## Research Article

ON SOME BETA-FRACTIONAL INTEGRAL INEQUALITIES

Deniz UÇAR ${ }^{1}$, Veysel Fuat HATIPOĞLU ${ }^{* 2}$<br>${ }^{1}$ Usak University, USAK; ORCID: 0000-0002-5709-1535<br>${ }^{2}$ Mugla Sitkı Koçman University, MUGLA; ORCID: 0000-0003-2156-8781

Received: 10.10.2019 Accepted: 22.11.2019


#### Abstract

In this paper, we obtain some new integral inequalities using beta-fractional integrals in the case of two synchronous functions. For this purpose we state and prove several theorems. Our results are pioneer for the literature of integral inequalities in beta-fractional integral sense.


Keywords: Integral inequalities, beta-fractional integral.

## 1. INTRODUCTION

Integral inequality based on fractional derivatives is a rising trend in mathematics. There are several different fractional integral and derivative definitions. In 2014 [1], authors proposed a relatively new fractional derivative definition so called beta-derivative which is the modified version of $\propto$-derivative defined by [2]. Some articles have been focused on analytical or numerical solutions of the fractional differential equations involving beta-fractional derivative [3, $4,5,6,7,8]$. Also interested reader can obtain more information on fractional integral inequalities from recent articles [9,10,11]. Next, we give the definition of beta-fractional derivative.
Definition 1.1. [3] Let $f$ be a function, such that, $f:[\alpha, \infty) \rightarrow \mathbb{R}$. Then the beta-derivative is defined as:

$$
D_{x}^{\beta}(\mathrm{f}(x))=\lim _{\epsilon \rightarrow 0} \frac{\mathrm{f}\left(x+\epsilon\left(x+\frac{1}{\Gamma(\beta)}\right)^{1-\beta}\right)-\mathrm{f}(x)}{\epsilon}
$$

for all $x \geq \alpha, \beta \in(0,1]$. Then if the limit of the above exists, $f$ is says to be betadifferentiable.

Some useful properties of this definition [3] are as follows: Assuming that $\mathrm{g} \neq 0$ and $f$ are two functions $\beta$-differentiable with $\beta \in(0,1]$ then, the following relations can be satisfied
$\left.{ }_{0}^{\mathrm{A}} \mathcal{D}_{t}^{\beta}(a f(\mathrm{t}))+\mathrm{b} g(\mathrm{t})\right)=\alpha_{0}^{\mathrm{A}} \mathcal{D}_{\mathrm{t}}^{\beta}(f(\mathrm{t}))+b_{0}^{\mathrm{A}} \mathcal{D}_{t}^{\beta}(g(t))$,
for all $\alpha$ and $b$ are real numbers.
${ }_{0}^{\mathrm{A}} \mathcal{D}_{t}{ }_{t}(c)=0$,

[^0]for $c$ any given constant.
$\left.{ }_{0}^{\mathrm{A}}{ }_{\mathcal{D}}{ }_{t}^{\beta}(f(\mathrm{t}))+g(\mathrm{t})\right)=g(t){ }_{0}^{\mathrm{A}} \mathcal{D}_{t}^{\beta}(f(t))+f(t){ }_{0}^{\mathrm{A}} \mathcal{D}_{t}^{\beta}(g(t))$.
${ }_{0} \mathcal{D}_{t}^{\beta}\left(\frac{f(t)}{g(t)}\right)=\frac{g(t){ }_{0}^{\mathrm{A}} \mathcal{D}_{t}^{\beta}(f(t))-f(t){ }_{0}^{\mathrm{A}}{ }^{\mathcal{D}}{ }_{t}^{\beta}(g(t))}{g^{2}(t)}$.
Now, we can give the definition of beta-fractional integral.
Definition 1.2. [3] Let $f:[\alpha, b] \rightarrow \mathbb{R}$ be a continuous function on the opened interval (a,b), then the beta-integral of $f$ is given as:
$$
{ }_{0}^{A_{I}}{ }_{t}^{\beta}(f(t))=\int_{0}^{t}\left(x+\frac{1}{\Gamma(\beta)}\right)^{\beta-1} f(x) d x
$$
for all $x \leq a, \beta \in(0,1]$. Then if the limit of the above exists, $f$ is says to be betadifferentiable.

## 2. MAIN RESULTS

In this section we present our results using $\beta$-fractional integrals.
Theorem 2.1. Let $f$ and $g$ be two synchronous functions on $[0, \infty)$. Then the following inequality holds
${ }_{0}^{A_{I}}{ }_{t}(f g)(t) \geq \frac{1}{{ }_{0_{0} I_{I}{ }_{t}}(1)}{ }_{0}^{A}{ }_{I}{ }_{t} \beta_{t}(f)(t){ }_{0}^{A} I_{t} \beta_{t}(g)(t)$
for all $t \geq 0, \beta>0$.
Proof Since $f$ and $g$ are two synchronous functions on $[0, \infty)$, we have

$$
(f(\tau)-f(\rho))(g(\tau)-g(\rho)) \geq 0
$$

and
$f(\tau) g(\tau)+f(\rho) g(\rho) \geq f(\tau) g(\rho)+f(\rho) g(\tau)$
for all $\tau \leq 0, \rho \leq 0$. If we multiply both sides of the inequality (2.2) by $\tau+\frac{1}{\Gamma(\beta)}^{\beta-1}$ and integrate with respect to $\tau$ from 0 to $t$, we obtain

$$
\begin{aligned}
& \int_{0}^{t}\left(\tau+\frac{1}{\Gamma(\beta)}\right)^{\beta-1}(f(\tau) g(\tau)) d \tau+\int_{0}^{t}\left(\tau+\frac{1}{\Gamma(\beta)}\right)^{\beta-1}(f(\rho) g(\rho)) d \rho \geq \\
& \quad \int_{0}^{t}\left(\tau+\frac{1}{\Gamma(\beta)}\right)^{\beta-1} f(\tau) g(\rho) d \tau+\int_{0}^{t}\left(\tau+\frac{1}{\Gamma(\beta)}\right)^{\beta-1} f(\rho) g(\sigma) d \tau
\end{aligned}
$$

Using the following equality

$$
\int_{0}^{t} f(\tau) d_{\beta} \tau=\int_{0}^{t} f(\tau)\left(\tau+\frac{1}{\Gamma(\beta)}\right)^{\beta-1} d \tau
$$

we have
${ }_{0}{ }_{I}{ }_{t}^{\beta}(f(t) g(t))+f(\rho) g(\rho){ }_{0}^{A} I_{t}^{\beta}(1) \geq g(\rho){ }_{0}^{A} I_{t}^{\beta}(f(t)+f(\rho))_{{ }_{0}}^{A}{ }_{I}{ }_{t}(g(t))$.
Multiplying both sides of the inequality (2.3) by $\rho+\frac{1}{\Gamma(\beta)}^{\beta-1}$ and integrating with respect to $\rho$ on $[0, t]$, we have

$$
\begin{aligned}
& \left(\rho+\frac{1}{\Gamma(\beta)}\right)^{\beta-1} A_{0} I_{t}(f g)(t)+\left(\rho+\frac{1}{\Gamma(\beta)}\right)^{\beta-1} f(\rho) g(\rho)_{0}^{A} I_{t}^{\beta}(1) \geq \\
& \left(\rho+\frac{1}{\Gamma(\beta)}\right)^{\beta-1}{ }_{0} I_{I}{ }_{t}(f)(t) g(\rho)+\left(\rho+\frac{1}{\Gamma(\beta)}\right)^{\beta-1} f(\rho)_{0}^{A} I_{t}^{\beta}(g)(t)
\end{aligned}
$$

then

$$
\begin{aligned}
& { }_{0}^{A} I_{t}^{\beta}(f g)(t) \int_{0}^{t}\left(\rho+\frac{1}{\Gamma(\beta)}\right)^{\beta-1} d \rho+{ }_{0}{ }_{I}{ }_{t}{ }_{t}(1) \int_{0}^{t}\left(\rho+\frac{1}{\Gamma(\beta)}\right)^{\beta-1} f(\rho) g(\rho) d \rho \geq{ }_{0}^{A} I_{t}^{\beta}(f)(t) \int_{0}^{t}(\rho+ \\
& \left.\frac{1}{\Gamma(\beta)}\right)^{\beta-1} d \rho+{ }_{0}{ }_{I}{ }_{t}^{\beta}(g)(t)\left(\rho+\frac{1}{\Gamma(\beta)}\right)^{\beta-1} f(\rho) d \rho \\
& { }_{0}^{A} I_{t}^{\beta}(f g)(t){ }_{0}^{A} I_{t}^{\beta}{ }_{t}(1)+{ }_{0}^{A} I_{t}^{\beta}{ }_{t}(1){ }_{0}^{A}{ }_{0}{ }_{t}^{\beta}(f g)(t) \geq{ }_{0}{ }_{0}{ }^{\beta}{ }_{t}(f)(t){ }_{0} I_{I}{ }_{t}^{\beta}(g)(t)+{ }_{0}^{A} I_{t}^{\beta}(g)(t){ }_{0}^{A} I_{t}^{\beta}(f)(t) \\
& { }_{2}{ }_{0}^{A} I_{t}^{\beta}(f g)(t){ }_{0}^{A} I_{t}^{\beta}{ }_{t}(1) \geq 2{ }_{0}^{A} I_{t}^{\beta}(f)(t){ }_{0}^{A} I_{t}^{\beta}(g)(t) \\
& { }_{0}^{A} I_{t}^{\beta}(f g)(t) \geq \frac{1}{A_{0}{ }_{0}{ }_{t}(1)}{ }_{0}^{A} I_{t}^{\beta}(f)(t){ }_{0}^{A} I_{t}^{\beta}(g)(t) .
\end{aligned}
$$

This completes the proof.
Theorem 2.2. Let $f$ and $g$ be two synchronous functions on $[0,1)$. Then we have the following inequality
${ }_{0}^{A} I_{t}^{\beta}(f g)(t){ }_{0}^{A} I^{\beta}{ }_{t}(1)+{ }_{0}^{A} I_{t}^{\beta}(1){ }_{0}^{A} I_{t}^{\beta}{ }_{t}(f g)(t) \geq{ }_{0}^{A} I_{t}^{\beta}(f)(t){ }_{0}^{A} I_{t}^{\beta}(g)(t)+{ }_{0}^{A}{ }_{0}{ }_{t}^{\beta}(f)(t){ }_{0}^{A}{ }_{I}{ }_{t}^{\beta}(g)(t)$
for all $t>0, \alpha>0$, and $\beta>0$.
Proof Using the same way in the proof of Theorem 2.1, we can obtain (2.3). Multiplying both sides of the inequality (2.3) by $\rho+\frac{1}{\Gamma(\alpha)}^{\alpha-1}$ and integrating with respect to $\rho$ from 0 to $t$ we have

$$
\begin{aligned}
& { }_{0}^{A_{1}}{ }^{\beta}{ }_{t}(f g)(t) \int_{0}^{t}\left(\rho+\frac{1}{\Gamma(\alpha)}\right)^{\alpha-1} d \rho+ \\
& { }_{0}^{A_{I}}{ }^{\beta}{ }_{t}(1) \int_{0}^{t}\left(\rho+\frac{1}{\Gamma(\alpha)}\right)^{\alpha-1} f(\rho) g(\rho) d \rho \geq \\
& { }_{0}^{A} I^{\beta}{ }_{t}(f)(t) \int_{0}^{t}\left(\rho+\frac{1}{\Gamma(\alpha)}\right)^{\alpha-1} g(\rho) d \rho+{ }_{0} I^{\beta}{ }_{t}(g)(t) \int_{0}^{t}\left(\rho+\frac{1}{\Gamma(\alpha)}\right)^{\alpha-1} f(\rho) d \rho \\
& { }_{0}^{A} I_{t}^{\beta}(f g)(t){ }_{0}^{A} I_{t}^{\alpha}(1)+{ }_{0}{ }_{I}{ }^{\beta}{ }_{t}(1){ }_{0}^{A} I_{t}^{\alpha}(f g)(t) \geq{ }_{0}^{A}{ }_{0}{ }_{t}^{\alpha}(f)(t){ }_{0}^{A} I_{t}^{\beta}(g)(t)+{ }_{0}{ }_{0} I_{t}^{\beta}(f)(t){ }_{0}^{A} I_{t}^{\alpha}(g)(t) \\
& 2_{0}^{A} I^{\beta}{ }_{t}{ }_{(f g)(t)}{ }_{0}^{A} I_{t}^{\beta}{ }_{t}(1) \geq 2{ }_{0}^{A}{ }_{0}{ }_{t}^{\beta}(f)(t){ }_{0}^{A} I^{\beta}{ }_{t}(g)(t) \\
& { }_{0}^{A_{I}}{ }_{t}{ }_{t}(f g)(t) \geq \frac{1}{{ }_{0}{ }_{0}{ }^{\beta}{ }_{t}(1)}{ }_{0}^{A} I^{\beta}{ }_{t}(f)(t){ }_{0}^{A} I^{\beta}{ }_{t}(g)(t)
\end{aligned}
$$

and this ends the proof.
Remark 2.1. If the functions $f$ and $g$ are asynchronous on $[0, \infty)$, then the inequalities (2.2) and (2.3) are reversed.

Theorem 2.3. We assume the functions $f_{i}$ for $i=1,2, \ldots, n$ are positive increasing functions on $[0, \infty)$. Then the following inequality holds
${ }_{0}^{A}{ }^{\prime}{ }^{\beta}{ }_{t}\left(\prod_{i=1}^{n} f_{i}\right)(t) \geq \frac{1}{\left(\begin{array}{l}\left.A_{1}{ }_{0}{ }^{2}(1)\right)\end{array}\right)}{ }^{n-1} \prod_{i=1}^{n}\left({ }_{0}^{A} I_{t}^{\beta}\left(f_{i}\right)\right)(t)$
for any $t>0, \beta>0$.
Proof We use induction method to prove the theorem. We can easily see that for $\mathrm{n}=1$, we have
${ }_{0}^{A}{ }_{I}{ }_{t}{ }_{t} f_{1}(t) \geq{ }_{0}^{A} I^{\beta}{ }_{t} f_{1}(t)$
for all $t>0, \beta>0$. For $n=2$, we use Theorem 2.1 and we have


We suppose that
${ }_{0}^{A_{I} \beta}{ }_{t}\left(\prod_{i=1}^{n-1} f_{i}\right)(t) \geq \frac{1}{\left.\left({ }_{\mathrm{A}_{\mathrm{I}} \beta}{ }_{\mathrm{t}}(1)\right)\right)^{n-2}}\left(\prod_{i=1}^{n-1} A_{I}{ }^{\beta}{ }_{t}{ }_{t}\left(f_{i}\right)\right)(t)$
holds. Since the functions $f_{i}, i=1,2, \ldots, n$, are positive increasing functions, then $\left(\prod_{i=1}^{n-1} f_{i}\right)(t)$ is also an increasing function. If we choose $g(\mathrm{t}):=\left(\prod_{i=1}^{n-1} f_{i}\right)(t), f_{n}=f$ and use theorem 2.1, we obtain
${ }_{0}^{A_{I}}{ }^{\beta}{ }_{t}\left(\prod_{i=1}^{n} f_{i}\right)(t)={ }_{{ }_{0}}^{A_{I}}{ }_{t}{ }_{t}(g f)(t) \geq \frac{1}{{ }_{0}^{A_{I} \beta}{ }_{t}(1)}{ }_{0}^{A}{ }_{0}{ }^{\beta}{ }_{t}(g)(t){ }_{0}^{A} I_{t}^{\beta}(f)(t)$.
Using the inequality (2.8) we have

$$
\begin{equation*}
{ }_{0}^{A}{ }_{I} \beta \quad{ }_{t}\left(\prod_{i=1}^{n} f_{i}\right)(t) \geq \frac{1}{{ }_{0}^{A_{1}{ }^{\beta}}{ }_{t}(1)} \frac{1}{\left({ }_{0_{1}}{ }^{\prime}{ }_{t}(1)\right)^{n-2}}\left(\prod_{i=1}^{n-1}{ }_{0} I^{\beta}{ }_{t}\left(f_{i}\right)\right)(t){ }_{0}^{A} I_{t}^{\beta}\left(f_{n}\right)(t) \tag{2.10}
\end{equation*}
$$

and this ends the proof.
Theorem 2.4. Let $f$ and $g$ are two functions defined on $[0, \infty)$ such that $f$ is increasing, $g$ is differentiable. Assume that there exists a real number $m:=\operatorname{in} f_{t \geq 0} \mathrm{~g}^{\prime}(t)$. Then for all $t>$ 0 and $\beta>0$, following inequality holds


Proof We define the function $h(t):=g(t)-m t$. It is easy to see that the function h is increasing and differentiable on $[0, \infty)$. Using Theorem 2.1 , we have

$$
\begin{aligned}
& { }_{0}^{A_{I}}{ }_{t}{ }_{t}((g(t)-m t) f(t)) \geq \frac{1}{{ }_{0}^{A} I_{t}{ }_{t}(1)}{ }_{0}{ }_{0}{ }_{I}{ }_{t}(g(t)-m(t))_{0}^{A}{ }_{I}{ }_{t}{ }_{t}(f(t))
\end{aligned}
$$

This concludes the prof.
Theorem 2.5. Let the functions $f$ and $g$ are defined on $[0, \infty)$. We assume the function $f$ is decreasing and $g$ is differentiable. If there exists a real number $M:=\sup _{t \geq 0} \quad g^{\prime}(t)$ Then we have

for all $t>0, \beta>0$.
Proof We define $G(t):=g(t)-M t$. Since the function $G$ is differentiable and decreasing on $[0, \infty)$, using Theorem 2.1 we have

$$
\begin{aligned}
& { }_{0}^{A_{I}}{ }_{t}{ }_{t}(f G)(t)={ }_{0}^{A_{I}}{ }_{t}{ }_{t}(f(t)(g(t)-M t)) \geq \frac{1}{{ }_{{ }_{0} I_{I}{ }^{\beta}(1)}}\left[{ }_{{ }_{0}}^{A_{I}}{ }^{\beta}{ }_{t}(f(t))_{0_{0}}^{A_{I}}{ }_{t}{ }_{t}(g(t)-M t)\right] \geq
\end{aligned}
$$

Theorem 2.6. Let the functions $f$ and $g$ are differentiable and there exists $m_{1}: \inf f_{t \geq 0} g^{\prime}(t)$. Then for all $t>0, \beta>0$ we have

$$
\begin{align*}
& A_{1} I^{\beta}\left[\left(f(t)-m_{1}(t)\right)\left(g(t)-m_{2}(t)\right)\right] \geq \frac{1}{{ }_{{ }_{0}}^{A_{1}}{ }_{t}{ }_{t}(1)}\left[{ }_{0}^{A}{ }_{I}{ }_{t}{ }_{t}(f(t) g(t))-m_{2}{ }_{0}{ }_{I}{ }^{\beta}{ }_{t}(t f(t))-\right. \\
& \left.m_{1}{ }_{0}^{A} I^{\beta}{ }_{t}{ }_{t}(t g(t))+m_{1} m_{2}{ }_{0}^{A} I^{\beta}{ }_{t}\left(t^{2}\right)\right] . \tag{2.13}
\end{align*}
$$

Proof We consider the functions $F(t)=f(t)-m_{1} t$ and $G(t):=g(t)-m_{2} t$. It is clear that the functions $F(t)$ and $G(t)$ are increasing on $[0, \infty)$. Using Theorem 2.1, we have

$$
\begin{aligned}
& { }_{0}^{A} I_{t}^{\beta}\left[\left(f(t)-m_{1} t\right)\left(g(t)-m_{2} t\right)\right]={ }_{0}^{A} I_{t}^{\beta}(f(t) g(t))-m_{2}{ }_{0}^{A} I_{t}^{\beta}(f(t) . t)-m_{1}{ }_{0}^{A} I_{t}^{\beta}(t . g(t))+ \\
& m_{1} m_{2}\left({ }_{0}^{A} I_{t}^{\beta}(t)\right)^{2} \\
& \geq \frac{1}{{ }_{0}^{A} I_{t}^{\beta}(1)}{ }_{0}^{A} I_{t}^{\beta}(f(t)){ }_{0}^{A} I_{t}^{\beta}(g(t))-\frac{m_{2}}{{ }_{0}^{A} I_{t}^{\beta}(1)}{ }_{0}^{A} I_{t}^{\beta}(f(t)){ }_{0}^{A} I_{t}^{\beta}(t)-\frac{m_{1}}{{ }_{0}^{A_{0}^{1}}{ }_{t}^{1}(1)}{ }_{0}^{A} I_{t}^{\beta}(t){ }_{0}^{A} I_{t}^{\beta}(g(t))+ \\
& \frac{m_{1} m_{2}}{{ }_{0}^{{ }_{0} I_{t}^{\beta}(1)}}\left({ }_{0}^{A} I_{t}^{\beta}(t)\right)^{2} \\
& \geq \\
& \frac{1}{{ }_{0}^{A} I_{t}^{\beta}(1)}\left[{ }_{0}^{A} I_{0}^{\beta}(f(t)){ }_{0}^{A} I_{t}^{\beta}(g(t))-m_{2}{ }_{0}^{A} I_{t}^{\beta}(f(t)){ }_{0}^{A} I_{t}^{\beta}(t)-m_{1}{ }_{0}^{A} I_{t}^{\beta}(t){ }_{0}^{A} I_{t}^{\beta}(g(t))+m_{1} m_{2}\left({ }_{0}^{A} I_{t}^{\beta}(t)\right)^{2}\right] \text {. }
\end{aligned}
$$

## 3. CONCLUSION

Fractional derivatives are an attraction point for several researchers. In this paper, we consider beta-fractional derivative. By using beta-fractional integrals, some new integral inequalities established in the case of two synchronous functions. As a main contribution to the literature, we prove six theorems. Our results are pioneer for the literature of integral inequalities in betafractional integral sense.

## Acknowledgement

This paper is an extended version of a paper presented at International Conference on Computational Methods in Applied Sciences, including complete proofs.

## REFERENCES

[1] Atangana, A., Doungmo Goufo, E. F. (2014). Extension of matched asymptotic method to fractional boundary layers problems, Mathematical Problems in Engineering, 2014.
[2] Khalil, R., Al Horani, M., Yousef, A. and Sababeh, M., (2014) A new definition of fractional derivative, Journal of Computational and Applied Mathematics 264, 65-70.
[3] Atangana, A. (2015) Derivative with a new parameter: Theory, methods and applications, Academic Press.
[4] Atangana, A., Alqahtani, R. (2016) Modelling the spread of river blindness disease via the caputo fractional derivative and the beta-derivative, Entropy, 18(2), 40.
[5] Atangana, A. (2017) Fractional operators with constant and variable order with application to geohydrology. Academic Press.
[6] Atangana, A., \& Alkahtani, B. S. T., (2016) Modeling the spread of Rubella disease using the concept of with local derivative with fractional parameter: Beta-Derivative. Complexity, 21(6), 442-451.
[7] Hatipoğlu, V. F., (2019) A numerical algorithm for the solution of nonlinear fractional differential equations via beta-derivatives. Matematical Methods in the Applied Sciences, 42(16), 5258-5265.
[8] Yépez-Martínez, H., Gómez-Aguilar, J. F., and Atangana, A., (2018) First integral method for non-linear differential equations with conformable derivative, Mathematical Modelling of Natural Phenomena, 13(1), 14.
[9] Sarikaya, M. Z., Set, E., Yaldiz, H., Basak, N., (2013) Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57(9-10), 2403-2407.
[10] Dragomir, S. S., Bhatti, M. I., Iqbal, M., Muddassar, M., (2015) Some new HermiteHadamard's type fractional integral inequalities, Journal of Computational Analysis \& Applications, 18(4), 655-661.
[11] Sarikaya, M. Z., Dahmani, Z., Kiris, M. E., and Ahmad, F., (2016) (k, s)-RiemannLiouville fractional integral and applications, Hacettepe Journal of Mathematics and Statistics, 45(1), 77-89.


[^0]:    * Corresponding Author: e-mail: veyselfuat.hatipoglu@mu.edu.tr, tel: (252) 2115407

