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ABSTRACT 

 

In this study, the solutions of the random component time-fractional Klein-Gordon equation is obtained as 
approximately or exactly. The initial condition of this Klein-Gordon equation is studied by Gamma 

distribution. The fractional derivatives are defined in the Caputo sense. An example is shown to illustrate the 

influence of the solutions obtained by the new Sumudu transform iterative method (NSTIM). The expected 
value and variance of these solutions of this Klein-Gordon equation are obtained. The approximate analytical 

solution of this equation obtained by NSTIM and VIM are compared. NSTIM is applied to analyze the 

solution of this equation. Solution and figures are obtained by using MAPLE software. The formulas for the 
expected values and variances and results from the simulations of this Klein-Gordon equation are compared 

and the efficiency of this method is investigated. 

Keywords: Expected value, random component time-fractional Klein-Gordon equation, the new Sumudu 
transform iterative method, variance. 

2010 Mathematics Classification: 35R11, 35R60.   

 

 

1. INTRODUCTION 

 

Fractional calculus is a quite important topic in several scientific areas [19, 25, 30, 31, 32, 

35]. Methodologies of fractional calculus have been widely used in the modeling of a lot of real 

matters in applied mathematics. Specially, fractional partial differential equations (FPDEs) 

describe certain a lot of phenomena in several scientific areas such as damping laws, diffusion 

equations, heat transfer modeling,  electrostatics, fluid flow, elasticity and many others [1, 2, 3, 4, 

5, 21, 22, 23, 24, 27, 28].  

In the literature, there are very few studies on random fractional partial differential equations 

(RFPDEs). Random fractional partial differential equations (RFPDEs) are described as fractional 

partial differential equations with random inputs that can be a random variable or a stochastic 

process. These equations have a enormous significance in a lot of applications in engineering, 

biology, physics, mathematics and many other applied sciences. It is generally not possible to find 
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random nonlinear fractional partial differential equations analytically. Thus, several numerical 

methods and approximation schemes for RFPDEs and FPDEs have been improved. There are a 

lot of numerical methods and approximation schemes such as adomian decomposition method 

(ADM) [41], homotopy perturbation method (HPM) [17], differential transformation method 

(DTM) [29], variational iteration method (VIM) [18], fractional variational iteration method 

(FVIM) [45], random finite difference scheme [9, 14] and many other methods. The main 

motivation in writing this paper is to analyze random nonlinear fractional partial differential 

equations using the new Sumudu transform iterative method (NSTIM) which is the reliable 

computational method. 

The nonlinear Klein–Gordon equations are used to model a lot of problems in physics and 

these equations has been solved by different numerical methods in mathematics [6, 7, 13, 38, 42]. 

Recently, the fractional nonlinear Klein-Gordon equations have been solved by many numerical 

methods [15, 16, 20, 36]. For example, Golmankhaneh et al. successfully implemented the HPM 

for obtaining approximate analytical solutions of these equations [16].       

This paper studies the random component time-fractional Klein-Gordon equation solve 

numerically by NSTIM. Wang and Liu established this method. They successfully applied this 

method to acquire the solutions of time-fractional Cauchy reaction-diffusion equations 

approximately and analytically [39]. There aren’t enough research and articles on the power series 

transformation like Sumudu transform in the literature. The Sumudu transform method (STM) 

proposed by G. K. Watugala, was applied to solve engineering problems [40]. The method was 

applied to partial differential equations by Weerakoon [43]. Weerakoon found the inverse formula 

of this transform [44]. Demiray et al. used the Sumudu transform method (STM) to find the 

solutions of fractional differential equations exactly [11]. Kumar and Daftardar-Gejji extended 

Sumudu transform iterative method (STIM) to solve various both FPDEs and systems of FPDEs 

[26]. Prakash et al. suggested a new iterative Sumudu transform method (NISTM) to acquire 

solutions of the nonlinear time fractional Zahkarov-Kuznetsov equations numerically [33]. In this 

paper, the solutions of this Klein-Gordon equation are approximately obtained with NSTIM and 

VIM. Projected technique is used for error analysis. In addition, approximate solutions obtained 

by two methods with exact solution of this equation are shown in comparison tables. The 

difference of this work from Prakash et al. (2018) and Wang and Liu (2016) studies is to examine 

the random component fractional partial differential equation. The aim of this study is to present 

the application of NSTIM for obtaining the approximate analytical solution of the random 

component time-fractional Klein-Gordon equation with Caputo derivative and for calculating the 

expected value and variance of this solution. It is observed that the numerical solution obtained by 

NSTIM for this Klein-Gordon equation is almost similar to exact solution for this Klein-Gordon 

equation. Tables indicate that absolute error is negligible. It is observed that NSTIM is superior 

than VIM for this Klein-Gordon equation. 

 

2. THE BASIC DEFINITIONS 

 

In this section, a few main definitions of fractional calculus, Sumudu transform and Gamma 

distribution are presented. 
 

Definition 2.1. For , a real function  is said to be in the space if there exists 

a real number  such that  where  and it is said to be in 

the space  if  [12, 39]. 
 

Definition 2.2. The Caputo fractional derivative of  is defined by [19, 37, 39] 
 

                                                       (1) 
 

where  

Some properties of the operator  that will be used in this study are given below: 
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(1)  

(2)   
 

Definition 2.3. The Riemann-Liouville fractional integral operator of order  of a function 

 is given in the following [19, 39]  
 

                                                                  (2) 

 

where  is the Gamma function. 

Some features of the operator  that will be used in this study are given below: 

For  
 

(3)  

(4)  
 

Definition 2.4. For , the Mittag-Leffler function  is given as follows [8, 39] 
 

                                                                                                                    (3) 
 

Definition 2.5. The Sumudu transform on the set of functions 

 is given as follows [8, 39] 

 

                                                                                    (4) 
 

Definition 2.6. The Sumudu transform of the Caputo fractional derivative is as follows [39] 
 

                        (5) 
 

Definition 2.7. If the probability density function of a random variable  has the following form, 

then this random variable has the Gamma distribution and is called a Gamma random variable. 

For  ,  
 

                                                                                                                            (6) 
 

If the random variable  has a Gamma distribution with parameters  and , then the 

expected value and variance of the random variable  are given as follows [34] 
 

                                                                                                           (7) 
 

In this study, Gamma distribution in the example is chosen as Gamma . 

 

3. THE NEW SUMUDU TRANSFORM ITERATIVE METHOD 

 

Consider the following equation with the initial condition 
 

                                                                              (8)  

 

where  is the Caputo fractional derivative operator, ,  is a continuous 

function,   is linear operator and  is nonlinear operator [39].  

If Sumudu transform is implemented to both sides of Eq. (8), then it can be found that 
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                                                                      (9)  
 

The following equation is obtained with the feature of the Sumudu transform [39] 
 

                        (10) 
 

From Eq. (10), it can be found that 
 

                               (11) 
 

If the inverse Sumudu transform is implemented to Eq. (11), then Eq. (12) is obtained 
 

                   (12) 
 

Assume the following equalities hold:  
 

  

 

So Eq. (12) becomes Eq. (13): 
 

                                                                             (13) 
 

where  is a known function,  is a linear operator of  and  is a nonlinear operator of . 

The solution of Eq. (13) is given by the series form as follows [39] 
 

                                                                                                                (14)  
 

Since K is a linear operator, the following equation is written as  
 

                                                                                                            (15) 
 

The nonlinear operator  is written as [10, 39] 
 

                                                          (16) 
 

Thus, Eq. (13) is given as [39] 
 

                                  (17) 
 

If the following recurrence is defined 
 

                                           (18)  

 

then the Eq. (19) is obtained [39] 
 

                                                       (19) 
 

Thus, Eq. (20) is obtained as 
 

                                                                                    (20) 
 

The m-term solution of Eq. (13) is approximately obtained as  

 

                                                                                         (21) 

 

In this work, the approximate analytical solution of random component time-fractional Klein-

Gordon equation is obtained with the NSTIM. It is illustrated in the numerical experiment.  

 

4. ERROR ANALYSIS OF PROJECTED TECHNIQUE 

 

The error analysis of used technique acquired by NSTIM is given as follows. 
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Theorem 4.1. For all  values, a real number  satisfies .  

Furthermore, if the truncated series  is used to be an approximate solution  

then maximum absolute truncated error is found with [33]  
 

  

 

5. NUMERICAL EXPERIMENT  

 

Consider the random component time-fractional Klein-Gordon equation  
 

                                                                                                  (22) 

 

where  and  are Gamma distributed random variable with parameters  and , i.e.  

. 

If Sumudu transform is applied to Eq. (22) and the differential feature of Sumudu transform is 

used, then the Eq. (23) is found 
 

                                                                                                  (23) 
 

If the inverse Sumudu transform is applied to Eq. (23), then Eq. (24) is obtained 
 

                                                                     (24) 
 

From Eq. (24), it is obtained as 
 

                                                                              (25)  
 

For NSTIM, Eq. (26) holds: 
 

                                                                                             (26) 

 

By iteration, the results are obtained as follows 
 

  

 

  

  

  

  
 

Thus, the approximate solution of Eq. (22) is found as follows 
 

 

 
                                                                                                                     (27) 

 

The form  is the approximate solution of the Eq. (22) for . Also, 

this form is the exact solution of this equation for . 
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Table 1. Comparison of the exact solution, approximate solution obtained with the sixth-order 

NSTIM   and the VIM solution for α=1,   
 

  

Exact Sol. NSTIM VIM 

0.5 0.2 4.623059351 4.623059345 4.623059077 

0.5 0.4 5.434325171 5.434325171 5.434307078 

0.5 0.6 6.425207477 6.425189477 6.424995080 

0.5 0.8 7.635473861 7.635335345 7.634243080 

0.5 1.0 9.113696561 9.113017745 9.108851080 

1.0 0.2 5.347150244 5.347150238 5.347149970 

1.0 0.4 6.158416064 6.158415038 6.158397970 

1.0 0.6 7.149298370 7.149280370 7.149085970 

1.0 0.8 8.359564754 8.359426238 8.358333970 

1.0 1.0 9.837787454 9.837108638 9.832941970 

1.5 0.2 5.659198247 5.659198247 5.659198241 

1.5 0.4 6.470464067 6.470463041 6.470445970 

1.5 0.6 7.461346373 7.461328373 7.461133970 

1.5 0.8 8.671612757 8.671474241 8.670381970 

1.5 1.0 10.149835460 10.149156640 10.144989970 

 

Table 2. Comparison of the sixth- order NSTIM and VIM solution for α=0.9, and   
 

  

NSTIM VIM 

0.5 0.2 4.800450449 4.798719554 

0.5 0.4 5.740077833 5.734086881 

0.5 0.6 6.865282529 6.849157273 

0.5 0.8 8.227008434 8.189855214 

0.5 1.0 9.880842554 9.804132230 

1.0 0.2 5.524541342 5.522810447 

1.0 0.4 6.464168726 6.458177768 

1.0 0.6 7.589373422 7.573248163 

1.0 0.8 8.951099327 8.913946104 

1.0 1.0 10.604933450 10.528223110 

1.5 0.2 5.836589345 5.834858450 

1.5 0.4 6.770216729 6.770225768 

1.5 0.6 7.901421425 7.885296163 

1.5 0.8 9.263147330 9.225994106 

1.5 1.0 10.916981450 10.840271110 
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Table 3. Comparison between absolute error when and  for this example 
 

  
 

     

 
 

0.0 0.1 0.2 0.3 0.4 0.5 

NSTIM 0.0 0.0 0.0 0.0 0.6 x  0.1 x  0.1 x  0.4 x  

VIM  0.0 0.4 x  0.2 x  0.3 x  0.1 x  0.7 x  

NSTIM 0.1 0.0 0.0 0.6 x  0.1 x  0.1 x  0.4 x  

VIM  0.0 0.4 x  0.2 x  0.3 x  0.1 x  0.7 x  

NSTIM 0.2 0.0 0.0 0.6 x  0.1 x  0.1 x  0.4 x  

VIM  0.0 0.4 x  0.2 x  0.3 x  0.1 x  0.7 x  

NSTIM 0.3 0.0 0.0 0.6 x  0.1 x  0.1 x  0.4 x  

VIM  0.0 0.4 x  0.2 x  0.3 x  0.1 x  0.7 x  

NSTIM 0.4 0.0 0.0 0.6 x  0.1 x  0.1 x  0.4 x  

VIM  0.0 0.4 x  0.2 x  0.3 x  0.1 x  0.7 x  

NSTIM 0.5 0.0 0.0 0.6 x  0.1 x  0.1 x  0.4 x  

VIM  0.0 0.4 x  0.2 x  0.3 x  0.1 x  0.7 x  

 

It is observed from Table 1 that the solution obtained by NSTIM numerically is very close to 

exact solution. The comparison of absolute error between approximate solutions acquired from 

different methods and exact solution different values of  and  is shown in Table 3. Thus, it can 

be seen in Table 3 that absolute error is negligible. Table 1, 2 and 3 indicate that NSTIM is more 

efficient than VIM. 

Now we get the expected value and variance of the approximate solution.  

So the expected values of  and   are obtained as follows 
 

  

For   the expected value of Eq. (27) is given by 
 

 
 

The graphs of the expected values of the Eq. (27) for different values of α are plotted in 

Maple software as follows 

 

 
 

Figure 1. For time-dependent change of expected value of the Eq. (22) 
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Figure 2. For time-dependent change of expected value of the Eq. (22) 

 

 
 

Figure 3. For time-dependent change of expected value of the Eq. (22) 

 

 
 

Figure 4. For time-dependent change of expected value of the Eq. (22) 

 

For   the variance of Eq. (27) is calculated as follows 
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The graphs of the variances of the Eq. (27) for different values of α are plotted in Maple 

software as follows 

 

 
 

Figure 5. For time-dependent change of variance of the Eq. (22) 

 

 
 

Figure 6. For time-dependent change of variance of the Eq. (22) 

 

 
 

Figure 7. For time-dependent change of variance of the Eq. (22) 
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Figure 8. For time-dependent change of variance of the Eq. (22) 

 

6. CONCLUSION 

 

In this study, this Klein-Gordon equation is analyzed by NSTIM. The approximate analytical 

solution of the random component time-fractional Klein-Gordon equation has been quickly and 

successfully obtained with NSTIM. NSTIM is more efficent than VIM as shown in Tables 3. 

Thus, it is concluded that NSTIM is quickly, effective and superior in obtaining the approximate 

solutions for random component nonlinear fractional partial differential equations. 
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