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ABSTRACT 

 

In this paper, we obtain some new integral inequalities using beta-fractional integrals in the case of two 
synchronous functions. For this purpose we state and prove several theorems. Our results are pioneer for the 

literature of integral inequalities in beta-fractional integral sense. 
Keywords: Integral inequalities, beta-fractional integral. 

 

 

1. INTRODUCTION 

 

Integral inequality based on fractional derivatives is a rising trend in mathematics. There are 

several different fractional integral and derivative definitions. In 2014 [1], authors proposed a 

relatively new fractional derivative definition so called beta-derivative which is the modified 

version of ∝-derivative defined by [2]. Some articles have been focused on analytical or 

numerical solutions of the fractional differential equations involving beta-fractional derivative [3, 

4, 5, 6, 7, 8]. Also interested reader can obtain more information on fractional integral inequalities 

from recent articles [9, 10, 11]. Next, we give the definition of beta-fractional derivative.  
 

Definition 1.1.  [3] Let ƒ be a function, such that, ƒ ∶ [α, ∞) → ℝ. Then the beta-derivative is 

defined as:  
 

𝐷𝑥
𝛽

(ƒ(𝑥)) =  lim𝜖→0    
    ƒ(𝑥+𝜖(𝑥+

1

Γ(𝛽)
)

1−𝛽
)−ƒ(𝑥)    

𝜖
  

 

for all 𝑥 ≥ 𝛼, 𝛽 ∈ (0, 1]. Then if the limit of the above exists, ƒ is says to be beta-

differentiable. 

Some useful properties of this definition [3] are as follows: Assuming that g ≠ 0 and ƒ are two 

functions β-differentiable with  𝛽 ∈  (0, 1]  then, the following relations can be satisfied 
 

Α
0

𝒟
𝛽
𝑡

(𝑎 𝑓 (t)) + b𝑔(t)) = α
Α
0

𝒟
β
t

(𝑓(t)) + 𝑏
Α
0

𝒟
𝛽
𝑡

(𝑔(𝑡)),                                                   (1.1)  
 

for all α and b are real numbers. 
 

Α
0

𝒟
𝛽
𝑡

(𝑐) = 0,                                                                                                (1.2)  
 

                                                 
* Corresponding Author: e-mail: veyselfuat.hatipoglu@mu.edu.tr, tel: (252) 211 54 07 

 

Publications Prepared for the Sigma Journal of Engineering and Natural Sciences 
2019 International Conference on Applied Analysis and Mathematical Modeling 

Special Issue was published by reviewing extended papers 



364 
 

 

for c any given constant. 
 

Α
0

𝒟
𝛽
𝑡

(𝑓(t)) + 𝑔(t)) = 𝑔(𝑡)Α
0

𝒟
𝛽
𝑡

(𝑓(𝑡)) + 𝑓(𝑡)Α
0

𝒟
𝛽
𝑡

(𝑔(𝑡)).                                            (1.3) 
 

Α
0

𝒟
𝛽
𝑡

(
𝑓(𝑡)

𝑔(𝑡)
) =

       𝑔(𝑡)Α
0

𝒟
𝛽
𝑡

(𝑓(𝑡))− 𝑓(𝑡)Α
0

 𝒟
𝛽
𝑡

 (𝑔(𝑡))          

𝑔2(𝑡)
  .                                                          (1.4)  

 

Now, we can give the definition of beta-fractional integral. 
 

Definition 1.2. [3] Let ƒ: [𝛼, 𝑏] → ℝ be a continuous function on the opened interval (a,b), then 

the beta-integral of 𝑓 is given as: 
 

𝐴
0

𝐼
𝛽
𝑡

(𝑓(𝑡)) = ∫ (𝑥 +
1

Γ(𝛽)
)

𝛽−1
  𝑓(𝑥)𝑑𝑥.

𝑡

0
  

 

for all 𝑥 ≤ 𝑎, 𝛽 ∈  (0, 1]. Then if the limit of the above exists, ƒ is says to be beta-

differentiable. 

 

2. MAIN RESULTS 

 

In this section we present our results using β-fractional integrals. 
 

Theorem 2.1. Let f and g be two synchronous functions on [0, ∞). Then the following inequality 

holds 
 

𝐴
0

𝐼
𝛽
𝑡

(𝑓𝑔)(𝑡) ≥
               1               

𝐴
0

𝐼
𝛽   

𝑡
   (1)

𝐴
0

𝐼
𝛽
𝑡

(𝑓)(𝑡)𝐴
0

𝐼
𝛽
𝑡

(𝑔)(𝑡)                                                          (2.1) 

 

for all 𝑡 ≥ 0, 𝛽 > 0. 
 

Proof  Since ƒ and g are two synchronous functions on [0, ∞), we have 
 

(𝑓(𝜏) − 𝑓(𝜌))(𝑔(𝜏) − 𝑔(𝜌)) ≥ 0  
 

and 
 

𝑓(𝜏)𝑔(𝜏) + 𝑓(𝜌)𝑔(𝜌) ≥  𝑓(𝜏)𝑔(𝜌) + 𝑓(𝜌)𝑔(𝜏)                                                                       (2.2)  
 

for all  𝜏 ≤ 0, 𝜌 ≤ 0. If we multiply both sides of the inequality (2.2) by   𝜏 +
1

Γ(𝛽)

𝛽−1
 and 

integrate with respect to 𝜏 from 0 to t, we obtain 
 

∫ (𝜏 +
1

Γ(𝛽)
)

𝛽−1
(𝑓(𝜏)𝑔(𝜏))

𝑡

0
𝑑𝜏 + ∫ (𝜏 +

1

Γ(𝛽)
)

𝛽−1𝑡

0
 (𝑓(𝜌)𝑔(𝜌))𝑑𝜌 ≥

∫ (𝜏 +
1

Γ(𝛽)
)

𝛽−1𝑡

0
𝑓(𝜏)𝑔(𝜌)𝑑𝜏 + ∫ (𝜏 +

1

Γ(𝛽)
)

𝛽−1
 𝑓(𝜌)𝑔(𝜎)

𝑡

0
𝑑𝜏.  

 

Using the following equality 
 

∫ 𝑓(𝜏)𝑑𝛽𝜏
𝑡

0
= ∫ 𝑓(𝜏) (𝜏 +

1

Г(𝛽)
)

𝛽−1
𝑑𝜏

𝑡

0
  

 

we have  
  

𝐴
0

𝐼
𝛽
𝑡

(𝑓(𝑡)𝑔(𝑡)) + 𝑓(𝜌)𝑔(𝜌)𝐴
0

𝐼
𝛽
𝑡

(1) ≥ 𝑔(𝜌)𝐴
0

𝐼
𝛽
𝑡

(𝑓(𝑡) + 𝑓(𝜌))
𝐴
0

𝐼
𝛽
𝑡

(𝑔(𝑡)).                             (2.3) 
 

Multiplying both sides of the inequality (2.3) by    𝜌 +
1

Γ(𝛽)

𝛽−1
 and integrating with respect to 

𝜌 on [0, 𝑡], we have 
 

(𝜌 +
1

Γ(𝛽)
)

𝛽−1 𝐴
0

𝐼
𝛽
𝑡

(𝑓𝑔)(𝑡) + (𝜌 +
1

Γ(𝛽)
)

𝛽−1
𝑓(𝜌)𝑔(𝜌)𝐴

0
𝐼
𝛽
𝑡

(1)  ≥

(𝜌 +
1

Γ(𝛽)
)

𝛽−1 𝐴
0

𝐼
𝛽
𝑡

(𝑓)(𝑡)𝑔(𝜌) + (𝜌 +
1

Γ(𝛽)
)

𝛽−1
𝑓(𝜌)𝐴

0
𝐼
𝛽
𝑡

(𝑔)(𝑡)  
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then  
 

𝐴
0

𝐼
𝛽
𝑡

(𝑓𝑔)(𝑡) ∫ (𝜌 +
1

Γ(𝛽)
)

𝛽−1
𝑑𝜌 +

𝐴
0

𝐼
𝛽
𝑡

(1)
𝑡

0 ∫ (𝜌 +
1

Γ(𝛽)
)

𝛽−1
𝑓(𝜌)𝑔(𝜌)

𝑡

0
𝑑𝜌 ≥

𝐴
0

𝐼
𝛽
𝑡

(𝑓)(𝑡) ∫ (𝜌 +
𝑡

0

1

Γ(𝛽)
)

𝛽−1
𝑑𝜌 +

𝐴
0

𝐼
𝛽
𝑡

(𝑔) (𝑡) (𝜌 +
1

Γ(𝛽)
)

𝛽−1
𝑓(𝜌)𝑑𝜌  

𝐴
0

𝐼
𝛽
𝑡

(𝑓𝑔)(𝑡)𝐴
0

𝐼
𝛽
𝑡

(1) +
𝐴
0

𝐼
𝛽
𝑡

(1) 
𝐴
0

𝐼
𝛽
𝑡

(𝑓𝑔)(𝑡) ≥
𝐴
0

𝐼
𝛽
𝑡

(𝑓)(𝑡)𝐴
0

𝐼
𝛽
𝑡

(𝑔)(𝑡) +
𝐴
0

𝐼
𝛽
𝑡

(𝑔)(𝑡)𝐴
0

𝐼
𝛽
𝑡

(𝑓)(𝑡)  

2 
𝐴
0

𝐼
𝛽
𝑡

(𝑓𝑔)(𝑡)𝐴
0

𝐼
𝛽
𝑡

(1) ≥ 2
𝐴
0

𝐼
𝛽
𝑡

(𝑓)(𝑡)𝐴
0

𝐼
𝛽
𝑡

(𝑔)(𝑡)  

𝐴
0

𝐼
𝛽
𝑡

(𝑓𝑔)(𝑡) ≥
1

𝐴
0

𝐼
𝛽
𝑡

(1)

𝐴
0

𝐼
𝛽
𝑡

(𝑓)(𝑡)𝐴
0

𝐼
𝛽
𝑡

(𝑔)(𝑡).  

 

This completes the proof. 
 

Theorem 2.2. Let f and g be two synchronous functions on [0,1). Then we have the following 

inequality 
 

𝐴
0

𝐼
𝛽
𝑡

(𝑓𝑔)(𝑡)𝐴
0

𝐼
𝛽
𝑡

(1) +
𝐴
0

𝐼
𝛽
𝑡

(1)𝐴
0

𝐼
𝛽
𝑡

(𝑓𝑔)(𝑡) ≥
𝐴
0

𝐼
𝛽
𝑡

(𝑓)(𝑡)𝐴
0

𝐼
𝛽
𝑡

(𝑔)(𝑡) +
𝐴
0

𝐼
𝛽
𝑡

(𝑓)(𝑡)𝐴
0

𝐼
𝛽
𝑡

(𝑔)(𝑡)  

                                                                                                                                                     (2.4) 
 

for all 𝑡 > 0, 𝛼 > 0, and 𝛽 > 0.  
 

Proof Using the same way in the proof of Theorem 2.1, we can obtain (2.3). Multiplying both 

sides of the inequality (2.3) by  𝜌 +
1

Γ(𝛼)

𝛼−1
 and integrating with respect to 𝜌 from 0 to 𝑡 we have   

 

𝐴
0

𝐼
𝛽 
𝑡

(𝑓𝑔)(𝑡) ∫ (𝜌 +
1

Γ(𝛼)
)

𝛼−1𝑡

0
𝑑𝜌 +

𝐴
0

𝐼
𝛽 
𝑡

(1) ∫ (𝜌 +
1

Γ(𝛼)
)

𝛼−1
𝑓(𝜌)𝑔(𝜌)𝑑𝜌 ≥

𝑡

0

𝐴
0

𝐼
𝛽 
𝑡

(𝑓)(𝑡) ∫ (𝜌 +
1

Γ(𝛼)
)

𝛼−1
𝑔(𝜌)𝑑𝜌 +

𝐴
0

𝐼
𝛽 
𝑡

(𝑔)(𝑡) ∫ (𝜌 +
1

Γ(𝛼)
)

𝛼−1
𝑓(𝜌)𝑑𝜌

𝑡

0

𝑡

0
   

𝐴
0

𝐼
𝛽 
𝑡

(𝑓𝑔)(𝑡)𝐴
0

𝐼
𝛼 
𝑡

(1) +
𝐴
0

𝐼
𝛽 
𝑡

(1)𝐴
0

𝐼
𝛼 
𝑡

(𝑓𝑔)(𝑡) ≥
𝐴
0

𝐼
𝛼 
𝑡

(𝑓)(𝑡)𝐴
0

𝐼
𝛽 
𝑡

(𝑔)(𝑡) +
𝐴
0

𝐼
𝛽 
𝑡

(𝑓)(𝑡)𝐴
0

𝐼
𝛼 
𝑡

(𝑔)(𝑡)   

2
𝐴
0

𝐼
𝛽 
𝑡

(𝑓𝑔)(𝑡)𝐴
0

𝐼
𝛽 
𝑡

(1) ≥ 2
𝐴
0

𝐼
𝛽 
𝑡

(𝑓)(𝑡)𝐴
0

𝐼
𝛽 
𝑡

(𝑔)(𝑡)  

𝐴
0

𝐼
𝛽 
𝑡

(𝑓𝑔)(𝑡) ≥
1

𝐴
0

𝐼
𝛽 
𝑡

(1)

𝐴
0

𝐼
𝛽 
𝑡

(𝑓)(𝑡)𝐴
0

𝐼
𝛽 
𝑡

(𝑔)(𝑡)  

 

and this ends the proof.  
 

Remark 2.1. If the functions ƒ and g are asynchronous on [0,∞), then the inequalities (2.2) and 

(2.3) are reversed. 
 

Theorem 2.3. We assume the functions fi  for i = 1,2, … , 𝑛 are positive increasing functions on 
[0,∞). Then the following inequality holds 
 

𝐴
0

𝐼
𝛽 
𝑡

(∏ 𝑓𝑖  𝑛
𝒾=1 )(𝑡) ≥

          1           

(
A
0

I
β 
t

(1)))

𝑛−1 ∏ (  𝐼 𝑡
 𝛽

0
𝐴 (𝑓𝑖))(𝑡)𝑛

𝑖=1                                                 (2.5) 

 

for any 𝑡 > 0, 𝛽 > 0. 
 

Proof  We use induction method to prove the theorem. We can easily see that for n = 1, we have 
 

𝐴
0

𝐼
𝛽 
𝑡

𝑓1(𝑡) ≥
𝐴
0

𝐼
𝛽 
𝑡

𝑓1(𝑡)                                                                                                                (2.6) 
 

for all 𝑡 > 0, 𝛽 > 0. For n = 2, we use Theorem 2.1 and we have 
 

𝐴
0

𝐼
𝛽 
𝑡

(𝑓1𝑓2)(𝑡) ≥
           1             

𝐴
0

𝐼
𝛽 
𝑡

(1)

𝐴
0

𝐼
𝛽 
𝑡

(𝑓1)(𝑡)𝐴
0

𝐼
𝛽 
𝑡

(𝑓2)(𝑡).                                                                (2.7) 
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We suppose that 
 

𝐴
0

𝐼
𝛽 
𝑡

(∏ 𝑓𝑖
𝑛−1
𝑖=1 )(𝑡) ≥

              1             

(
A
0

I
β 
t

(1)))

𝑛−2  (∏ 𝐴
0

𝐼
𝛽 
𝑡

(𝑓𝑖)𝑛−1
𝒾=1 ) (𝑡)                                                              (2.8) 

 

holds. Since the functions 𝑓𝑖 , 𝒾 = 1,2, … , 𝑛, are positive increasing functions, 

then   (∏ 𝑓𝑖
𝑛−1
𝑖=1 ) (𝑡) is also an increasing function. If we choose 𝑔(t) ≔ (∏ 𝑓𝑖

𝑛−1
𝑖=1 ) (𝑡), 𝑓𝑛 = 𝑓 

and use theorem 2.1, we obtain 
 

𝐴
0

𝐼
𝛽 
𝑡

(∏ 𝑓𝑖
𝑛
𝒾=1 )(𝑡) =

𝐴
0

𝐼
𝛽 
𝑡

(𝑔𝑓)(𝑡) ≥
         1       
𝐴
0

𝐼
𝛽 
𝑡

(1)

𝐴
0

𝐼
𝛽 
𝑡

(𝑔)(𝑡)𝐴
0

𝐼
𝛽 
𝑡

(𝑓)(𝑡).                                        (2.9) 

 

Using the inequality (2.8) we have 
 

𝐴
0

𝐼
𝛽 
𝑡

(∏ 𝑓𝑖
𝑛
𝒾=1 )(𝑡) ≥

          1          
𝐴
0

𝐼
𝛽 
𝑡

(1)

              1            

(
𝐴
0

𝐼
𝛽 
𝑡

(1))

𝑛−2   (∏ 𝐴
0

𝐼
𝛽 
𝑡

(𝑓𝑖)𝑛−1
𝒾=1 ) (𝑡)𝐴

0
𝐼
𝛽 
𝑡

(𝑓𝑛)(𝑡)                          (2.10) 

 

and this ends the proof. 
 

Theorem 2.4. Let 𝑓 and 𝑔 are two functions defined on [0,∞) such that 𝑓 is increasing, g is 

differentiable. Assume that there exists a real number  𝓂 ≔ 𝑖𝑛𝑓𝑡≥0 g′(𝑡). Then for all 𝑡 >
0 𝑎𝑛𝑑 𝛽 > 0, following inequality holds 
 

𝐴
0

𝐼
𝛽 
𝑡

(𝑓𝑔)(𝑡) ≥
        1           

𝐴
0

𝐼
𝛽 
𝑡

(1)
 
𝐴
0

𝐼
𝛽 
𝑡

(𝑓(𝑡))
𝐴
0

𝐼
𝛽 
𝑡

(𝑔(𝑡)) −  
        𝑚        

𝐴
0

𝐼
𝛽 
𝑡

(1)

𝐴
0

𝐼
𝛽 
𝑡

(𝑓(𝑡))
𝐴
0

𝐼
𝛽 
𝑡

(𝑡) + 𝑚
𝐴
0

𝐼
𝛽 
𝑡

(𝑡𝑓(𝑡))                                                                                                                                    

                                                                                                                                                   (2.11) 
 

Proof  We define the function  h(t) := g(t) - mt. It is easy to see that the function h is increasing 

and differentiable on [0,∞). Using Theorem 2.1, we have 
 

𝐴
0

𝐼
𝛽 
𝑡

((𝑔(𝑡) − 𝑚𝑡)𝑓(𝑡)) ≥
           1           

𝐴
0

𝐼
𝛽 
𝑡

(1)

𝐴
0

𝐼
𝛽 
𝑡

(𝑔(𝑡) −𝑚(𝑡))
𝐴
0

𝐼
𝛽 
𝑡

(𝑓(𝑡))  

𝐴
0

𝐼
𝛽 
𝑡

(𝑓𝑔)(𝑡) − 𝑚
𝐴
0

𝐼
𝛽 
𝑡

(𝑡𝑓(𝑡)) ≥
      1        
𝐴
0

𝐼
𝛽 
𝑡

(1)

𝐴
0

𝐼
𝛽 
𝑡

(𝑓(𝑡)) [
𝐴
0

𝐼
𝛽 
𝑡

(𝑔(𝑡)) − 𝑚
𝐴
0

𝐼
𝛽 
𝑡

(𝑡)]  

𝐴
0

𝐼
𝛽 
𝑡

(𝑓𝑔)(𝑡) ≥
         1      
𝐴
0

𝐼
𝛽 
𝑡

(1)

𝐴
0

𝐼
𝛽 
𝑡

(𝑓(𝑡))
𝐴
0

𝐼
𝛽 
𝑡

(𝑔(𝑡)) −
         𝑚           

𝐴
0

𝐼
𝛽 
𝑡

(1)

𝐴
0

𝐼
𝛽 
𝑡

(𝑓(𝑡))
𝐴
0

𝐼
𝛽 
𝑡

(𝑡) + 𝑚
𝐴
0

𝐼
𝛽 
𝑡

(𝑡𝑓(𝑡)).  

 

This concludes the prof. 
 

Theorem 2.5. Let the functions f and g are defined on [0,∞). We assume the function f is 

decreasing and g is differentiable. If there exists a real number M :=𝑠𝑢𝑝𝑡≥0   g’ (t) Then we have 
 

𝐴
0

𝐼
𝛽 
𝑡

(𝑓𝑔)(𝑡) ≥
          1           

𝐴
0

𝐼
𝛽 
𝑡

(1)

𝐴
0

𝐼
𝛽 
𝑡

(𝑓)(𝑡)𝐴
0

𝐼
𝛽 
𝑡

(𝑔)(𝑡) −
              𝑀              

𝐴
0

𝐼
𝛽 
𝑡

(1)

𝐴
0

𝐼
𝛽 
𝑡

(𝑓)(𝑡)𝐴
0

𝐼
𝛽 
𝑡

𝑡                (2.12) 

 

for all 𝑡 > 0, 𝛽 > 0. 
 

Proof  We define 𝐺(𝑡) ∶=  𝑔(𝑡)  −  𝑀𝑡. Since the function 𝐺 is differentiable and decreasing on 
[0,∞),  using Theorem 2.1 we have 
 

𝐴
0

𝐼
𝛽 
𝑡

(𝑓𝐺)(𝑡) =
𝐴
0

𝐼
𝛽 
𝑡

(𝑓(𝑡)(𝑔(𝑡) − 𝑀𝑡)) ≥
             1             

𝐴
0

𝐼
𝛽 
𝑡

(1)
[
𝐴
0

𝐼
𝛽 
𝑡

(𝑓(𝑡))
𝐴
0

𝐼
𝛽 
𝑡

(𝑔(𝑡) − 𝑀𝑡)] ≥

       1       
𝐴
0

𝐼
𝛽 
𝑡

(1)

𝐴
0

𝐼
𝛽 
𝑡

(𝑓)(𝑡)𝐴
0

𝐼
𝛽 
𝑡

(𝑔)(𝑡) −
     𝑀     
𝐴
0

𝐼
𝛽 
𝑡

(1)

𝐴
0

𝐼
𝛽 
𝑡

(𝑓)(𝑡)𝐴
0

𝐼
𝛽 
𝑡

𝑡.  

 

Theorem 2.6. Let the functions f and g are differentiable and there exists  𝑚1 ∶ 𝑖𝑛𝑓𝑡≥0 𝑔′(𝑡). Then 

for all  𝑡 > 0, 𝛽 > 0 we have 
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𝐴
0

𝐼
𝛽 
𝑡

[(𝑓(𝑡) − 𝑚1(𝑡))(𝑔(𝑡) − 𝑚2(𝑡))] ≥
           1            

𝐴
0

𝐼
𝛽 
𝑡

(1)
[
𝐴
0

𝐼
𝛽 
𝑡

(𝑓(𝑡)𝑔(𝑡)) − 𝑚2
𝐴
0

𝐼
𝛽 
𝑡

(𝑡𝑓(𝑡)) −

𝑚1
𝐴
0

𝐼
𝛽 
𝑡

(𝑡𝑔(𝑡)) + 𝑚1𝑚2
𝐴
0

𝐼
𝛽 
𝑡

(𝑡2)].                                                                                          (2.13) 
 

Proof  We consider the functions 𝐹(𝑡) = 𝑓(𝑡) − 𝑚1𝑡 𝑎𝑛𝑑 𝐺(𝑡) ≔ 𝑔(𝑡) − 𝑚2𝑡.  It is clear that 

the functions 𝐹(𝑡) and 𝐺(𝑡) are increasing on [0,∞). Using Theorem 2.1, we have 
 

𝐼𝑡
𝛽

0
𝐴 [(𝑓(𝑡) − 𝑚1𝑡)(𝑔(𝑡) − 𝑚2𝑡)] = 𝐼𝑡

𝛽
(𝑓(𝑡)𝑔(𝑡)) − 𝑚20

𝐴 𝐼𝑡
𝛽(𝑓(𝑡). 𝑡) − 𝑚10

𝐴 𝐼𝑡
𝛽

0
𝐴 (𝑡. 𝑔(𝑡)) +

𝑚1𝑚2 ( 𝐼𝑡
𝛽

0
𝐴 (𝑡))

2
  

≥
1

𝐼𝑡
𝛽

0
𝐴 (1)

𝐼𝑡
𝛽

0
𝐴 (𝑓(𝑡)) 𝐼𝑡

𝛽
0
𝐴 (𝑔(𝑡)) −

𝑚2

𝐼𝑡
𝛽

0
𝐴 (1)

𝐼𝑡
𝛽

0
𝐴 (𝑓(𝑡)) 𝐼𝑡

𝛽
0
𝐴 (𝑡) −

𝑚1

𝐼𝑡
𝛽

0
𝐴 (1)

𝐼𝑡
𝛽

0
𝐴 (𝑡) 𝐼𝑡

𝛽
0
𝐴 (𝑔(𝑡)) +

𝑚1𝑚2

𝐼𝑡
𝛽

0
𝐴 (1)

( 𝐼𝑡
𝛽

0
𝐴 (𝑡))

2

  

≥

1

𝐼𝑡
𝛽

0
𝐴 (1)

[ 𝐼𝑡
𝛽

0
𝐴 (𝑓(𝑡)) 𝐼𝑡

𝛽
0
𝐴 (𝑔(𝑡)) − 𝑚2 𝐼𝑡

𝛽
0
𝐴 (𝑓(𝑡)) 𝐼𝑡

𝛽
0
𝐴 (𝑡) − 𝑚1 𝐼𝑡

𝛽
0
𝐴 (𝑡) 𝐼𝑡

𝛽
0
𝐴 (𝑔(𝑡)) + 𝑚1𝑚2 ( 𝐼𝑡

𝛽
0
𝐴 (𝑡))

2

].  

 

3. CONCLUSION 

 

Fractional derivatives are an attraction point for several researchers. In this paper, we consider 

beta-fractional derivative. By using beta-fractional integrals, some new integral inequalities 

established in the case of two synchronous functions. As a main contribution to the literature, we 

prove six theorems. Our results are pioneer for the literature of integral inequalities in beta-

fractional integral sense. 
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