
237 

Sigma J Eng & Nat Sci 10 (2), 2019, 237-243 
 

                                                                                                                                 

 

 

 

 

Research Article  

INTRODUCTION TO HOL4 THEOREM PROVER 

 

 

Kübra AKSOY*
1
, Sofiène TAHAR

2
, Yusuf ZEREN

3
  

 
1Yıldız Technical University, Department of Mathematics, ISTANBUL; ORCID:0000-0002-4369-3834 

2Concordia University, Department of Electrical and Computer Engineering, Montreal-CANADA; 

ORCID:0000-0002-5537-104X  
3Yıldız Technical University, Department of Mathematics, ISTANBUL; ORCID:0000-0001-8346-2208 

 

Received: 21.09.2019   Revised: 21.10.2019   Accepted: 11.11.2019  

 

 

ABSTRACT 

 

The HOL4 interactive theorem prover is a proof assistant based on Higher-Order Logic. It is an ML language 

based programming environment in which mathematical functions and predicates can be defined and theorems 

can be proven. The core of the HOL4 theorem prover is composed of a small set of axioms and inference 

rules, making proofs in HOL4 sound and trustable. The HOL4 prover includes several theories (libraries) that 
cover most subjects of classical mathematics. The tool also provides a set of built-in decision procedures that 

can help automatically prove many simple theorems of arithmetic and Boolean algebra. In this paper we 

provide an introduction to the HOL theorem prover and show how this tool can be used in the formal analysis 
of advanced mathematics problems. 
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1. INTRODUCTION   

 

Formal methods construct a computer based mathematical model of a system and its 

specification [1], which are then used for mathematical reasoning to check functional properties 

of interest. That is, formal methods are used as a computer-based tool to mathematically analyze 

the properties of a system. Similarly, simulation is used traditionally for the analysis of systems. It 

has, however, some limitations like the exponential explosion of the test cases or the usage of 

numerical approximation, hence, simulation provides less accurate results. On the other hand, 

using formal methods, we obtain accurate results because we consider all cases implicitly. 

Nevertheless, sometimes it is limited and time consuming. 

Most widely used formal methods are Model Checking and Theorem Proving [1]. The former 

is a state-based technique. It is used to verify temporal properties exhaustively over the entire 

state-space. Model Checking is automated because it is based on propositional logic. Theorem 

Proving is a proof system which includes types, axioms and inference rules. It allows using 

logical reasoning to verify relationships interactively based on propositional, first or higher-order 

logic. 
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Higher-order logic [2] gives simple formalisms with precise semantics. It allows the use of 

many familiar mathematical notations and suffices for the development of much of classical 

mathematics. That is, we can formalize notions and develop mathematical structures using higher 

order logic for verifying properties and proving theorems. 

The HOL theorem prover [3] is an interactive proof environment that supports mathematical 

reasoning on different theories and their applications. It has been developed by Mike Gordon at 

the University of Cambridge for conducting proofs in higher-order logic. His works show both 

hardware verification or traditional logical formalizations and how a simple programming 

language could be semantically embedded in higher-order logic [4]. Over the years, the range of 

applications of the HOL theorem prover has significantly expanded. The most recent version of 

the HOL proof assistant, HOL4 [5], is now used for mechanized theorem proving in many areas, 

including formalization of pure mathematics, design and verification of critical and real-time 

systems, program refinement, program correctness, compiler verification and concurrency. In this 

paper, we use this proof tool for illustration purposes. 

In this paper, we provide a brief introduction to HOL theorem proving and illustrate how this 

tool can be utilized in the formal analysis of advanced mathematics issues. The rest of the paper is 

organized as follows: Section 2 presents some preliminaries about the theorem proving and logics 

that will facilitate the understanding of the rest of the work. Section 3 describes the HOL4 

theorem prover. The proofs in HOL4 and an application are given in Section 4. Finally, we 

conclude the paper in Section 6. 

 

2. PRELIMINARIES 

 

2.1. Theorem Proving 

 

Theorem proving is a field of computer science and mathematical logic that allows to conduct 

computer-assisted formal proofs of the correctness of systems using mathematical reasoning. It is 

one of the most used formal methods to verify a system and its desired properties in appropriate 

logic. While a system is modeled as a function, its properties are modeled as theorems in the same 

logic. This logic can be propositional logic, first-order logic or higher-order logic. Theorems are 

interactively verified based on mathematical reasoning in a proof system in order to describe the 

system. For doing this, the implementation and specification of a system are both expressed in 

terms of logical formulas and the proof of correctness is derived from a very small set of axioms 

and inference rules. In brief, theorem proving allows us to establish a mathematical proof that the 

properties are basically satisfied. 

There are some advantages and disadvantages of theorem proving. One of the most powerful 

advantage is being high expressiveness because it is based on higher-order logic which provides 

expressive notation and high abstraction. We can formalize and verify properties including the 

underlying theory and assumptions, rather than isolated properties. Morever, the theorem prover 

guaranteed soundness so that it has less risks of mistakes because each theorem is derived from 

either previous theorems or the basic axioms. However, because of the use of higher-order logic, 

only some parts of the proofs can be automated, while the details and proof strategies need 

explicit human guidance. It also has limited mathematical libraries. 

The most widely used theorem provers are HOL4 [5], HOL Light [6], Coq [7], Isabelle/HOL 

[8], ACL2 [9], PVS [10]. For example, ACL2 is based on first order logic and developed at 

University of Texas in Austin. PVS and HOL are based on higher-order logic. The former is 

developed at Stanford Research Institute, and the latter is developed at University of Cambridge. 
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2.2. Logics  

 

Logic is the science of formal principles of reasoning or correct inference [2]. In a theorem 

prover, logic is defined by a formal system called proof system. There are many logics such as 

propositional, predicate and higher-order logic. Propositional logic is reasoning about complete 

sentence. That is, it is a statement that is either true (T) or false (F). For instance, statements or 

propositions can be ‘Elephants fly’, ‘Milk is white’ and ‘5 < 8’, and according to our present 

knowledge, the first is false and the last two are true. This logic has Boolean operators such as 

and (∧), or (∨), if. . . then (⇒), if and only if (⇔), not (¬). Combinational logic and finite-state 

transition systems can be modelled using Boolean formulas and variables. However, for 

modelling of complex systems this logic cannot be enough. 

First-order logic, known as predicate logic, is used to express individual objects and 

relationship between them. It consists of constants, variables and predicates. In a universe of 

discourse, constants are represented as specific objects, variables range over objects, and 

predicates use properties of objects or relationship between objects. Moreover, predicates are 

often associated with sets. We can quantify over variables using the universal quantifier (∀) which 

refers to all object and the existential quantifier (∃) which refers to for some object. 

Quantification over relations greatly enhances the expressive power of first order formulas. For 

example, 
 

∀x∃y ((P(x) ∨ ¬Q(y)) → (Q(x) → P(y)))  
 

Higher-order logic is a form of predicate logic in which quantification is used over arbitrary 

predicates and functions. Variables can be functions and predicates. Functions and predicates can 

take functions as arguments and return functions as values. Besides, predicates in higher-order 

logic may be interpreted as sets of sets. Higher-order logic is different from first-order logic by 

means of the addition of variables for subsets, relations and functions of the universe. So, it is 

highly expressive and can be used to describe any mathematical relationship. For instance, 
 

∀xy. ∃P. P xy 
 

Figure 1 provides a comparison between logics based on certain characteristics which are 

expressiveness, decidability and completeness. The meanings of these as follows [4]: 
 

 Expressiveness is the capability to describe complex mathematical models. 

 Decidability means there is an algorithm for deciding the (sementical) truth of any 

formula (theorem). 

 Completeness means all valid formulas that are semantically true are provable 

 

 
 

Figure 1. Comparison between Logics 

 

Propositional logic with truth tables is decidable and complete; however, because of the logic 

itself it is not so expressive. On the other hand, higher-order logic is very expressive because it 

allows quantifications, and reasoning about all kinds of mathematics such as real numbers, 

integral, set theory, etc. It is neither complete nor decidable. 

 

 

 Propositional Logic           First-Order Logic             Higher-Order Logic 

       Less expressive (-)                                                Very expressive (+) 

                Decidable (+)                                                 Undecidable (-) 

                 Complete (+)                                                 Incomplete (-)   
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3. HOL4 THEOREM PROVER 

 

The HOL4 interactive theorem prover is a proof assistant for higher-order logic providing a 

programming environment in which theorems can be proved and proof tools implemented [11]. 

HOL4 consists of a notation (syntax), a small set of five fundamental axioms (facts) and a small 

set of eight inference (deduction) rules. Using higher-order logic in it, we can translate input from 

concrete syntax to abstract syntax, and translate output back from abstract to concrete syntax. 

HOL4 has its own notation. Table 1 provides the mathematical interpretations of some frequently 

used HOL notation. 

 

Table 1. HOL Notation 
 

Standard Symbol HOL Symbol Description 

¬ ~ Logical negation 

∨ \/ Logical or 

∧ /\ Logical and 

⇒ => Implication 

⇔ <=> Equivalence 

≠ < > Disequiation 

∀x. t !x. t For all x: t 

∃x. t ?x. t For some x: t 

𝜆𝑥. 𝑓 𝜆𝑥. 𝑓 Function that maps x to f(x) 

εx. t(x) εx. t(x) Some x such that t(x) is true 

 

A HOL theory is collection of types, lemmas, functions and tactics. HOL theories are 

databases of already proved theorems. The HOL theorem prover has a very rich collection of 

libraries such as Boolean, numbers, integers, real, rational, probability, integration, etc. For 

example, in the arithmetic theory, the main type is num and the function SUC n means n+1. It 

contains relational operators (<, >, ≤ , = , etc.) as well as arithmetic operators (+, -, ×, ÷, etc.). 

This theory also has many other useful functions such as max, min, odd, even. 

Soundness is assured because every new theorem must be created from either the basic 

axioms and primitive inference rules or any other already proved theorems. HOL4 is open source 

and supports propositional, predicate and higher-order logic. It provides formal verification 

frameworks for both software and hardware. It is also a platform for the formalization of pure 

mathematics. All theorems in HOL ultimately proved using only the basic axioms and primitive 

inference rules. Some axioms are in Figure 2 and some inference rules are given in Figure 3: 

 

        BOOL_CASES :                       ETA:                                        SELECT :  

  

       ˫ (∀𝑡. 𝑡 ˅ ¬ 𝑡)                         ˫ (𝜆𝑥.  𝑀 𝑥) = 𝑀                     ˫ ∀ 𝑃 𝑥. 𝑃 𝑥 ⟹ 𝑃 (𝜀 𝑦.  𝑃 𝑦)                       
 

Figure 2. Some HOL Axioms 
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       ASSUME :                               REFL :                               BETA CONVERSION : 

    

        {t} ˫ t                                       ˫ 𝑡 = 𝑡                                   ˫ (𝜆𝑥.  𝑡)𝑣 = 𝑡[𝑣/𝑥 ] 
 

          TRANS :                                 ABSTRACTION :                COMB: 

 

          𝛤 ˫  𝑠 = 𝑡                                 𝛤 ˫  𝑠 = 𝑡                                𝛤 ˫  𝑠 = 𝑡 

        𝛥 ˫  𝑡 = 𝑢                                x not free in 𝛤                         𝛥 ˫  𝑠 = 𝑡 𝑡𝑦𝑝𝑒𝑠 𝑓𝑖𝑡 

 

         𝛤 ∪ 𝛥 ˫ 𝑠 = 𝑢                       𝛤 ˫ 𝜆𝑥. 𝑠 = 𝜆𝑥. 𝑡                       𝛤 ∪ 𝛥 ˫ 𝑠(𝑢) = 𝑡(𝑣) 

 
 

Figure 3. Some HOL Inference Rules 

 

In Figures 2 and 3, ˫ is an infix data-type constructor for the type. The constructor maps a list 

of terms. Generally, given Γ ˫ Δ, Γ is the assumption and Δ represents the conclusion. For 

example, in the Abstraction inference rule, Γ is the assumption and the right-hand side s = t 

represents the conclusion. The lambda abstraction (λx. fx) represents any function definition and ε 

is used for Hilbert choice operator. 

 

4. PROOFS IN HOL4 THEOREM PROVER 

 

The logic in HOL system is represented in the strongly-typed functional programming 

language Meta Language (ML) [12]. ML allows the interaction with the theorem prover to 

represent higher-order logic theorems using abstract data types. There are mainly two ways to 

prove theorem, either forward and backward proofs. The main porpose of forward proofs is that 

axioms and inference rules are used to derive theorems. That is, a forward proof is a way to 

rewrite the assumptions to reach the proof goal. On the other hand, backward proof means that we 

rewrite the goal to reach the assumptions. Users generally lay emphasis on backward proofs in 

HOL4. Backward proofs are implemented by tactics, which are ML functions that break goals 

into simple subgoals in HOL such as GEN_TAC, EQ_TAC, STRIP_TAC, REWRITE_TAC, etc. 

In addition, the combination of forward and backward proof styles is also allowed. The user 

interacts with a proof editor and provides it with the necessary tactics to prove goals while some 

of the proof steps are solved automatically by the automatic proof procedures. 

 

4.1. Example of a Goal and Proof 

 

As an example of backward proof, let us prove Equation (1) in the arithmetic theory. 
 

∀ 𝑛. 𝑛 + 1 + 1 = 𝑛 + 2,   𝑛 ∈   ℕ                                                                                                  (1) 
 

Using the HOL theorem prover, if we want to verify the above statement is mathematically 

correctly interpreted. To start, we should write this statement as a goal via the ML function “g” , 

using HOL notation. 
 

𝑔′! (𝑛 ∶ 𝑛𝑢𝑚). 𝑛 + 1 + 1 = 𝑛 + 2 `;  
 

A goal is verified in HOL based on already existing theorems and definitions. Each 

simplification step is applied using the ML function “e”. The first simplification step is usually to 

remove the forall-quantifiers because it can be easily added later. This can be done using 

GEN_TAC as follows: 
 

e (GEN_TAC); 
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In order to find a theorem in a certain theory we use DB.match["theory"]. Hence, we specify 

the expression of the term we are interested in as follows: 
 

𝐷𝐵. 𝑚𝑎𝑡𝑐ℎ [“arithmetic”] (𝑇𝑒𝑟𝑚 `(𝑎 ∶ 𝑛𝑢𝑚) + (𝑏 + 𝑐)`) ;  
 

This returns the Addition Associativity theorem ADD_ASSOC : 
 

├ ∀ 𝑚 𝑛 𝑝.  𝑚 + (𝑛 + 𝑝) = 𝑚 + 𝑛 + 𝑝  
 

Now, we want to simplify our proof goal using the symmetry of the Addition Associativity 

via GSYM ADD_ASSOC and then we rewrite the goal using REWRITE_TAC[]. Combined 

together we apply : 
              

e (REWRITE_TAC[GSYM ADD_ASSOC]);  
 

and obtain following: 
 

 
 

By this, we achieved the first step of our mathematical reasoning in HOL. In the next step, we 

want to simplify the left-hand side of the equation. For doing this, we use again DB.match in 

order to find a similar theorem in the Arithmetic theory, as follows : 
  

𝐷𝐵. 𝑚𝑎𝑡𝑐ℎ [“arithmetic”] (𝑇𝑒𝑟𝑚  `(𝑛 ∶ 𝑛𝑢𝑚) + 𝑏 = (𝑛 + 𝑎)`) ;  
 

and find the theorem named EQ_ADD_LCANCEL :  
 

├ ∀ 𝑚 𝑛 𝑝. ( 𝑚 + 𝑛 = 𝑚 + 𝑝 )  ⇔ (𝑛 = 𝑝)  
 

Upon rewriting, as follows: 
                                  

                                             e (REWRITE_TAC[EQ_ ADD_LCANCEL]);  
 

we obtain the following output: 
 

 
 

Similarly, we use DB.match to simplify further our proof goal as follows: 
 

𝐷𝐵. 𝑚𝑎𝑡𝑐ℎ [“arithmetic”] (𝑇𝑒𝑟𝑚 `(2: 𝑛𝑢𝑚)` );  
 

and find the theorem named TWO : 
 

├ 2 = 𝑆𝑈𝐶 1  
 

Now, for the last step of our proof goal we need to fing a theorem related to the function SUC 

as follows:  
 

𝐷𝐵. 𝑚𝑎𝑡𝑐ℎ [“arithmetic”] (𝑇𝑒𝑟𝑚 `(𝑆𝑈𝐶)` );  
 

This theorem is called ADD1: 
 

├ ∀ 𝑚. 𝑆𝑈𝐶 𝑚 = 𝑚 + 1  
 

In particular, above theorems can be written as follows : 
 

                                                       e (REWRITE_TAC[TWO, ADD1]);  
 

In summary, the goal is proved with the below proof script :  
 

GEN_TAC THEN 

REWRITE_TAC[GSYM ADD_ASSOC] THEN 

REWRITE_TAC[EQ_ADD_LCANCEL] THEN 

REWRITE_TAC[TWO,ADD1]; 
 

and obtain following theorem :  
  

∀ 𝑛. 𝑛 + 1 + 1 = 𝑛 + 2,   𝑛 ∈   ℕ  
 

    subgoal : n +(1 + 1) = n + 2 

subgoal :  1 + 1 = 2 
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We conducted the above proof in order to show how the HOL theorem proving steps look like 

in details. However, for such simple arithmetic goal, the HOL4 theorem prover has built-in 

automated tactics such as METIS_TAC and PROVE_TAC, which can be used to prove the 

above goal automatically in one single step. 

 

5. CONCLUSION  

 

In this paper, we provided a brief introduction to the HOL theorem proving. This is the first 

such paper presented to the mathematics community. HOL theorem proving is used for 

mathematical reasoning in a certain logic. Unlike model checking, theorem proving based on 

higher-order logic has high expressiveness. Thus, we verify generic mathematical expressions. 

The core of the HOL4 theorem prover has only 5 axioms and 8 primitive inference rules. Every 

new theorem is obtained from the basic axioms and inference rules or from any other already 

proven theorems so that its soundness is guaranteed. HOL4 is open source and has wide variety of 

applications. There are many positive features of the HOL theorem prover. For instance, HOL 

will not allow us to prove anything wrong because it works like a proof checking/assistant. 

Furthermore, it provides a record (repository) of proof detailed steps, and thus, users can 

remember their proof steps even after many years. Besides, we can reuse intermediate proof steps 

(lemmas) in verifying other theorems. HOL4 can be used in all areas of Mathematics and 

Sciences, and can even help finding errors in published work. For example, the authors of [13] 

were able to find an error in the distributivity law published in [14]. 
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