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ABSTRACT 

 

This paper presents a comprehensive review of research studies related to the application of artificial neural 
networks (ANNs) to public transportation (PT) since 2000. PT applications with ANNs have a great 

prominence because it provides an opportunity of prediction, comparison and evaluation in PT. A short 

introduction for applied studies in public transportation based on NN is included to guide the unfamiliar 
readers and a detailed review table has been presented in the paper. More than a thousand studies have been 

viewed, however, 72 studies of PT are related to ANN. It is observed that multi-layer feed forward network 

with gradient descent training has been commonly used by now. In contrast, the other less known methods are 
prone to increase. This paper guides future research directions and presents the methods to be exerted in PT 

for input determination. 

Keywords: Artificial neural network, multi-layer perceptron, public transportation, radial basis function.. 

 

 

TOPLU TAŞIMA ARAÇLARINDA UYGULANAN YAPAY SİNİR AĞI İÇİN KAPSAMLI BİR 

LİTERATÜR TARAMASI 

 

ÖZ 

 

Bu çalışma, 2000 yılından itibaren toplu taşıma (TT) alanında yapay sinir ağları (YSA) ile yapılan 

çalışmaların kapsamlı bir taramasını sunmaktadır. Yapay sinir ağı ile yapılan TT uygulamaları büyük bir 
öneme sahiptir çünkü YSA, araştırmacılara etkin bir şekilde tahmin, karşılaştırma ve değerlendirme 

yapabilme imkanı vermektedir. YSA ile uygulama yapmamış olan okuyucular için, YSA ile yapılan TT 

araçlarındaki çalışmaların kısa bir açıklaması çalışmaya dahil edilmiş ve detaylı bir tarama tablosu çalışma 
kapsamında sunulmuştur. Binden fazla çalışma incelenmiş, ancak YSA ve TT ile ilgili sadece 72 çalışmanın 

mevcut olduğu görülmüştür. İniş eğimli eğitimi ile çok katmanlı ileri beslemeli ağ yapısının daha çok 

kullanıldığı görülmüştür. Bu durumun aksine, diğer az bilinen yöntemler artma eğilimindedir. Bu çalışma, 
gelecek araştırma yönleri için rehberlik etmekte ve TT’ de girdinin belirlenmesi için uygulanacak yöntemleri 

sunmaktadır. 

Anahtar Sözcükler: Çok katmanlı algılayıcı, sinir ağı, toplu taşıma, radyal bazlı fonksiyon. 
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1. INTRODUCTION 

 

PT within the transportation is of a vital prominence for the expanding metropolitan regions. 

Because the overall aspect in PT tenders influences on mobility that complies with a more 

common interpretation of sustainability that covers economic, social and environmental factors 

[1]. PT contains a number of modes such as buses, subways, bus rapid transit (BRT), light rails, 

tramways and ferries. These PT modes deal with the fuel consumption, traffic congestion and 

carbon emission within a city. 

The area of PT studies has not highly drawn attention in ANNs since 2000. This situation can 

be realized from the research studies in this field which are less than 72 papers. ANN applications 

in the field of PT are interested in this paper since the ANN for PT is regarded as prominent by 

the researchers. Mainly, the importance of ANN for PT is seen from the papers that are applied 

for forecasting, evaluation, comparison and minimization problems. Papers, which have been 

applied in diverse fields, yield to present a literature paper. Moreover, there has not been any 

published review in the field of PT which is integrated with ANN. The objective of this paper is 

to provide a detailed information such as hidden layer number, hidden neuron number, the kind 

of ANN that is used and the kind of training method that is applied by presenting the studies in an 

integrated area of both PT and ANN. In addition to presentation of the detailed information, it 

aims to provide the further progress to the researchers. We reviewed the literature on ANNs 

approaches that applied to PT. The databases covered are ScienceDirect, Wiley and IEEE Xplore. 

A total of 72 papers are reviewed ranged from 2000 to 2016. 

The main contributions of the paper are as follows: it is aimed to increase the interest in PT 

based on ANN, since any improvement in PT provides economic opportunities and reduces both 

gasoline consumption and carbon emissions. Moreover, positive interests to PT affect public 

health through a variety of mechanism [2].  

After this chapter, introduction to ANN is presented by focusing especially on both feed-

forward and recurrent neural network architecture in chapter 2. Chapter 3 brings to light the all-

ANN application in reviewed PT studies. Chapter 4 clarifies the concepts reviewed in this paper 

via presenting brief explanations. Lastly in chapter 5, conclusions of review and future directions 

are presented. 

 

2. ANN METHODS IN PT 

 

Researchers from many scientific fields are devising ANNs to bring solution to the difficult 

problems such as optimization, prediction and pattern recognition [3]. The ANN is actually a 

novel computer architecture and a novel architecture relative to traditional computers by 

imitating biological neural networks. It allows using very simple computational operations such 

as fundamental logic elements to deal with complex, mathematically vague, nonlinear or 

stochastic problems [3]. ANNs can be considered as weighted directed graphs where directed 

edges are connections between input and output. Besides, artificial neurons are nodes [3]. There 

are many types of ANN model such as dynamic, static and memory ANN. However, a number of 

ANN models, which are mainly performed by the researchers, are presented in this paper. 

Network architecture can be divided into two groups; feed-forward network and feed-back 

networks. 

Feed-forward neural networks (FFNNs) are the most general and the most broadly used 

models in many practical applications. The FFNN is the first and simplest sort of ANN that is 

designed. The information flows in only one course from the input nodes to the output nodes 

without creating loops. In this paper, single layer perceptron, multi-layer perceptron and radial 

basis function (RBF) networks are considered in FFNNs, because they are mainly performed by 

the researchers. Feed-back neural networks (FBNNs) is the network that contains at least one 

feed-back connection. This feedback feature is in discrete cycles of weight computation. Hopfield 
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network and Boltzmann machine are included in FBNNs [3] in this paper, because they are 

mainly performed by the researchers. Figure 1 illustrates both feed-forward and recurrent ANN. 

 

 

Figure 1. Feed forward and recurrent ANN architecture. 

 

The activation function indicates the extent of a neuron’s activation. The reaction of the 

neurons is shaped with respect to the activation function. Commonly performed activation 

functions are heaviside, hyperbolic tangent and logistic function. Another important part of 

neuron reaction is a threshold value because the activation function of a neuron behaves 

especially near the threshold value.  

A key element for reaching a successful learning is to use a bias neuron. The output value of 

a bias neuron is always equal to 1. Bias neurons in an ANN that allows researchers to change the 

value of the activation function. 

 

3. DETAILED ANALYSES OF THE LITERATURE 

 

Detailed review of ANN applications in PT is presented in Appendix A. However, problem 

classifications, analysis of modeling approach, solution methodologies and descriptive analysis 

are explained in this chapter. 

 

3.1. PT applications 

 

PT within the transportation is of a vital prominence for the expanding metropolitan regions. 

Because the overall aspect in PT tenders influences on mobility that complies with a more 

common interpretation of sustainability that covers economic, social and environmental factors 

[1]. PT contains a number of modes such as buses, subways, bus rapid transit, light rails, 

tramways and ferries. In PT, the planning and scheduling of trips have a key role. Thus, it is seen 

that most of the researchers deal with bus and BRT trips and passenger flow. It can be stated that 

the highway public transportation modes, such as conventional bus and BRT systems are more 

common than rail public transportation modes, such as light rails and tramways due to higher 

flexibility and lower capital cost of the former. 

 

3.2. Problem classifications 

 

In the reviewed papers, the researchers have focused on four main problem types. At 69% of 

the reviewed papers, the researchers are more interested in forecasting and prediction. Evaluation 

and analysis, minimization and maximization, and comparison have proportions of: 25%, 4%, 

and 2%, respectively. 

To give detailed information, sub-problem types are presented for four main problem types. 
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 Forecast and prediction. Forecast and prediction have been applied in various areas as 

follows: bus arrival time [5,6,15,16,17,20,32,40,45,50,80,89], traffic flow [7,25,27], bus average 

travel time and variance of travel times [10,13,39], route choice [11,12,48,86], decision making 

units [21,78], trip flow [22,34,35,43,44,74,83], passenger flow [28,29,33,37,38,46,51,84,85,90] 

and passenger waiting time [41,42]. 
 

Papers [66,67,68], in the area of both bus arrival time and bus travel times, have been 

published without ANN. The corresponding papers may have utilized ANN technique to benefit 

from the efficiency of ANN. 

Figure 2. Distinct problem types for forecast and prediction 

 

Figure 2 shows the different problem classifications in area of forecast and prediction. Bus 

arrival time has been the mostly interested problem type in this area. Following bus arrival time, 

researchers dealt with passenger flow and trip flow. 

 Comparison. In this area, [35] is presented to compare the RBF with FFNN in the area 

of PT trip flow. 

 Evaluation and analysis. This problem type has been applied in various areas as 

follows: measurement of the pollution impact of BRT [8], road safety [14], bus classification 

[18], air quality of PT [19,81,92], decision making units [21,48,49], rail capacity [23], 

performance of PT services perceived by the passengers [24,36,71,72,75,77], forecaster variables 

[26], and green vehicle distribution model [31]. 

 Minimization and maximization. In this area, minimization of the traveling time 

variance [9] and vehicle delay [47] are presented. 

 

3.3. Analysis of modeling approach 

 

The construction of ANN is a crucial element to achieve a successful result in a given 

problem type such as minimization, maximization and prediction. In literature, most of the papers 

utilized multi-layer feed forward (MLFF) and it is used in 44 papers. Other ANN constructions; 

RBF, support vector machine (SVM), and ANFIS are used in 3, 1, and 2 papers respectively. 
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All required descriptions of the parameters are presented in the Table 1. 

 

Table 1. The detailed parameter descriptions used for methodologies 
 

Parameters Descriptions 

𝑑𝑖  Desired value for factor 𝑖 
E Error for delta rule 

𝑓𝑎 Approximation function in learning process 

G Gaussian function 

H 

L 

m 

𝑀𝑘 

𝑜𝑖 
𝑝𝑘 

S 

F 

𝑆𝑘 

𝑣𝑘 

𝑤𝑗  

𝑥𝑗
𝑖 

y 

𝛼 

𝜔 

𝜂 

Output in the hidden layer 

Norm 

Distance 

Measurement matrix 

Output value for factor 𝑖 
Process noise (random process) 

State 

Sign factor 

Approximation function in learning process 

Measurement noise 

Weights for input variable 𝑗 
Input variable 𝑗 for factor 𝑖 
Response variable 

Learning rate (0<∝<1) 

Hidden layer weight 

Sign factor 

 

 Multi-layer perceptron (MLP). MLP includes multiple layers and each layer is 

connected to the next layer and MLP transforms the inputs to a set of outputs. MLP can solve 

non-linear and stochastic problems by back-propagation algorithms. The performance of the 

algorithm can be generally carried out by the SSE between the output and the desired values. As 

per usual, SSE value can be minimized by using error descent method. The learning stage is cut 

when the difference between O and d is zero. MLFF are applied in the papers [5-22, 25-29, 31, 

33-39, 41- 51,82,88] and distinct areas such as prediction and forecast, comparison, evaluation, 

and minimization. The learning algorithm of MLP is shown in Eq. (1). MLP architecture is 

clearly shown in Figure 4.  
 

𝜕𝐸

𝜕𝑤𝑗
=∝ 𝑥𝑗

𝑖 . (𝑜𝑖 − 𝑑𝑖)                                                                                                                                   (1) 
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Figure 4. A visual architecture of multi-layer perceptron. 

 

Back-propagation (BP) is a widely used method of training algorithm. The BP training 

method can be exerted in the networks where desired outputs are available, even the outputs of 

the intermediate layers are absent. This is usually regarded as a supervised learning method. The 

BP algorithm aims to minimize SSE by calculating the steep descent (gradient). Gradient descent 

learning rule is a delta rule, which is a special type of the back propagation algorithm. This rule 

embarks on the SSE in the learning phase. This rule has a great applicability that can be 

performed in both binary and continuous neurons [4].The delta rule is derived by attempting to 

minimize the error in the output of the ANN through gradient descent. The calculation of delta 

rule is illustrated in Eq. (2) and Eq. (3). 
 

𝐸 = ∑ 𝐸𝑖𝑖 =
1

2
∑ (𝑑𝑖 − 𝑜𝑖)

2
𝑖                                                                                                                       (2) 

 

𝜕𝐸

𝜕𝑤𝑗
= −∑ (𝑑𝑖 − 𝑓(∑ 𝑤𝑗𝑥𝑗

𝑖
𝑗 )) . 𝑓′(∑ 𝑤𝑗𝑥𝑗

𝑖
𝑗 ). 𝑥𝑗

𝑖
𝑖                                                                                   

(3) 
 

To obtain the weight update rule, the error descent rule (∆𝑤𝑗 = −∝
𝜕𝐸

𝜕𝑤𝑗
) is used and the 

change that is occurred in the weights can be calculated in Eq. (4) as follows: 
 

∆𝑤𝑗 = 𝛼
𝜕𝐸

𝜕𝑤𝑗
𝑥𝑗
𝑖                                                                                                                                              (4) 

 

First, E, with respect to the weights, is found and then weights should be updated as shown in 

Eq. (5). 
 

∆𝑤𝑖𝑗 = −∝
𝜕𝐸

𝜕𝑤𝑖𝑗
                                                                                                                                           (5) 

 

 Radial basis function neural network (RBFNN). RBFNN is a feed-forward network 

that is trained by a supervised training algorithm. Radial functions are a special type of function. 

It is a highly interesting that their response increases or decreases monotonically with distance 

from a central point [53]. RBFNNs have several superiorities with respect to back propagation 
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networks. RBFNNs can be trained in two steps. In the first step, center vectors (𝑐𝑗) are 

determined in a hidden layer. In the second step, Function estimation, which is a common 

objective function, is fit with coefficients to the outputs. The calculation of the output in RBFNN 

is shown in Eq. (6), Eq. (7) and Eq. (8). 
 

𝑂𝑗 = 𝑤0𝑗 +∑ 𝑤𝑘𝑗ℎ𝑘
𝑁
𝑘=1                                                                                                                               (6) 

 

ℎ𝑘 = 𝐺(𝑑𝑘 , 𝜎𝑘)                                                                                                                                              (7) 
 

𝑂𝑗 = 𝑤0𝑗 +∑ 𝑤𝑘𝑗𝐺𝑘 (||𝑥𝑗 − 𝑐𝑗||)
𝑁
𝑘=1                                                                                                       (8) 

 

where 𝑂𝑗is the approximation function. Euclidian distance (ℎ𝑘) is represented by 𝐺𝑘 (||𝑥𝑗 −

𝑐𝑗||). 𝑤𝑘𝑗 is the weights between layers. 

RBF are performed in three papers: first paper [35] presented a comparison between MLFF 

and RBF. Second paper [19] used RBF to evaluate air quality of PT. Prediction are applied in the 

third paper [17]. Studies that have been exerted in RBF are less than MLFF. 

 Support vector machine (SVM). SVM, in general, is used to analyze data for 

classification and regression analysis with regard to structural risk minimization (SRM). Instead 

of minimizing the absolute value of an error square, SVM applies SRM [59]. SRM is a function 

that minimizes some risk function 𝑅(𝑤), which is also called the expected loss, and it is 

calculated as in Eq. (9), Eq. (10) and Eq. (11). 
 

𝑅(𝑤) = ∫𝐿(𝑦, 𝑜)𝑑𝑃(𝑥, 𝑦) = ∫𝐿(𝑦, 𝑓𝑎(𝑥, 𝑤))𝑑𝑃(𝑥, 𝑦)                                                                      (9) 
 

𝐿(𝑦, 𝑜) = |𝑦 − 𝑓𝑎|                                                                                                                                       (10) 
 

𝑜 = 𝑦 = {
𝑓𝑎(𝑥, 𝑤) = ∑ 𝑤𝑖𝜑𝑖(𝑥), 𝑖𝑓 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑖𝑠 𝑅𝐵𝐹

𝑁
𝑖=1

𝑓𝑎(𝑥, 𝑤, 𝜔) = ∑ 𝑤𝑖𝜑𝑖(𝑥, 𝜔𝑖), 𝑖𝑓 𝑡ℎ𝑒 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑖𝑠 𝑀𝐿𝑃
𝑁
𝑖=1

                                             (11) 

 

The expected loss function 𝐿(𝑦, 𝑓𝑎(𝑥, 𝑤)) is computed on the training set D(𝑥𝑖 , 𝑦𝑖) and 

𝜑𝑖(𝑥, 𝜔𝑖) is a number of functions such as sigmoidal or tangent [59]. Only a single paper [15] is 

presented which applied SVM in order to predict bus arrival time. 

 Adaptive neuro fuzzy inference system (ANFIS). ANFIS is an ANN which is based on 

the Takagi-Sugeno inference system. It is used to model high level nonlinear functions. ANFIS 

allows to establish a number of fuzzy if-then rules with suitable membership functions to form 

the stipulated input-output pairs [60]. ANFIS has five layers which contains distinct operations 

and these operations is summarized as below: 

Layer 1: Determine the membership functions (𝜇𝐴, 𝜇𝐵 , …) i.e. bell-shaped, by considering 

linguistic expressions 

Layer 2: Perform the rules to produce the weights in the intermediate layer and the calculation of 

the weights is shown in Eq. (12). 
 

𝑤𝑖 = 𝜇𝐴𝑖(𝑥) ∗ 𝜇𝐵𝑖(𝑦)                                                                                                                                 (12) 
 

Layer 3: Calculate the normalized firing strengths to scale between 0 and 1 

Layer 4: The output of this layer is considered as consequent parameter 

Layer 5: Calculate the overall output 
 

Two papers, which used ANFIS, are presented as follows: first paper [31] dealt with green 

vehicle distribution model in the field of evaluation and analysis. Second paper [48] dealt with a 

signalization problem in the area of decision-making unit. 

 

3.4. Solution methodologies 

 

 Resilient propagation (Rprop). Resilient propagation applies a direct adaption of the 

weight step based on local gradient information. The Rprop consider only the sign of the partial 
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derivative and moves on each weight with regard to 𝜂+ or 𝜂− factor. Individual value (∆𝑖𝑗) for 

each weight is shown as in Eq. (13) [56].  
 

∆𝑖𝑗
(𝑡)
=

{
  
 

  
 𝜂

+ ∗ ∆𝑖𝑗
(𝑡−1)

, 𝑖𝑓 
𝜕𝐸(𝑡−1)

𝜕𝑤𝑖𝑗
∗
𝜕𝐸(𝑡)

𝜕𝑤𝑖𝑗
> 0

𝜂− ∗ ∆𝑖𝑗
(𝑡−1)

, 𝑖𝑓
𝜕𝐸(𝑡−1)

𝜕𝑤𝑖𝑗
∗
𝜕𝐸(𝑡)

𝜕𝑤𝑖𝑗
< 0 

∆𝑖𝑗
(𝑡−1)

, 𝑒𝑙𝑠𝑒

𝑤ℎ𝑒𝑟𝑒 0 < 𝜂− < 1 < 𝜂+

                                                                                            (13) 

 

When the individual update value for each weight is determined, the change in the weights is 

calculated as 
 

∆𝑤𝑖𝑗
(𝑡)
=

{
 
 

 
 −∆𝑖𝑗

(𝑡)
, 𝑖𝑓

𝜕𝐸(𝑡)

𝜕𝑤𝑖𝑗
(𝑡) > 0

+∆𝑖𝑗
(𝑡)
, 𝑖𝑓

𝜕𝐸(𝑡)

𝜕𝑤
𝑖𝑗
(𝑡) < 0

0, 𝑒𝑙𝑠𝑒

                                                                                                                   (14) 

 

∆𝑤𝑖𝑗
(𝑡+1)

= 𝑤𝑖𝑗
𝑡 + ∆𝑤𝑖𝑗

(𝑡)
                                                                                                                             (15) 

 

The update values and the weights are becoming different every time the entire pattern set is 

offered to the network [56]. Peters et al. exerted resilient propagation in order to develop a 

system that makes a timetable optimization and obstructs time delay. 

 Genetic-algorithm-based neural network. Genetic algorithms (GAs) belong to the 

larger class of evolutionary algorithms that offer solutions to the problems which are difficult to 

deal with. GA is an iterative search procedure keeping on a population of structures that are 

possible solutions to specific domain challenges. GAs are search algorithms based on the natural 

selection process [57]. A typical cycle of GA connection weights is applied as following steps: 
 

1. Generate a corresponding ANN with weights by determining each genotype in the current 

generation with a number of connection weights 

2. Calculate the mean squared error (MSE), SSE or mean absolute percentage error (MAPE) 

between desired and output values and a correction process should be included in the fitness 

function to give a penalty to large weights 

3. Choose parents for reproduction with regard to fitness function 

4. Execute crossover or mutation to parents in order to produce the next generation [58]. 

Some authors [19,87] performed a hybrid GA-ANN in order to model air quality inside a PT or 

determine signal priority. 
 

 Supplemental methods 

 Kalman Filter. Kalman filter provides a recursive solution to the linear optimal filtering 

problems. Kalman filter both bypasses the need for holding the past output data and provides 

more efficient estimation [54]. The Kalman filtering enables adjustment of estimates for a 

particular purpose. The researchers interested in Kalman filter may reach the detailed gist from 

the book of “Kalman Filtering and Neural Networks” [54]. The Kalman filter is formulated in Eq. 

(16) and Eq. (17). 
 

𝑠𝑘+1 = 𝐹𝑘+1,𝑘𝑠𝑘 + 𝑝𝑘                                                                                                                              (16) 
 

𝑜𝑘 = 𝑀𝑘𝑠𝑘 + 𝑣𝑘                                                                                                                                          (17) 
 

Kalman filter, which estimates the future states of dependent variables, is applied by the 

researcher in order to predict bus arrival time at bus stop [15]. 

 Bootstrap method. The Bootstrap is a type of a larger class of methods that resample 

from the existing data set with replacement. It is so difficult to determine the standard error or 
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estimate a parameter without any parametric assumptions [55]. In that case, the bootstrap offers a 

way to determine the standard error. Bootstrap method is used in an ANN to evaluate the level of 

error. The readers interested in bootstrap method may reach the detailed gist from the book of 

“Bootstrap Methods: A Guide for Practitioners and Researchers” [55]. The researchers [18] 

proposed a different approach in order to classify bus lines. Moreover, different ANN structures 

are tested by bootstrap method. 

 K-nearest neighbors (k-NNs). K-NNs algorithm, used for classification or regression, is 

a nonparametric classification method. It finds the k closest points to a query point with regard to 

the Euclidean distance and selects the majority. Its ease of usage enables applicants to implement 

it to large scale complex problems [61].The efficiency of the k-NN is increased by assigning a 

weight to each of k-NNs [62]. Another way to improve the efficiency of the k-NN is to exert the 

AURA k-NN. The Aura k-NN neural network technique is able to solve large problems for 

classification faster than traditional k-NN [63]. The researchers [15] applied k-NNs to predict bus 

arrival times at a bus stop for different routes. 

 Pruning algorithm. Pruning algorithm is commonly used in order to determine the size 

of hidden neuron or layer in ANN. This algorithm set the weights to zero and evaluates the 

change in the error (SSE). If the change is higher than the previous error, the action to be applied 

is removed. This evaluation process should be repeated until reaching the least error with respect 

to the threshold [64]. The researchers interested in pruning algorithm can reach the detailed gist 

from the study of “Pruning Algorithms-A Survey” [64]. 

 Growing algorithm. Growing algorithm begin with a small network to determine the 

sufficient layers in ANN instead of pruning algorithm. It grows by allowing hidden units with 

regard to improvement in the error [65]. The researchers interested in pruning algorithm can 

reach the detailed gist from the study of “A Function Estimation Approach to Sequential 

Learning with Neural Networks” [65]. 
 

Pruning and growing algorithm applied in [10] to determine the optimal hidden neuron 

number in the area of bus arrival time prediction. 

 

3.5. Descriptive analysis 

 

The distribution of journals, which covers the published papers, indicates their desires in 

ANN applications with PT. The distribution of the journals with respect to publication years and 

the number of papers published are presented in Table 2. 

 

Table 2. Distribution of literature based on the source of publication 
 

Publication Year of publication 

2002-
2005 

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Total 

Transportation 

Research Part C 

- - - - - - 2 1 1 - - - 4 

Journal of 
Transportation Eng. 

1 - - - - - - 2 1 - - - 4 

Journal of Intelligent 

Trans. Sys. 

- - 1 - - - 1 - - - 1 - 3 

IEEE Transactions. 

On Int. Trans. Sys. 

1 - - - - - - - 1 - - - 2 

Mathematical and 

Computer Mod. 

- 1 1 - - - - - - - - - 2 

Journal of Public 

Transportation 

1 - - - - - - - - 1 - - 2 

Expert systems with 
Applications 

- - - - - - - - - 2 - - 2 

Journal of Advanced 

Transportation 

1 - - - - 1 - - - - - - 2 

Neural Computing 
and applications 

- - - - - - - - - 2 - - 2 

Applied Mechanics 

and Materials 

- - - - - - - - 2 - - - 2 

Others (only 1 study) 6 2 1 2 3 1 2 2 7 8 7 6 47 

Total 10 3 3 2 3 2 5 5 12 13 8 6 72 
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Table 2 reveals that the subjects of ANN applications in PT are considered by many journals. 

Moreover, the journals including more than two publications are illustrated in Table 2. This also 

clarifies the huge area of review in this study. Among the journals, two are clearly more active 

than the others in publishing ANN on PT: Transportation Research Part C (4 papers in various 

subjects) and Journal of Transportation Engineering (4 papers). 

Figure 5. Number of neural network applications in PT. 

 

ANN applications in PT tend to increase especially in the last five years. The raise of the 

interest is seen from the Figure 5. Figure 5 also presents the two moving average that is based on 

two sequential period. 
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Figure 6. Research interest with respect to country. 

 

Figure 6 presents that the highest interested country is China. 

Figure 7. Distribution of hidden layer numbers 

 

Distribution of hidden layer numbers, which is used in ANN, is shown in Figure 7. The most 

of the papers, (62), used a single hidden layer. Several papers [6, 19, 25, 37, 46, 50,76], (7), 

choose two hidden layers. Except above layers, three of the papers [31, 48,71] used five hidden 

layers which mean ANFIS. 
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Figure 8. The number of hidden neuron 

 

The number of hidden neurons is grouped into four main ranges that are shown in Figure 8. 

1-10 neuron group are mostly chosen in 59% of the papers. Researchers choose 11-20 neuron 

group in 27% of the papers which is less than 1-10 neuron group. 

 

 
 

Figure 9. The methods of data collection 

 

It is seen that six main data collection methods are present in Figure 9. The most chosen data 

collection methods are the ticketing system [9, 11, 18, 21, 22, 26, 34, 37, 42, 43, 50] and 

historical data [7, 15, 17, 19, 27, 28, 29, 46, 51], 11 and 9, respectively. Moreover, GPS [6, 13, 

16, 25, 39, 45] and surveillance system [8, 10, 20, 28, 33, 47] chosen commonly to collect the 

data. 
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Figure 10. The number of different learning algorithms 

 

In the light of Figure 10, the most used learning algorithms are perceptron [5, 8, 11, 13, 16, 

18, 22, 25, 26, 28, 29, 33, 36,82,86,88] and gradient descent [6, 12, 17, 20, 35, 43, 44, 46, 50]. 

GA [19, 30,87], Regression [14, 37] and SVM [15] are used 3, 2 and 1 time, respectively. 

 

3.6. Performance measurement 

 

The evaluation of the output of the ANN has been conducted in terms of SSE, MSE and root 

mean square error (RMSE). 

The RMSE is used to evaluate how well an ANN learns a given model. The RMSE aims to 

represent the standard deviation between desired values and output values. The calculation of 

RMSE is presented in Eq. (18) as follows. 
 

𝑅𝑀𝑆𝐸 = √
∑ (𝑂𝑖−𝑑𝑖)2𝑛
𝑖=1

𝑛
                                                                                                                              (18) 

MSE and SSE formulation has been illustrated in Eq. (19) and Eq. (20) as follows 
 

𝑀𝑆𝐸 =
∑ (𝑂𝑖−𝑑𝑖)2𝑛
𝑖=1

𝑛
                                                                                                                                    (19) 

 

𝑆𝑆𝐸 = ∑ (𝑂𝑖 − 𝑑𝑖)2𝑛
𝑖=1                                                                                                                               (20) 

 

Sometimes, the output even reaches an optimal epoch, it may not meet the expected values or 

pattern. It is beneficial to add a parameter that is called momentum since any performance value 

may have decreased. The momentum parameter is widely used to avoid the system from 

coalescing to a local minimum point. When the learning rate tends to increase, instability into the 

learning rule bring out that wild oscillations is prone to unearth. 

 

4. DISCUSSION 

 

MLFF network, which can solve non-linear and stochastic problems with back-propagation 

algorithm, has been commonly practiced in the field of PT. Multi-layer feed forward covers the 

most of the ANN architectures that are approximately equal to 88%. However, the recurrent 

neural network, which is a network whose neurons send feed-back signals to each other, has been 
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scarcely performed by the researchers [30]. RBF, ANFIS and SVM are chosen at the rate of 6%, 

4%, and 2%, respectively. It is obvious that MLFF comparing to other neural networks has been 

more preferred in the field of PT. 

% 69 of the applications have aimed the prediction or forecasting by the researchers. Brief 

explanations of forecast and prediction papers are presented in the section of problem 

classification. Bus arrival time, passenger flow and trip flow in the field of prediction and 

forecasting generally are preferred by the researchers. While the most of the researchers has dealt 

with the prediction and forecasting, the rest of the researchers have practiced the minimization 

and maximization problems [9, 47], evaluation and analysis [8, 14, 18, 19, 21, 23, 24, 26, 31, 36, 

48, 49], and comparison [35] fields. The researchers, who conducted evaluation and analysis, 

dealt with common decision making units and performance of PT services. The researchers, who 

conducted minimization and maximization, studied in traveling time variance and vehicle delay. 

The researchers, who conducted comparison, [35] compared RBF and FFNN in the area of PT 

trip flow. 

A single hidden layer, which consists of a single layer of output nodes, has fed the inputs 

directly to the outputs via a series of weights. A single hidden layer selection, which is 

approximately equal to 84% among all layer types, has been frequently employed to construct 

ANN. Two hidden layers have been rarely practiced by the researchers [6, 19, 25, 37, 46, 50] 

while a single hidden layer has a common utilization. Besides above layers, two of the papers 

[31, 48] used five hidden layers that means ANFIS. The selection of hidden neuron number is as 

important as the determination of hidden layer number. When the analysis of hidden neuron 

number in the papers are made, it is obvious that 59% of the papers preferred 1-10 hidden neuron 

group. 27% of the papers preferred 11-20 hidden neuron group and the rest of the papers selected 

21-30 hidden neuron and 30 and over, at the same rate: 7%. 

The feed-back structure should be brought forth when the established ANN model has been 

run. Mainly, perceptron rule (42%) and gradient descent method (29%) are exerted in the most of 

the papers that is mostly related to the prediction and forecasting fields. Besides the two main 

methods above, regression and GA are performed at the rate of 9.6% and 6.45%, respectively. 

Moreover, the other methods are used in ANN. 

When the established ANN model is executed, it should be evaluated with regard to the 

specific performance measurements to choose the best ANN model. SSE, MSE and MAPE have 

been mostly preferred in order to evaluate the performance of the chosen methods by the 

researchers. 

Reviewing papers reveals that the subjects of ANN applications on PT are considered by 

many journals. Besides, the journals with more than two publications are illustrated in Fig 6. 

Among the journals, two of them are clearly more active than the others in ANN applications 

with PT: Transportation Research Part C (4 papers in various subjects) and Journal of 

Transportation Engineering (4 papers). While total number of papers in other journals has 

prominence, each of them published only one paper in this field. 

In the light of papers, interest of countries in the research field revealed that the highest 

interested country is China with 27.08 %. U.S and Turkey, which have the similar interest with 

14.58 %, following China. It can be concluded that China, U.S and Turkey have the most 

influence in this research field. 

It is clear that ANN has both advantages and disadvantages [73,93]. The advantages of ANN 

are presented as follows: 
 

 ANN can be trained with less formal statistical data, while most of statistical methods are 

parametric model that need higher background of statistic 

 ANN can clearly uncover complex non-linear relationships between input and output 

parameters 

 ANN can uncover all possible interactions between predictor variables 

 ANN can be performed by using multiple different training algorithms 
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 ANN can generate its own organization or representation of the information that is 

received during learning time 
 

The authors [80] applied an algorithm to predict bus arrival time in their paper and they asserted 

that the applied algorithm clearly outperforms ANN and K-NN alone in both accuracy and 

efficiency of the algorithm. While ANN has a lot of advantages that are presented above, it has a 

number of disadvantages as well. ANN disadvantages are presented as follows: 
 

 ANN is considered as a black box and it is really hard to explicitly identify possible 

relationships 

 ANN may need greater computational time 

 ANN can be trapped to over-fitting 

 

5. CONCLUSION 

 

Since PT based on ANN has drawn great attention from the researchers for a long time, this 

brief literature is produced. The overall findings of this paper are summarized in the following. 
 

i. First, most of the applications have aimed the prediction or forecasting. It can be said that 

data is an important part for prediction and forecasting in the phase of the training. Based on 

detailed analysis in the PT literature, it is easily seen that historical data and GPS have been used 

for obtaining the data in most of the studies. 

ii. Second, a single hidden layer has mostly been employed to construct ANN. In some of 

the papers, pruning [64] and growing algorithm [65] have been offered to determine the size of 

neuron in a hidden layer as an accurate tool in this field. However, ANN architectures such as 

hidden layers and neurons have been determined by trial and error in most of the papers. 

iii. Third, MLFF has been applied in most of the ANN architecture. Perceptron and gradient 

learning rules have been mostly employed in PT studies. However, perceptron rule has been 

mostly exerted in the training phase. After training phase, output is required to be evaluated for 

the best result. SSE, MSE and MAPE have been adjusted for performance evaluation method. 

iv. Fourth, it is obvious that the supervised learning algorithms have been performed in most 

studies.  

v. Hopfield and RBF network should be employed more as ANN architecture by combining 

the chaotic condition. Chaos theory can be applied to determine ANN input parameters. Thus, 

joint practice of ANN and chaos theory can be explored deeply in the field of transportation such 

as PT and BRT for future direction because the optimal input parameter has a remarkable 

prominence in these fields. 

vi. Some papers in field of travel mode choice [69] and evaluation of bus transport reliability 

[70] with respect to simulation are studied by researchers. However, these papers can be applied 

with a suitable ANN models, since the simulation has a complex application structure and takes 

more time than ANN. 

vii. The authors [80] applied an algorithm to predict bus arrival time in their paper and they 

asserted that the applied algorithm clearly outperforms ANN and K-NN alone in both accuracy 

and efficiency of the algorithm. Integration of ANN and K-NN may be researched by comparing 

their algorithm with regard to efficiency and accuracy. 
 

For further future research, AURA K-NN, which is faster than traditional k-NN, can be 

utilized in the field of classification applications in PT. Moreover, joint practice of ANN and 

chaos theory can be explored deeply in the field of transportation such as PT and BRT for future 

direction because the optimal input parameter has a remarkable prominence in these fields. 
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