))=\left(a(m, n, k)-a_{k}\right)$ for all n. By the condition (ii) and inequality (1.2), we have, for all n

$$
\sum_{k=m_{0}+1}^{\infty}\left|b(m, n, k) x_{k}\right| \leq B\left[\sum_{j=m_{0}}^{\infty}\left(\left(Q_{2} j^{V}(m, n)\right)^{t}{ }^{t} B^{-t} j+1\right)\right]\left(g_{m_{0}}(x)\right)^{\frac{1}{M}}
$$

where

$$
W_{j}(m, n)=\max _{j}\left(\frac{|a(m, n, k)|-a_{k}}{q_{k}}\right)
$$

By inequality above, we get

$$
\sum_{j=m_{0}}^{\infty}\left(\left(Q_{2} j^{W}{ }_{j}(m, n)\right)^{t}{ }^{t} B^{-t} j\right) \leq 2 W(B)<\infty .
$$

Therefore

$$
\lim _{m \rightarrow \infty} \sum_{k=1}^{\infty} a(m, n, k) x_{k}=\sum_{k=1}^{\infty} a_{k} x_{k} \text { uniformly in } n .
$$

This shows that $A \in\left(\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right],\left(V_{\lambda}^{\sigma}\right)_{\infty}\right)$ which proves the Theorem.
Corollary 3.3 Let $1<p_{j}<\sup p_{j}<\infty$. Then $A \in\left(\operatorname{ces}(p),\left(V_{\lambda}^{\sigma}\right)_{\infty}\right)$ if and only if
(i) $\lim _{r \rightarrow \infty} a(m, n, k)=a_{k}$ uniformly in n and for fixed k,
(ii) there exists $B>1$ such that $W(B)<\infty$,
where

$$
W(B)=\sup _{r, n} \sum_{j=0}^{\infty}\left(2^{j} A_{j}(m, n)\right)^{t}{ }_{B}{ }^{-t} j
$$

Proof. If $q_{r}=1$ for every r in Theorem 2 , then we get the conditions (i)-(ii).
Corollary 3.4 Let $1<p<\infty$ and $\frac{1}{p_{j}}+\frac{1}{t_{j}}=1$. Then $A \in\left(\operatorname{ces}_{p}, V_{\lambda}^{\sigma}\right)$ if and only if
(i) $\lim _{r \rightarrow \infty} a(m, n, k)=a_{k}$ uniformly in n and for fixed k,
(ii) $\sup _{r, n}\left(\sum_{j=0}^{\infty}\left(2^{j} A_{j}(m, n)\right)^{t}\right)^{\frac{1}{t}}<\infty$.

Proof. If $q_{r}=1$ and $p_{r}=p$ for all r in Theorem 2, then we get the proof of the corollary.

Theorem 3.3 Let $1<p_{j}<\sup p_{j}<\infty$ and $\frac{1}{p_{j}}+\frac{1}{t_{j}}=1,(j=1,2, \ldots)$. Then

$$
A \in\left(\operatorname{ces}\left[\left(p_{r}\right),\left(q_{r}\right)\right],\left(v_{\lambda_{0}}^{\sigma}\right)\right) \quad \text { if and only if }
$$

(i) $\lim _{r \rightarrow \infty} a(m, n, k)=0$ uniformly in n and for fixed k,
(ii) there exists $B>1$ such that $W(E)<\infty$,
where

$$
W(B)=\sup _{r, n} \sum_{j=0}^{\infty}\left(Q_{2}{ }^{j} A_{j}(m, n)\right)^{t_{j}}{ }_{B}^{-t}{ }^{-t}
$$

Proof. Theorem 3 can be provided by using an argument similar to that in Theorem 2.

REFERENCES

[1] Banach S., Theorie des Operations linearies, Warszawa,1932.
[2] Başarir M., Savas E., (1995) On matrix transformations of some generalized sequence space. Math. Slovaca 45, no. 2, 155-162.
[3] Khan F.M. and Rahman M.F. (1997), Infinite matrices and Cesaro sequence spaces, Analysis. Mathematica 23, 3-11.
[4] Karakaya V.,(2004), θ_{σ}-summable sequences and some matrix transformations, Tamkang J. Math. 35(4),313-320.
[5] Karakaya V., Simsek N.,(2003), On some matrix transformations. Int. Math. J. 4, no. 1, 19, 17.
[6] Lim K. P., (1974), Matrix transformations in the Cesàro sequence spaces, Kyungpook Math.J., 14, 221-227.
[7] Lim K. P.,(1977), Matrix transformations on certain sequence spaces, Tamkang J. Math. 8(2), 213-220.
[8] Lorentz G. G.,(1948), A contribution to the theory of divergent sequences, Acta. Math. 80, 167-190.
[9] Maddox I. J.,(1969), Continuous and Kothe Torplitz duals of certain sequence spaces sequences, Proc. Camb. Phil.Soc. 65, 413-435.
[10] Maddox I. J.,(1970), Elements of functional analysis, Camb. Univ. Press .
[11] Mursaleen M.,(1983), On some new invariant matrix methods of summability, Quart. J. Math. Oxford, 34, 77-86.
[12] Mursaleen M., Jarrah A. M. and Mohiuddine S. A.,(2009), Bounded linear operators for some new matrix transformations, Iran. J. Sci. Technol. Trans. A Sci. 33, no. 2, 169, 177.
[13] Nanda S.,(1976), Infinite matrices and almost convergence, Journal of the Indian Math. Soc. 40, 173-184.
[14] Savas E.,(2011) On infinite matrices and lacunary σ-convergence Appl. Math. Comp., 218(3), 1036-1040.
[15] Savas E.,(1985) Matrix transformations of some generalized sequence spaces. J. Orissa Math. Soc. 4 , no. 1, 37-51.
[16] Savas E., (1987) Matrix transformations and absolute almost convergence. Bull. Inst. Math. Acad. Sinica 15(3), 345-355.
[17] Savas E.,(1988), Matrix transformations between some new sequence spaces. Tamkang J. Math. 19(4), 75-80.
[18] Savas E.,(1990), σ-summable sequences and matrix transformations. Chinese J. Math. 18(3), 201-207.
[19] Savas E., (1991), Matrix transformations and almost convergence. Math. Student 59(14), 170-176.
[20] Savas E., (1991), Matrix transformations of X_{p} into C_{s}. Punjab Univ. J. Math. (Lahore) 24, 59-66.
[21] Savas E., Mursaleen M., (1993), Matrix transformations in some sequence spaces. Istanbul univ. Fen Fak. Mat. Derg. 52), 1-5.
[22] Savas R.,(2006), Infinite matrices and some new sequence spaces. Ph.D. Thesis, Sakarya University, Science Enst..
[23] Schaefer P., (1972), Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36, 104-110.

[^0]: * Corresponding Author: e-mail: rahmet.savas@medeniyet.edu.tr, tel: (216) 2803525

