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ABSTRACT 

 

We present the numerical computation of bounds of a well- known mathematical quantity known as Sructured 
Singular Value (SSV) for anti-aliasing filter. The computation of SSV provides the bounds which estimates 

the behavior of linear input-output system in control. The proposed methodology is based on two level 
algorithm, that is, inner-outer algorithm. The numerical experimentation shows the com- parison of obtained 

results for SSV lower bounds when compare with MATLAB routine mussv. 
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1. INTRODUCTION 

 

The Structured Singular Value known as µ-value was first introduced by J. C. Doyle around 

1980’s [1]. The µ-value can be used for the analyses and synthesis of robustness and performance 

of the linear systems in control and system theory subject to presence of structured uncertainty. 

The interesting applications of µ-values can be found in [2, 3]. 

The computation of an exact value of µ-value is NP-hard problem [4, 5]. Much research has 

been carried out while providing numerical methods in order to approximate the bounds of µ-

values, that is, the approximation of lower and upper bounds. 

The power method developed by [3] approximates the lower bounds of µ-values. The power 

method realize only on matrix-vector products and work well for the case when pure complex 

uncertainties are under consideration. The power method was extended to µ-value problem when 

mixed real and complex uncertainties were under consideration by [6, 7]. The power method was 

extended to skew µ-value problems by [8, 9]. The power method may fail to converge when 

purely real uncertainties are under consideration [10]. 

The computation of µ-values for pure real uncertainties involves fundamental difficulties 

because of the fact that real µ-values could be a discontinuous function of the problem data [11]. 

This paper describes a low rank Ordinary Differential Equations ODE’s based technique in 

order to approximate the lower bounds of µ-values. The low rank ODE’s technique is based upon 

inner algorithm and outer algorithm. In an inner-algorithm, the main goal is to construct and then 

solve a system of ODE’s. While discussing with outer-algorithm, we vary perturbation level E > 

0 by means of fast Newton’s iterations. 
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We compare the results obtained for the approximation of µ-values lower bounds with one 

computed with the help of Gain Based Algorithm GBA [12] while considering both pure real and 

mixed real/complex uncertainties. The basic idea of GBA [12] involves the worst-case gain 

problem for the computation of real blocks of underlying uncertainties. The computation of 

complex blocks for the uncertainties involves the power method. 

Computing µ-values by means of a related worst-case gain problem can be applied to the 

problem which exists in control systems. Furthermore, this idea can be generalized in order to 

deal with analysis of robustness problems which taking uncertainty norms, that is, matrix 2-norm 

for ellipsoidal uncertainty [13]. This idea can also be applied to the analysis of non-linear lumped 

and distributed parameter systems [14]. The idea of GBA [12] is also useful for the analysis of 

finite-time control in batch and semi-batch process. 

 

2. NOTATIONS 

 

The notation Cm,n and Rm,n denotes complex and real matrices respectively. The block 

diagonal uncertainties are denoted by B and B∗ when mixed real and complex uncertainties and 

pure complex uncertainties are under consideration. The matrix valued function ∆ ∈ B or ∆ ∈ B∗ 

denotes the uncertainties belonging to block diagonal matrices. The 2-norm of ∆, that is, 

‖∆‖2 denotes the largest singular value of the matrix valued function ∆ ∈ B or ∆ ∈ B∗. The 

notation for structured singular value µ is standard. ∆R and ∆C in B denotes the number of 

repeated real blocks and the number of pure complex blocks, that is, 
 

 

∆R := {diag(δ1I1, δ2I2, ..., δsIs) : δi ∈ R, ∀i = 1 : s}; 
 

 

and 
 

∆C := {diag(δ1Is+1, δ2Is+2, ..., δF Is+F ; ∆1, ∆2, ..., ∆F ) : δj ∈ C, ∆j ∈ C
mj,mj ∀ j = 1 : F }. 

 

The spectral radius of the matrix M is denoted by ρ(M ). The notations Λ𝜀
𝐵(𝑀) and Σ𝜀

𝐵(𝑀)  

denotes the structured 𝜀-spectral value sets for the given matrix M with respect to perturbation 

level  𝜀 > 0. 
 

Definition 2.1.  [1]. For a given matrix M ∈ Km,m where K = C or R and for a given block 

diagonal uncertainties B, SSV is defined as, 
 

                                           (2.1) 
 

if there exists ∆ ∈ B such that det(I − M ∆) = 0, otherwise µB (M ) := 0 for ∆ ∈ B such that 

det(I − M ∆) = 0. 
 

Definition 2.2. [16]. The structured epsilon spectral value set of given matrix M ∈ Cn,n w.r.t 

an admissible perturbation level 𝜀 > 0is defined as: 
 

Λ𝜀
𝐵(𝑀) = {λ ∈ Λ(𝜀M ∆) : ∆ ∈ B,  ‖∆‖2 ≤1}.                                                                              (2.2) 

 

In Equ. (2.2), the quantity Λ(M) express the spectrum of a matrix M. 
 

Definition 2.3. [16]. The structured spectral value set of given matrix M ∈ Cn,n w.r.t an  

 

admissible perturbation level E > 0 is defined as: 
 

 

 Σ𝜀
𝐵(𝑀)  = {ξ = 1 − λ : λ ∈ Λ𝜀

𝐵(𝑀)}.                                                                                             (2.3) 
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The Equ. (2.1) allows us to reformulate the definition of µ-value as, 

Definition 2.4. [16]. The µ-value of a given matrix M ∈  Km,m where 
 

K = C or R and with respect to a set of block diagonal matrices B is defined as, 
 

                                                                                         (2.4) 
 

For pure complex perturbation that is B∗ the µ-value is defined as, 
 

                                                                               (2.5) 
 

Here, λ∈ Σ𝜀
𝐵∗

(𝑀). 

 

3. LOW RANK ODE’S BASED TECHNIQUE 

 

In this section, we provide the basic idea of low rank ODE’s based technique in order to 

approximate the lower bound of µ-values. We take the following optimization problem into 

account 
 

ξ(𝜀) = arg min |ξ|,                                                                                                                        (3.1) 
 

where ξ ∈  Σ𝜀
𝐵(𝑀), for some fixed perturbation level 𝜀 > 0. 

As µ-value is the reciprocal of the smallest obtained value for the perturbation level E > 0 for 

which ξ(𝜀) = 0. This allows us to suggest inner algorithm and outer algorithm. Inner algorithm 

deals with the solution of the minimization problem as discussed in Equ. (3.1). In the outer-

algorithm, the idea is to modify perturbation level 𝜀 > 0 by means of Newton’s method. This idea 

leads us in order to compute the extremizers of the matrix valued function ∆(𝜀) with respect to 𝜀 

>0. 

For pure complex perturbations B∗ the inner-algorithm determines the local optima for the 

maximization problem (3.2)  
 

λ(𝜀) = arg max |λ|.                                                                                                                       (3.2) 
 

Here in Equ.  (3.2), λ ∈ ΛB∗
(M ) which then cause the approximation of lower bound for µ-

value 𝜇𝐵∗(M ). 

For more details on the construction of both inner algorithm and outer algorithm, we refer 

interested readers to [16] and the references therein. 

 

4. AN ANTI-ALIASING FILTERS 

 

An Anti-aliasing filters are being used in the flight control electronics in order to minimize 

the distortion effects caused by the digital sampling. The following example is taken from [12] 

which consider a low-pass Sallen-Key filter [15]. The input and output transfer function for the 

Sallen-Key filter is given as 
 

                                                              (4.1)  
 

In order to compare µ-values lower bounds by means of Low rank ODE’s with the once 

obtained by GBA and LMI, we have collected the required data for transfer function matrices 

from [12]. 
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5. COMPARISON OF µ-VALUE LOWER BOUNDS 

 

In this section, we present the comparison of the numerical computation of µ-values lower 

bounds approximated by mussv and µ-values lower bounds computed by algorithm [16]. Each of 

the following 5-dimensional matrix is obtained from [12]. 
 

Case-I: 

The matrix M5 is computed by using the MATLAB command M = f reqresp(sys, 2). 
 

 
 

We take the uncertainty set of block diagonal matrices as: 
 

∆B = {diag(∆1) : ∆1 ∈ C5,5}. 
 

Using Matlab function mussv, we obtain the perturbation ∆ with  
 

 
 

while  ‖∆‖2 = 0.2180. The upper bound is obtained as 4.5869 while the same lower bound is 

approximated as 4.5869. 

The algorithm [16] computes the admissible perturbation E∗∆∗ with 
 

 
 

while  ‖Δ∗‖2 = 1. The lower bound is approximated as µlower = 4.5867. 
 

Case-II: 

The matrix M5 computed by using the MATLAB command M = f reqresp(sys, 3). 
 

 
 

We take the uncertainty set of block diagonal matrices as: 
 

∆B = {diag(∆1, ∆2) : ∆1 ∈ C3,3, ∆2 ∈ C2,2}. 
 

Using Matlab function mussv, we obtain the perturbation ∆ with  
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We obtain an upper bound 1.1681 while the lower bound is approximated as 1.1680. 

The algorithm [16] computes the admissible perturbation E∗∆∗ with 
 

 
 

while  ‖Δ∗‖2  = 1. The lower bound is approximated as µlower = 1.1680 which is same as the 

one approximated by mussv. 

Case-III: 

The matrix M5 computed by using the MATLAB command M = f reqresp(sys, 4). 
 

 
 

We take the uncertainty set of block diagonal matrices as: 
 

∆B = {diag(δ1I2, δ2I2, ∆1) : δ1, δ2, ∈ R, ∆1 ∈ C1,1}. 
 

Using Matlab function mussv, we obtain the perturbation ∆ with  
 

 

 
 

while ‖Δ∗‖2 = 2.9499. We obtain the upper bound 0.3449 while the lower bound is 

approximated as 0.3390. 

The algorithm [16] computes the admissible perturbation E∗∆∗ with 
 

 

 
 

while   ‖Δ∗‖2 =  1. The lower is approximated as µlower  = 0.3390 which is same as the one 

approximated by mussv. 

Case-IV: 

The matrix M5 computed by using the MATLAB command M = f reqresp(sys, 5). 
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We take the uncertainty set of block diagonal matrices as: 
 

∆B = {diag(δ1I2, δ2I2, δ3I1) : δ1, δ2, ∈ C, δ3 ∈ R}.  
 

Using the Matlab function mussv, we obtain the perturbation ∆ with 
 

 
 

while  ‖Δ∗‖2 = 2.6681. We have approximated an upper bound 0.3768 while the lower bound 

is approximated as 0.3748. 

The algorithm [16] computes the admissible perturbation E∗∆∗ with 
 

 
 

and  ∆∗  
2 = 1. In this case lower bound is approximated as µlower = 0.3768, which is much 

better than the lower bound approximated by mussv. 

Case-V: 

The matrix M5 computed by using the MATLAB command M = f reqresp(sys, 6). 
 

 
 

We take the uncertainty set of block diagonal matrices as: 
 

∆B = {diag(∆1, ∆2, δ1I1) : ∆1, ∆2 ∈ C2,2, δ1 ∈ C}. 
 

Using the Matlab function mussv, we obtain the perturbation ∆ 
 

 
 

while  ‖Δ∗‖2  = 2.2683. Whave approximated the upper bound as 0.4409 while the same 

lower bound is obtained. 

The algorithm [16] computes the admissible perturbation E∗∆∗ with 
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while  ‖Δ∗‖2 = 1. In this case the obtained lower bound is µlower = 0.4409, same as the one 

approximated by mussv. 

 

6. CONCLUSION 

 

In this article we have presented the approximation of µ-values for the family of matrices 

obtained from [12] for an anti-aliasing filter. The numerical experimentations show that how 

lower bounds of µ-value approximated by MATLAB function mussv and the one approximated 

by algorithm [16] are related to each other.  
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