Sigma J Eng \& Nat Sci 10 (2), 2019, 213-220

Publications Prepared for the Sigma Journal of Engineering and Natural Sciences
Publications Prepared for the ICOMAA 2019 - International Conference on
Mathematical Advances and Applications Special Issue was published by reviewing extended papers

Research Article
 MATHEMATICAL BEHAVIOR OF SOLUTIONS OF P-LAPLACIAN EQUATION WITH LOGARITHMIC SOURCE TERM

Erhan PİSKIN ${ }^{* 1}$, Nazlı IRKIL ${ }^{2}$
${ }^{1}$ Dicle University, Department of Mathematics, DIYARBAKIR; ORCID:0000-0001-6587-4479
${ }^{2}$ Mardin Said Nursi Anatolian High School, MARDIN; ORCID:0000-0002-9130-2893

Received: 05.08.2019 Revised: 30.09.2019 Accepted: 11.11.2019

Abstract

For the p-Laplacian wave equation with logarithmic nonlinearity of initial value problem is analyzed. Focusing on the interplay between damped term and logarithmic source, we discuss the local existence of solutions.

Keywords: Existence, logarithmic nonlinearity.

1. INTRODUCTION

In this paper, we consider the following the p-Laplacian equation with logarithmic nonlinearity
$\begin{cases}u_{t t}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)-\Delta u+u_{t}=k u \ln |u|, & x \in \Omega, t>0 \\ u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), & x \in \Omega, \\ u(x, t)=\frac{\partial}{\partial v} u(x, t)=0, & x \in \partial \Omega, t>0,\end{cases}$
where $\Omega \subset R^{n}(n \leq p)$ is a bounded domain with smooth boundary $\partial \Omega, p>2$ is a costant number and k is the smallest positive constant.

Studies of logarithmic nonlinearity have a long history in physics as it occurs naturally in inflation cosmology, quantum mechanics and nuclear physics [2,3,6]. There is a lot of reference in the literature which interested in applications of logarithmic nonlinerity. The first well known working is introduced by [1] . Later, the motivated of this working a lot mathematicians studied different problem with logarithmic source term see $[4,8,16,13,14,12]$.

Messaoudi, [11] studied the following problem
$u_{t t}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)-\Delta u_{t}+\left|u_{t}\right|^{q-1} u_{t}=|u|^{p-1} u$.
He studied decay of solutions of the problem (2) using the techniques combination of the perturbed energy and potential well methods. Then the problem (2) was studied by Wu and Xue [17] and Pişkin [15].

In [9], Nhan and Truong considered

[^0]$u_{t}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)-\Delta u_{t}=|u|^{p-2} u \ln |u|$,
and established the global existence, blow up and deca y of solutions for $p>2$. The problem (3) was studied by Cao and Liu [5], they proved global boundedness and also blowing-up at infinity for $1<p<2$.

The present of our paper is organized as follows: Firstly, we give some notations and lemmas which will be used throughout this paper. In the last section, we established the local existence of the solutions the problem.

2. PRELIMINARIES

In this section we will give some notations and lemmas which will be used throughout this paper. For simplify notations, throughout this paper, we adopt the following abbreviations:

$$
\|u\|_{p}=\|u\|_{L^{p}(\Omega)},\|u\|_{2}=\|u\| \text { and }\|u\|_{1, p}=\|u\|_{\left.W_{0}^{1, p} \Omega\right)}=\left(\|u\|_{p}+\|\nabla u\|_{p}\right)^{\frac{1}{p}}
$$

for $2<p$. We denote by C and $C_{i}=(i=1,2, \ldots)$ various positive constants.
(A) The constant k in (1) satisfies $0<k<k_{1}$ where k is the positive real number satisfying $e^{-\frac{3}{2}}=\sqrt{\frac{2 \pi}{k_{1}}}$.

Remark 1 The function $f(s)=\sqrt{\frac{2 \pi}{s}}-e^{-\frac{3}{2}}$ is a continuous and decreasing function on $(0, \infty)$, with

$$
\lim _{s \rightarrow 0^{+}} f(s)=\infty, \quad \lim _{s \rightarrow \infty} f(s)=-e^{-\frac{3}{2}}
$$

Then there exist a unique $k_{1}>0$ such that $f\left(k_{1}\right)=0$.
Therefore;

$$
e^{-\frac{3}{2}}<\sqrt{\frac{2 \pi}{s}}, \forall s \in\left(0, k_{1}\right)
$$

We define energy function as follows
$E(t)=\frac{1}{2}\left\|u_{t}\right\|^{2}+\frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{1}{2}\|\nabla u\|^{2}-\frac{k}{2} \int_{\Omega} \ln |u| u^{2} d x+\frac{k}{4}\|u\|^{2}$.
Lemma $2 E(t)$ is a nonincreasing function of $t \geq 0$
$E^{\prime}(t)=-\left\|u_{t}\right\|^{2} \leq 0$.
Proof. We show that $E^{\prime}(t)=-\left\|u_{t}\right\|^{2} \leq 0$. Multiplying the equation (1) by u_{t} and integrating on Ω we have

$$
\begin{gathered}
\int_{\Omega} u_{t t} u_{t} d x-\int_{\Omega} d i v\left(|\nabla u|^{p-2} \nabla u\right) u_{t} d x c \\
+\int_{\Omega} \nabla u \nabla u_{t} d x+\int_{\Omega} u_{t} u_{t} d x \\
=\int_{\Omega} k u \ln |u| u_{t} d x \\
\frac{d}{d t}\left(\frac{1}{2} \int_{\Omega}\left|u_{t}\right|^{2} d x\right)+\frac{d}{d t}\left(\frac{1}{p} \int_{\Omega}|\nabla u|^{p} d x\right)+\frac{d}{d t}\left(\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x\right) \\
+\frac{d}{d t}\left(-\frac{k}{2} \int_{\Omega} \ln |u| u^{2} d x+\frac{k}{4}\|u\|^{2}\right) \\
=-\left\|u_{t}\right\|^{2} \\
\frac{d}{d t}\left[\frac{1}{2}\left\|u_{t}\right\|^{2}+\frac{1}{p}\|\nabla u\|_{p}^{p}+\frac{1}{2}\|\nabla u\|^{2}-\frac{k}{2} \int_{\Omega} \ln |u| u^{2} d x+\frac{k}{4}\|u\|^{2}\right]=-\left\|u_{t}\right\|^{2}, \\
E^{\prime}(t)=-\left\|u_{t}\right\|^{2}
\end{gathered}
$$

Lemma 3 [7] (Logarithmic Sob olev Inequality). Let u be any function $u \in H_{0}{ }^{1}(\Omega)$ and $\alpha>0$ be any number

$$
\int_{\Omega} \ln |u| u^{2} d x<\frac{1}{2}\|u\|^{2} \ln \|u\|^{2}+\frac{\alpha^{2}}{2 \pi}\|\nabla u\|^{2}-(1+\ln \alpha)\|u\|^{2} .
$$

Lemma 4 [4] (Logarithmic Gronwall Inequality) Let $c>0, \gamma \in L^{1}\left(0, T, R^{+}\right)$and assume that the function $w:[0, T] \rightarrow[1, \infty]$ satisfies

$$
w(t) \leq c\left(1+\int_{0}^{t} \gamma(s) w(s) \ln w(s) d s\right), 0 \leq t \leq T
$$

where

$$
w(t) \leq c e^{\int_{0}^{t} c \gamma(s) d s}, 0 \leq t \leq T .
$$

3. LOCAL EXISTENCE

In this section we state and prove the local existence result for the problem (1). The proof is based Faedo-Galerkin method.
Definition 5 A function u defined on $[0, T]$ is called a weak solution of (1) if

$$
u \in C\left([0, T): W_{0}^{1, p}(\Omega)\right), \quad u_{t} \in C\left([0, T): L^{2}(\Omega)\right)
$$

and u satisfies

$$
\left\{\begin{array}{l}
\int_{\Omega} u_{t t}(x, t) w(x) d x+\int_{\Omega} \nabla u(x, t) \nabla w(x) d x \\
+\left.\int_{\Omega} \nabla u\right|^{p-2} \nabla u(x, t) \nabla w(x) d x+\int_{\Omega} u_{t}(x, t) w(x) d x \\
=k \int_{\Omega} u(x, t) \ln |u(x, t)| w(x) d x,
\end{array}\right.
$$

for $w \in H_{0}^{1}(\Omega)$.
Theorem 6 Let $\left(u_{0}, u_{1}\right) \in W_{0}^{1, p}(\Omega) \times L^{2}(\Omega)$. Then the problem (1) has a global weak solution on $[0, T]$.
Proof. We will use the Faedo-Galerkin method to construct approximate solutions. Let $\left\{w_{j}\right\}_{j=1}^{\infty}$ be an orthogonal basis of the "separable" space $\mathrm{W}_{0}^{1, p}(\Omega)$ which is orthonormal in $L^{2}(\Omega)$. Let

$$
V_{m}=\operatorname{span}\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}
$$

and let the projections of the initial data on the finite dimensional subspace V_{m} be given by

$$
\begin{gathered}
u_{0}^{m}(x)=\sum_{j=1}^{m} a_{j} w_{j} \rightarrow u_{0} \text { in } \mathrm{W}_{0}^{1, p}(\Omega) \\
u_{1}^{m}(x)=\sum_{j=1}^{m} b_{j} w_{j} \rightarrow u_{1} \text { in } \mathrm{L}^{2}(\Omega) \\
\text { for } j=1,2, \ldots, m .
\end{gathered}
$$

We look for the approximate solutions

$$
u^{m}(x, t)=\sum_{j=1}^{m} h_{j}^{m}(t) w_{j}(x),
$$

of the approximate problem in V_{m}
$\left\{\begin{array}{l}\int_{\Omega}\left(u_{t t}^{m} w+\left|\nabla u^{m}\right|^{p-2} \nabla u^{m} \nabla w+\nabla u^{m} \nabla w+u_{t}^{m} w\right) d x=k \int_{\Omega} u^{m} \ln \left|u^{m}\right| w d x, \\ u^{m}(0)=u_{0}^{m}=\sum_{j=1}^{m}\left(u_{0}, w_{j}\right) w_{j}, \\ u_{t}^{m}(0)=u_{1}^{m}=\sum_{j=1}^{m}\left(u_{1}, w_{j}\right) w_{j} .\end{array}\right.$
This leads to a system of ordinary differantial equations for unknown functions $h_{j}^{m}(t)$. Based on standard existence theory for ordinary differantial equation, one can obtain functions
$h_{j}:\left[0, t_{m}\right] \rightarrow R, j=1,2, \ldots, \mathrm{~m}$
which satisfy (6) in a maximal interval $\left[0, t_{m}\right), 0<t_{m} \leq T$. Next, we show that $t_{m}=T$ and that the local solution is uniformly bounded independent of m and t. For this purpose, let us replace w by u_{t}^{m} in (6) and integrate by parts we obtain
$\frac{d}{d t} E^{m}(t)=-\left\|u_{t}^{m}\right\|^{2} \leq 0$,
where
$E^{m}(t)=\frac{1}{2}\left\|u_{t}^{m}\right\|^{2}+\frac{1}{p}\left\|\nabla u^{m}\right\|_{p}^{p}+\frac{1}{2}\left\|\nabla u^{m}\right\|^{2}$

$$
\begin{equation*}
-\frac{k}{2} \int_{\Omega}\left|u^{m}\right|^{2} \ln \left|u^{m}\right| d x+\frac{k}{4}\left\|u^{m}\right\|^{2} . \tag{9}
\end{equation*}
$$

Integrating (8) with respect to t from 0 to t, we obtain $E^{m}(t) \leq E^{m}(0)$.

By the Logarithmic Sobolev inequality leads to
$E^{m}(t)=\frac{1}{2}\left\|u_{t}^{m}\right\|^{2}+\frac{1}{p}\left\|\nabla u^{m}\right\|_{p}^{p}+\frac{1}{2}\left\|\nabla u^{m}\right\|^{2}$
$-\frac{k}{2} \int_{\Omega}\left|u^{m}\right|^{2} \ln \left|u^{m}\right| d x+\frac{k}{4}\left\|u^{m}\right\|^{2}$,
$\geq \frac{1}{2}\left\|u_{t}^{m}\right\|^{2}+\frac{1}{p}\left\|\nabla u^{m}\right\|_{p}^{p}+\frac{1}{2}\left\|\nabla u^{m}\right\|^{2}+\frac{k}{4}\left\|u^{m}\right\|^{2}$
$-\frac{k}{2}\left[\frac{1}{2}\left\|u^{m}\right\|^{2} \ln \left\|u^{m}\right\|^{2}+\frac{\alpha^{2}}{2 \pi}\left\|\nabla u^{m}\right\|^{2}-(1+\ln \alpha)\left\|u^{m}\right\|^{2}\right]$,
$=\frac{1}{2}\left\|u_{t}^{m}\right\|^{2}+\frac{1}{p}\left\|\nabla u^{m}\right\|_{p}^{p}+\left(1-\frac{k \alpha^{2}}{2 \pi}\right)\left\|\nabla u^{m}\right\|^{2}$
$+\frac{1}{2}\left[\frac{k}{2}\left(1-\ln \left\|u^{m}\right\|^{2}\right)+k(1+\ln \alpha)\right]\left\|u^{m}\right\|^{2}$
Then, using of (10) and taking $C=2 E^{m}(0)$ we get
$\left\|u_{t}^{m}\right\|^{2}+\left(1-\frac{k \alpha^{2}}{2 \pi}\right)\left\|\nabla u^{m}\right\|^{2}$
$\frac{2}{p}\left\|\nabla u^{m}\right\|_{p}^{p}++\left(\frac{3 k}{2}+k \ln \alpha\right)\left\|u^{m}\right\|^{2}$
$\leq C+\frac{k}{2}\left\|u^{m}\right\|^{2} l n\left\|u^{m}\right\|^{2}$.
Now, choosing
$e^{-\frac{3}{2}}<\alpha<\sqrt{\frac{2 \pi}{k}}$
will make

$$
\frac{3 k}{2}+k \ln \alpha>0 \text { and } 1-\frac{k \alpha^{2}}{2 \pi}>0
$$

This selection is possible thanks to (A). So, we have
$\left\|u_{t}^{m}\right\|^{2}+\left\|\nabla u^{m}\right\|_{p}^{p}+\left\|\nabla u^{m}\right\|^{2}+\left\|u^{m}\right\|^{2}<c\left(1+\left\|u^{m}\right\|^{2} l n\left\|u^{m}\right\|^{2}\right)$.
We know that

$$
u^{m}(., t)=u^{m}(., 0)+\int_{0}^{t} \frac{\partial u^{m}}{\partial \tau}(., \tau) d \tau .
$$

Then, using Cauchy-Schwarz inequality $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$, we obtain

$$
\begin{align*}
& \left\|u^{m}(t)\right\|^{2}=\left\|u^{m}(., 0)+\int_{0}^{t} \frac{\partial u^{m}}{\partial \tau}(., \tau) d \tau\right\|^{2} \\
& \leq 2\left\|u^{m}(0)\right\|^{2}+2\left\|\int_{0}^{t} \frac{\partial u^{m}}{\partial \tau}(., \tau) d \tau\right\|^{2} \\
& \leq 2\left\|u^{m}(0)\right\|^{2}+2 T \int_{0}^{t}\left\|u_{t}^{m}(\tau)\right\|^{2} d \tau . \tag{15}
\end{align*}
$$

So, using of inequality (14) and (15) we get
$\left\|u^{m}(t)\right\|^{2} \leq 2\left\|u^{m}(0)\right\|^{2}+2 T c\left(1+\left\|u^{m}\right\|^{2} \ln \left\|u^{m}\right\|^{2}\right)$.
If we put $C_{1}=\max \left\{2\left\|u^{m}(0)\right\|^{2}, 2 T c\right\}$, (16) leads to

$$
\left\|u^{m}\right\|^{2} \leq 2 C_{1}\left(1+\int_{0}^{t}\left\|u^{m}\right\|^{2} \ln \left\|u^{m}\right\|^{2} d \tau\right)
$$

Without loss of generality, we take $C_{1} \geq 1$, we have

$$
\left\|u^{m}\right\|^{2} \leq 2 C_{1}\left(1+\int_{0}^{t}\left(C_{1}+\left\|u^{m}\right\|^{2}\right) \ln \left(\left(C_{1}+\left\|u^{m}\right\|^{2}\right)\right) d \tau\right)
$$

Thanks to Logarithmic Gronwall inequality, we obtain

$$
\left\|u^{m}\right\|^{2} \leq 2 C_{1} e^{2 C_{1} t}=C_{2} .
$$

Therefore, from inequality (14), it follows that

$$
\left\|u_{t}^{m}\right\|^{2}+\left\|\nabla u^{m}\right\|_{p}^{p}+\left\|\nabla u^{m}\right\|^{2}+\left\|u^{m}\right\|^{2} \leq C_{3}=C\left(1+C_{2} \ln C_{2}\right)
$$

where C_{3} is a positive constant independent of m and t. If these operations (14) are applied to each term of inequality, this implies
$\max _{t \in\left(0, t_{m}\right)}\left\|u_{t}^{m}\right\|^{2}+\max _{t \in\left(0, t_{m}\right)}\left\|\nabla u^{m}\right\|_{p}^{p}+\max _{t \in\left(0, t_{m}\right)}\left\|\nabla u^{m}\right\|^{2}+\max _{t \in\left(0, t_{m}\right)}\left\|u^{m}\right\|^{2} \leq 4 C_{3}$
So, the approximate solution is uniformly bounded independent of m and t. Therefore, we can extend t_{m} to T. Moreover, we obtain
$\left\{\begin{array}{l}u^{m}, \text { is uniformly bounded in } L^{\infty}\left(0, T ; W_{0}^{(1, p)}(\Omega)\right), \\ u_{t}^{m}, \text { is uniformly bounded in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) .\end{array}\right.$
Hence we can infer from (17) and (18) that there exists a subsequence of $\left(u^{m}\right)$ (still denoted by $\left(u^{m}\right)$, such that
$\left\{\begin{array}{l}u^{m} \rightarrow u, \text { weakly }^{*} \text { in } L^{\infty}\left(0, T ; W_{0}^{(1, p)}(\Omega)\right), \\ u_{t}^{m} \rightarrow u_{t}, \text { weakly }^{*} \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\ u^{m} \rightarrow u, \text { weakly in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right), \\ u_{t}^{m} \rightarrow u_{t}, \text { weakly in } L^{2}\left(0, T ; L^{2}(\Omega)\right) .\end{array}\right.$
Then using (19) and Aubin-Lions lemma, we have

$$
u^{m} \rightarrow u \text {, strongly in } L^{2}\left(0, T ; L^{2}(\Omega)\right)
$$

which implies

$$
u^{m} \rightarrow u, \Omega \times(0, T) .
$$

Since the map $s \rightarrow \operatorname{sln}|s|^{k}$ is continuous, we have the convergence $u^{m} \ln \left|u^{m}\right|^{k} \rightarrow u \ln |u|^{k}, \Omega \times(0, T)$.

By the Sobolev embedding theorem $\left(H_{0}^{1}(\Omega) \hookrightarrow L^{\infty}(\Omega)\right)$, it is clear that $\left.\left|u^{m} \ln \right| u^{m}\right|^{k}-$ $u \ln |u|^{k} \mid$ is bounded in $L^{\infty}(\Omega \times(0, T))$. Next, taking into account the Lebesgue bounded convergence theorem, we have
$u^{m} \ln \left|u^{m}\right|^{k} \rightarrow u \ln |u|^{k}$ strongly in $L^{2}\left(0, T ; L^{2}(\Omega)\right)$
We integrate (6) over $(0, t)$ to obtain, $\forall w \in V_{m}$

$$
\begin{gathered}
k \int_{0}^{t} \int u^{m} \ln \left|u^{m}\right| w d x d s=\int_{\Omega} u_{t}^{m} w d x-\int_{\Omega} u_{1}^{m} w d x \\
+\int_{0}^{t} \int_{\Omega}\left|\nabla u^{m}\right|^{p-2} \nabla u^{m} \nabla w d x d s \\
+\int_{0}^{t} \int_{\Omega} \nabla u^{m} \nabla w d x d s+\int_{0}^{t} \int_{\Omega} u_{t}^{m} w d x d s .
\end{gathered}
$$

Convergences (19), (21) are sufficient to pass to the limit in (22)
$\int_{\Omega} u_{t} w d x=\int_{\Omega} u_{1} w d x-\int_{0}^{t} \int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla w d x d s$
$-\int_{0}^{t} \int_{\Omega} \nabla u \nabla w d x d s-\int_{0}^{t} \int_{\Omega} u_{t} w d x d s \int+k \int_{0}^{t} \int_{\Omega} u \ln |u| w d x d s$.
which implies that (22) is valid $\forall w \in H_{0}^{1}(\Omega)$.Using the fact that the terms in the right-hand side of (23) are absolutely continuous since they are functions of t defined by integrals over $(0, t)$, hence it is differentiable for a.e. $t \in R^{+}$. Thus, differentiating (23), we obtain, for a.e. $t \in(0, T)$ and any $\forall w \in H_{0}^{1}(\Omega)$,

$$
\begin{gather*}
\int_{\Omega} u(x, t) \ln |u(x, t)|^{k} w(x, t) d x=\int_{\Omega} u_{t t}(x, t) w(x) d x \\
+\int_{\Omega}|\nabla u|^{p-2} \nabla u(x, t) \nabla w(x) \\
+\int_{\Omega} \nabla u(x, t) \nabla w(x) d x \\
+\int_{\Omega} u_{t}(x, t) w(x) d x \tag{23}
\end{gather*}
$$

If we take initial data, we note that

$$
\begin{aligned}
& u^{m} \rightarrow u, \text { weakly in } L^{2}\left(0, T ; W_{0}^{(1, p)}(\Omega)\right), \\
& u_{t}^{m} \rightarrow u_{t}, \text { weakly in } L^{2}\left(0, T ; L^{2}(\Omega)\right)
\end{aligned}
$$

Thus, using Lion's Lemma [10], we have

$$
u^{m} \rightarrow u, \text { in } C\left([0, T] ; L^{2}(\Omega)\right) .
$$

Therefore, $u^{m}(x, 0)$ makes sense and

$$
u^{m}(x, 0) \rightarrow u(x, 0), \text { in } L^{2}(\Omega)
$$

We have

$$
u^{m}(x, 0) \rightarrow u_{0}(x, 0), \operatorname{in}\left(H_{0}^{1}(\Omega) \cap L^{p}(\Omega)\right)
$$

Hence

$$
u(x)=u_{0}(x)
$$

Now, multiply (6) by $\varphi \in C_{0}^{\infty}(0, T)$ and integrate over ($0, T$), we obtain for $\forall w \in V_{m}$, and because of

$$
\left.\left(u_{t}^{m}\right\} \varphi(t)\right)^{\prime}=u_{t t}^{m} \varphi(t)+u^{m} \varphi^{\prime}(t)
$$

we get

$$
\begin{gathered}
-\int_{0}^{t} \int_{\Omega} u_{t}^{m} w \varphi^{\prime}(t) d x=\int_{0}^{t} \int_{\Omega}\left|\nabla u^{m}\right|^{p-2} \nabla u^{m} \nabla w \varphi(t) d x d t \\
-\int_{0}^{t} \int_{\Omega} \nabla u^{m} \nabla w \varphi(t) d x d t-\int_{0}^{t} \int_{\Omega} u_{t}^{m} w \varphi(t) d x d t \\
+k \int_{0}^{t} \int_{\Omega} u^{m} \ln \left|u^{m}\right| w \varphi(t) d x d t .
\end{gathered}
$$

As $\rightarrow \infty$, we have for $\forall w \in H_{0}^{1}(\Omega)$ and $\varphi \in C_{0}^{\infty}(0, T)$

$$
\begin{gathered}
-\int_{0}^{t} \int_{\Omega} u_{t} w \varphi^{\prime}(t) d x=\int_{0}^{t} \int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla w \varphi(t) d x d t \\
-\int_{0}^{t} \int_{\Omega} \nabla u \nabla w \varphi(t) d x d t-\int_{0}^{t} \int_{\Omega} u_{t} w \varphi(t) d x d t \\
+k \int_{0}^{t} \int_{\Omega} u l n|u| w \varphi(t) d x d t .
\end{gathered}
$$

This means

$$
u_{t t} \in L^{2}[0, T), H^{-2}(\Omega),
$$

on the other hand, because of

$$
u_{t t} \in L^{2}[0, T), L^{2}(\Omega)
$$

we obtain

$$
u_{t t} \in C[0, T), H^{-2}(\Omega) .
$$

So that

$$
u_{t}^{m}(x, 0) \rightarrow u_{t}(x, 0), H^{-2}(\Omega),
$$

but

$$
u_{t}^{m}(x, 0)=u_{1}^{m}(x) \rightarrow u^{1}(x), L^{2}(\Omega)
$$

Hence

$$
u_{t}(x, 0)=u_{1}(x) .
$$

This finished the proof of the theorem.
Conflict of interest The authors declare that they have no conflict of interest.

REFERENCES

[1] Bialynicki-Birula I, Mycielski J, Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron. Phys., 23(4) (1975) 461-466.
[2] Bialynicki-Birula I, Mycielski J, Nonlinear wave mechanics, Ann. Phys., 100(1--2) (1976) 62-93.
[3] Buljan H, Siber A, Soljacic M, Schwartz T, Segev M, Christodoulides DN, Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev., (2003) E (3) 68.
[4] Cazenave T, Haraux A, Equations d'evolution avec non linéarité logarithmique, Ann. Fac. Sci. Toulouse 2(1) (1980) 21--51.
[5] Cao Y, Liu C, Initial boundary value problem for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinerity,Electron. J. Differantial Equations, (116) (2018) 1-19.
[6] Gorka P, Logarithmic Klein--Gordon equation, Acta Phys. Pol. B 40(1), (2009) 59--66.
[7] Gross L., Logarithmic Sobolev inequalities. Amer. J. Math. 97(4), 1061--1083 (1975).
[8] Han XS, Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc. 50(1) (2013) 275--283.
[9] Le CN, Le XT, Global solution and blow up for a class of Pseudo p-Laplacian evolution equations with logarithmic nonlinearity, Comput. Math. Appl., 73(9), (2017) 2076-2091.
[10] Lions J., Quelques methodes de resolution des problems aux limites non lineaires, Dunod Gauthier-Villars, Paris, (1969)
[11] Messaoudi SA, On the decay of solutions for a class of quasilinear hyperbolic equations with nonlinear damping and source terms. Math. Methods Appl. Sci. 28, (2005)18191828.
[12] Messaoudi SA, Al-Gharabli MM, Guesmia A, Well posedness and asyptotic stability results for a viscoelastic plate equation with a logarithmic nonlinearity, Appl. Anal., 1-18 (in press).
[13] Payne LE, Sattinger DH, Saddle points and instability of nonlinear hyperbolic equtions, Israel J. Math. 22 (1975) 273-303.
[14] Peyravi A, General stability and exponential growth for a class of semi-linear wave equations with logarithmic source and memory terms. Appl. Math. Optim.,1-17 (in press).
[15] Pişkin E, On the decay and blow up of solutions for a quasilinear hyperbolic equations with nonlinear damping and source terms, Bound. Value Probl., (2015), 2015:127.
[16] Zhang HW, Liu GW, Hu QY, Asymptotic Behavior for a Class of Logarithmic Wave Equations with Linear Damping, Appl. Math. Optim., 79 (2019) 131--144.
[17] Wu Y, Xue X, Uniform decay rate estimates for a class of quasilinear hyperbolic equations with nonlinear damping and source terms, Appl. Anal. 92(6), (2013) 11691178.

[^0]: * Corresponding Author: e-mail: episkin@dicle.edu.tr, tel: (412) 2411000 / 8902

