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ABSTRACT 

 

In the present study for given fuzzy data an estimation method based on Max(F)Ent measure and generalized 
entropy optimization methods is suggested. A set of successive values of estimated membership function is 

defined as distribution which is closest to appropriate membership function and distribution   which is furthest 

from mentioned membership function. In this study, fuzzy data analysis is fulfilled by applying GMax(F)EntM 

for fuzzy data. The performances of distributions  (MinMaxEnt)m and (MaxMaxEnt)m are established by Chi-
Square, Root Mean Square criterias and Max(F)Ent measure. It should be noted that the results are obtained by 

using MATLAB. It should be noted that the results are obtained by using MATLAB.  
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1. INTRODUCTION 

 

The entropy is very important concept for measurement of uncertain information. The fuzzy 

entropy is a basic concept in fuzzy set theory, many acquired researches are based on the definition 

of fuzzy entropy, especially in statistics,  economics and engineering. Shannon [1] has introduced 

entropy as a measure of uncertainty of random variable X in the following form 

𝐻(𝑋) = −∑ 𝑝𝑖𝑙𝑜𝑔⁡(𝑝𝑖),
𝑛
𝑖=1 ⁡⁡𝑖 = 1,2, . . . , 𝑛  

where 𝑝𝑖 = 𝑃{𝑋 = 𝑥𝑖},  ∑ 𝑝𝑖 = 1𝑛
𝑖=1 . 

This entropy has the following properties:⁡𝐻 is non-neagative; 𝐻 = 0 if and only if 𝑝𝑖 = 1⁡, 𝑖 =
1,2, , … , 𝑛 and 𝐻 gets its maximum value 𝐻𝑚𝑎𝑥 = 𝑙𝑜𝑔𝑛 when 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑛 = 1/𝑛. 

Measure of fuzziness indicates the degree of fuzziness of a fuzzy set. In other words, the entropy 

of a fuzzy set is a measure of the fuzziness of a fuzzy set. The fuzzy entropy is defined by using the 

concept of membership function [2]. The fuzzy entropy proposed by De Luca and Termini is shown 

the following formula, 
 

𝐻(𝐴) = −∑ [𝜇𝐴(𝑥𝑖)𝑙𝑜𝑔𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝑛
𝑖=0 𝑙𝑜𝑔(1 − 𝜇𝐴(𝑥𝑖))] , 

where 𝐴 is a fuzzy set, 𝜇𝐴(𝑥) is membership function and 𝜇𝐴(𝑥𝑖) are the fuzzy values. 
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This fuzzy entropy has following properties: 𝐻(𝐴) = 0 if and only if 𝐴 is crisp set and 𝐻(𝐴)⁡is 

maximum if and only if 𝜇𝐴(𝑥𝑖) = 0.5, ∀𝑥𝑖 ⁡ ∈ 𝐴. 

The fuzzy entropy is used to represent the degree of uncertainty. According to the Shannon 

entropy of random variables, Zadeh [3] firstly suggested that fuzzy entropy guantifies measurement 

of the uncertainty associated with each fuzzy value as a weighted Shannon entropy. Then, fuzzy 

entropy has been studied by lots of researchers.  De Luca and Termini [4] first initialized the entropy 

of a fuzzy set by using Shannon probabilistic entropy measure of fuzzy entropy for a fuzzy set 

including finite number elements. Kauffman [5] proposed that the entropy of a fuzzy set can be 

measured with respect to the distance between the fuzzy set and its nearest set. After that, 

Knopfmacher [6] extended the definition of fuzzy entropy made by De Luca and Termini and 

Kauffman, respectively. Yager [7] defined another kind of fuzzy entropy measure by using distance 

of the fuzzy set and its complement. Kosko [8] introduced the fuzzy entropy based on the fuzzy set 

theory and distances between them. Also, there is a lot of research studies about fuzzy entropy and 

its applications such as Bhandari and Pal [9], Pal and Pal [10].  

After the development of given by De Luca and Termini, a large number of measures of fuzzy 

entropy are discussed, characterized and generalized by various authors. Parkash, Sharma and 

Mahajan [11] introduced new measures of weigted fuzzy entropy including two moment conditions 

and acquired relationships among these measures according to their applications for the analysis of 

maximum weighted fuzzy entropy principle. Guo and Xin [12] have extended Zadeh’s idea to 

improve some new generalized entropy formulas for fuzzy sets.  

For practical problems without sufficient information,  the determination of uncertainty 

distributions of fuzzy values is an important problem in the fuzzy set theory and needs to be 

estimated with accessible information about fuzzy values. For a fuzzy set, in some circumstances, 

it isn’t obtained the membership function clearly. At this point, Maximum Entropy Method 

(MaxEnt) proposed by Jaynes can successfully solve this problem by maximizing the Shannon 

entropy measure, subject to moment constraints, when the information is given moment functions. 

Following the Maximum Entropy Method, in fuzzy theory, it is introduced the Max(F)Ent measure 

which maximizes the value of fuzzy entropy subject to moment constraints. After Max(F)Ent 

measure is obtained by implicit function theorem [13] and Lagrange multipliers method [14], 

finding moment constraints is essential for the Max(F)Ent method. Shamilov [14-16] defined the 

MaxEnt functional for the first time by means of Shannon’s entropy measure on the given compact 

and finite sets of moment vector functions. Furthermore, an approach to obtain (MinMaxEnt)m and 

(MaxMaxEnt)m distributions was formulated as a generalization of the entropy optimization 

principles in [17]. In Shamilov’s studies, it was shown that the moment vector functions giving the 

least value and greatest value to the MaxEnt functional generate distributions in the form of  

(MinMaxEnt)m and (MaxMax(F)Ent)m, respectively.  

The aim of this paper is to realize an application of Maximum Fuzzy Entropy Method 

(Max(F)EntM) and Generalized Maximum Fuzzy Entropy Method (GMax(F)EntM) for Max(F)Ent 

measure subject to 𝑚 + 1 moment constraints. It should be noted that Max(F)EntM and 

GMax(F)EntM are developed in [18-20]. After the development of Generalized Maximum Entropy 

Methods, given by Shamilov [14,16], in fuzzy set theory, it is introduced the Generalized Maximum 

Fuzzy Entropy Methods and their solutions in the form of distributions  (MinMax(F)Ent)m which 

is closest to a given membership function and (MaxMax(F)Ent)m which is furthest from a given 

membership function in the sense of Max(F)Ent measure [18-20]. 

This paper organized as follows. In Section 2,  it is introduced the Max(F)Ent functional for 

fuzzy values, the process of determining (MinMax(F)Ent)m and (MaxMax(F)Ent)m distributions 

is given. In Section 3, an application on fuzzy data is fulfilled by using GMax(F)EntM in detail. 

Finally, the main results obtained in this study are summarized.  
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2. MAX (F) ENT FUNCTIONAL 

 

The Maximum Fuzzy Entropy Method (Max(F)EntM) is a new approach to obtain a 

membership function for fuzzy data via Max(F)Ent characterizing moment vector functions which 

generate corresponding  moment constraints to maximize  Max(F)Ent function. According to 

Generalized Maximum Fuzzy Entropy Methods (GMax(F)Ent) [16], we have introduced a special 

functional 𝑈(𝑔) obtained on given compact set of Max(F)Ent characterizing moment vector 

functions 𝑔. By virtue of the Max(F)Ent characterizing moment vector functions which give 

respectively  the least and the greatest values to the mentioned functional. This functional allows 

us to obtain Generalized Maximum Fuzzy Entropy (GMax(F)Ent) distributions in the form of 

(MinMaxEnt)m and (MaxMax(F)Ent)m distributions for estimation of appropriate membership 

function. Vector function 𝑔(0) with m components giving minimum value to 𝑈(𝑔) obtains 

(MinMax(F)Ent)m⁡distribution and vector function 𝑔(1) with 𝑚 components giving maximum 

value to 𝑈(𝑔) obtains (MaxMax(F)Ent)m distribution. It should be noted that (MinMax(F)Ent)m 

distribution is the closest to the appropriate membership function and 

(MaxMax(F)Ent)m⁡distribution is the furthest from the appropriate membership function in the 

sense of Max(F)Ent measure.  

The problem of maximizing fuzzy entropy measure defined by De Luca and Termini by using 

Shannon probabilistic entropy measure, we shall use in the following form 
 

⁡𝐻(𝐴) = −∑ [𝜇𝐴(𝑥𝑖)𝑙𝑛𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))
𝑛
𝑖=0 𝑙𝑛(1 − 𝜇𝐴(𝑥𝑖))]                                              (1) 

  

subject to constraints  
 

∑ 𝜇𝐴(𝑥𝑖)
𝑛
𝑖=0 𝑔𝑗(𝑥𝑖) = 𝜇𝑗 , 𝑗 = 0,1,2,… ,𝑚                                                                                     (2) 

 

where 𝑔0(𝑥) ≡ 1;⁡⁡𝜇𝑗 , 𝑗 = 0,1,2, … ,𝑚 are moment values of 𝜇𝐴(𝑥𝑖), 𝑖 = 0,1,...,𝑛 with respect 

to moment functions 𝑔𝑗(𝑥), 𝑗 = 0,1,2, … ,𝑚; ⁡𝑚 < 𝑛. It is possible to indicate that this problem 

has a solution  
 

𝜇𝐴(𝑥𝑖) =
1

1+𝑒
∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)
𝑚
𝑗=0

,⁡⁡⁡𝑖 = 0,1,… , 𝑛                                                                                          (3) 
 

where 𝜆𝑗 ,⁡⁡⁡𝑗 = 0,1,… ,𝑚 are Lagrange multipliers. We note that mentioned problem for entropy 

optimization measure is suggested and solved in [14-16].  

If the moment vector value 𝜇 = (𝜇0, 𝜇1, … , 𝜇𝑚) is obtained for each Max(F)Ent characterizing 

moment vector function 𝑔(𝑥) = (𝑔0(𝑥), 𝑔1(𝑥), … , 𝑔𝑚(𝑥)) from the data, then distribution 𝜇(𝑥) =

(𝜇𝐴(𝑥0), 𝜇𝐴(𝑥1), … , 𝜇𝐴(𝑥𝑛)) is calculated by formula (3). If Equation (3) is substituted in Equation 

(1), the maximum value of Max(F)Ent measure (1) is obtained in the following form: 
 

𝑚𝑎𝑥𝐻𝐴 = ⁡𝑈(𝑔) = −∑ ⁡𝑙𝑛
𝑒
∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)
𝑚
𝑗=0

1+𝑒
∑ 𝜆𝑗𝑔𝑗(𝑥𝑖)
𝑚
𝑗=0

⁡𝑛
𝑖=0 +  ∑ 𝜆𝑗𝜇𝑗

𝑚
𝑗=0 .                                                          (4) 

 

In formula (4), maxHA is considered as a functional of 𝑔(𝑥)  and called Max(F)Ent functional. 

Thus, we use the notation 𝑈(𝑔) to denote the maximum value of 𝐻(𝐴) defined by (1) corresponding 

to 𝑔(𝑥) = (𝑔0(𝑥), 𝑔1(𝑥), … , 𝑔𝑚(𝑥)). 
 

A. MinMax(F)Ent and MaxMax(F)Ent Distributions 

 

Generalized Maximum Fuzzy Entropy Distribution indicated as (MinMax(F)Ent⁡)m is closest 

to the appropriate membership function and (MaxMax(F)Ent⁡)m is furthest from the appropriate 

membership function in the sense of Max(F)Ent measure. Problems suggested to estimate 

membership functions in the form of  (MinMax(F)Ent)m and (MaxMax(F)Ent)mdistributions are 

called MinMax(F)Ent and MaxMax(F)Ent problems, respectively.  
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Let 𝐾0 = {𝑔0, 𝑔1, … , 𝑔𝑟} be the set of characterizing moment vector functions and all 

combinations of  𝑟  elements of   𝐾0 taken 𝑚 elements at a time be  𝐾(0,𝑚). We note that each 

element of  𝐾(0,𝑚) is vector   𝑔   with   m   components. Note that the number of vectors 𝑔 is equal 

to⁡( r
m
).  

Solving the MinMax(F)Ent and MaxMax(F)Ent problems require to find vector functions 

(𝑔0, 𝑔
(1)(𝑥)), (𝑔0, 𝑔

(2)(𝑥))⁡  where  𝑔0(𝑥) ≡ 1,  𝑔(1) ∈ 𝐾(0,𝑚)⁡, ⁡𝑔
(2) ∈ 𝐾(0,𝑚) gives minimum 

and maximum values to functional 𝑈(𝑔) defined by (4), respectively. It must be noted that 𝑈(𝑔) 
reaches its minimum (maximum) value subject to constraints (2) generated by function  g0(x)  and 

all 𝑚- dimensional vector functions  𝑔(𝑥), ⁡𝑔 ∈ 𝐾(0,𝑚). In other words, minimum (maximum) value 

of  𝑈(𝑔) is least (greatest) value of  𝑈(𝑔)  corresponding to (𝑔0(𝑥), 𝑔), 𝑔 ∈ 𝐾0,𝑚. In other words, 

(MinMax(F)Ent)m((MaxMax(F)Ent)m) is distribution giving minimum (maximum) value to 

functional 𝑈(𝑔) along of all distributions generated by ( r
m
) number of moment vector functions 

(𝑔0(𝑥),𝑔), 𝑔 ∈ 𝐾0,𝑚. Therefore, we denote mentioned distributions in the form of 

(MinMax(F)Ent)m and (MaxMax(F)Ent)m. 

The existence and method of evalution of distributions (MinMax(F)Ent)m, 

(MaxMax(F)Ent)m  is proved by the following theorem. 

Existence theorem. Let us the following conditions are satisfied: 

1.Max(F)Ent characterizing moment functions 𝑔𝑗(𝑥), 𝑗 = 0,1,2, … ,𝑚 a are linearly 

independent; 

2.  The inequality 𝑛 > 𝑚  is satisfied; 

3. Moment values 𝜇𝑗 , 𝑗 = 0,1,… ,𝑚 are obtained by virtue of given fuzzy values  𝜇𝐴(𝑥𝑖)⁡, 𝑖 =

0,1,… , 𝑛⁡and⁡𝑔𝑗(𝑥), 𝑗 = 0,1,… ,𝑚 in the form of equalities 

∑ 𝑔𝑗(𝑥𝑖)⁡𝜇𝐴(𝑥𝑖)
𝑛
𝑖=0 ⁡

= 𝜇𝑗 , 𝑗 = 0,1,… ,𝑚.⁡        

Then, Maximum Fuzzy Entropy Problem (Max(F)EntP) which consists of  maximizing  fuzzy 

entropy measure (1) with respect to  membership functions 𝜇𝐴(𝑥)⁡ with finite number of the fuzzy 

values 𝜇𝐴(𝑥𝑖), 𝑖 = 0,1,…,𝑛 subject to constraints (2) has a solution 𝜇(𝑥) =

(𝜇𝐴(𝑥0), 𝜇𝐴(𝑥1), … , 𝜇𝐴(𝑥𝑛)). 
 

3. APPLICATION ON FUZZY DATA FOR GENERALIZED MAXIMUM FUZZY 

ENTROPY DISTRIBUTIONS 
 

In this section, (MinMax(F)Ent)m and (MaxMax(F)Ent)m distributions for membership 

function values corresponding to fuzzy data given by Table 1 are obtained. It should be noted that 

mentioned distributions are calculated by using MATLAB. 
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Table 1. Calculated membership function values  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to calculate distributions in the form of (MinMax(F)Ent)m and⁡(MaxMax(F)Ent⁡)m, 

the following steps are realized: 

1. According to fuzzy data, determine moment functions generating moment conditions in other 

words Max(F)Ent characterizing  moments in the following form: 

𝐸{√𝑥}, 𝐸{𝑙𝑛𝑥}, 𝐸{𝑙𝑛(1 + 𝑥)}, 𝐸{𝑙𝑛⁡(1 + 𝑥2)}.  
2. Calculate Max(F)Ent distributions subject to each of Max(F)Ent characterizing  moments. 

3. Calculate the fuzzy entropy measures of the Max(F)Ent distribution.  

4. Determine (MinMax(F)Ent)m and (MaxMax(F)Ent⁡)m distributions corresponding to 

selected Max(F)Ent characterizing  moments which generate corresponding moment constraints. 

The steps mentioned above are repeated for two moment constraints. In step 3, the Lagrange 

multipliers for distributions are found by using the Newton method on the MATLAB program. As 

an example for this process, the corresponding moment constraints to maximum information are 

listed in Tables 2–3 using the fuzzy data.  

 

Table 2. Entropy of calculated Max(F)Ents subject to two moment functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

         𝑥𝑖            𝑋(𝑚/𝑠𝑛) 

     0.1000          0.0001 

     0.6000          0.0002 

     1.1000          0.0004 
     1.6000          0.0011 

     2.1000          0.0030 

     2.6000          0.0082        
     3.1000          0.0219 

     3.6000          0.0573 

     4.1000          0.1419 
     4.6000          0.3100 

     5.1000          0.5498 

     5.6000          0.7685 
     6.1000          0.9002 

     6.6000          0.9608 

     7.1000          0.9852 
     7.6000          0.9945 

     8.1000          0.9980 

     8.6000          0.9993 
     9.1000          0.9997 

     9.6000          0.9999 

Moment functions        Fuzzy Entropy                             
(1, √𝑥)                           0.0371 

(1, 𝑙𝑛𝑥)                          0.0600 
(1, 𝑙𝑛(1 + 𝑥))                0.0368 
(1, 𝑙𝑛⁡(1 + 𝑥2))              0.0422 
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Table 3. Entropy of calculated Max(F)Ents subject to three moment functions 

 

 

 

 

 

 

 

 

 

For 𝑚 = 1, 𝐾(0,1) = {(1, √𝑥), (1, 𝑙𝑛𝑥), (1, 𝑙𝑛⁡(1 + 𝑥)), (1, 𝑙𝑛⁡(1 + 𝑥2))} 

From Table 2, it is shown that (𝑔0⁡, 𝑔
(1)) = (1, 𝑙𝑛⁡(1 + 𝑥)), 𝑔(1) ⁡ ∈ 𝐾(0,1) gives to least value 

to⁡𝑈(𝑔), consequently corresponding distribution is (MinMax(F)Ent)1 and (𝑔0, 𝑔
(2)) = (1, 𝑙𝑛𝑥), 

𝑔(2) ∈ 𝐾0,1 gives to greatest value to 𝑈(𝑔), consequently corresponding distribution is 

(MaxMax(F)Ent)1. In a similar way,   

For 𝑚 = 2, 𝐾(0,2) = {(1, √𝑥⁡, 𝑙𝑛𝑥), (1, √𝑥⁡, 𝑙𝑛(1 + 𝑥)), (1, √𝑥⁡, 𝑙𝑛(1 + 𝑥2)), (1, 𝑙𝑛𝑥, 𝑙𝑛(1 +

𝑥)), (1, 𝑙𝑛𝑥, 𝑙𝑛⁡(1 + 𝑥2)}. 

From Table 3, it is shown that  (𝑔0, 𝑔
(1)) = (1, √𝑥, 𝑙𝑛⁡(1 + 𝑥)), 𝑔(1) ∈ 𝐾0,2 gives to least value 

to 𝑈(𝑔), consequently corresponding distribution is (MinMax(F)Ent)2 and (𝑔0, 𝑔
(2)) =

(1, √𝑥, 𝑙𝑛𝑥), 𝑔(2) ∈ 𝐾0,2 gives to greatest value to 𝑈(𝑔), consequently corresponding distribution 

is (MaxMax(F)Ent)2.  

According to this moment conditions, the frequency distributions calculated by the 

(MinMax(F)Ent)m and (MaxMax(F)Ent)m distributions are given in Table 4. 

In the Table 4-6, corresponding to 𝐾(0,𝑚)⁡(𝑚 = 1,2) distributions are indicated in the following 

form. Let (MinMax(F)Ent)1 be (MinMFE)1  and (MinMax(F)Ent)2 be (MinMFE)2 subject to two 

constraints. Then, (MaxMax(F)Ent)1 is the (MaxMFE)1 and (MaxMax(F)Ent)2 is 

the⁡(MaxMFE)2 subject to three constraints. 

 

Table 4. Distributions of (MİNMAX(F)ENT)M, (MAXMAX(F)ENT)M   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moment functions                    Fuzzy  Entropy 

(1, √𝑥⁡, 𝑙𝑛𝑥)                                  0.0241 

(1, √𝑥, 𝑙𝑛⁡(1 + 𝑥))                        0.0219 

(1, √𝑥⁡, 𝑙𝑛⁡(1 + 𝑥2))                      0.0300 

(1, 𝑙𝑛𝑥, 𝑙𝑛⁡(1 + 𝑥))                        0.0289 
(1, 𝑙𝑛𝑥, 𝑙𝑛⁡(1 + 𝑥2))                      0.0296 
(1, 𝑙𝑛(1 + 𝑥) , 𝑙𝑛⁡(1 + 𝑥2))           0.0298                                           

   
(MINMFE)1                          

(MINMFE)2             
(MAXMFE)1            

(MAXMFE)2                  

 

      0.9998           0.9999           0.9987              0.9999 

      0.9998           0.9999           0.9995              0.9999 
      0.9998           0.9999           0.9997              0.9999 

      0.9998           0.9999           0.9997              0.9999 

      0.9999           0.9999           0.9998              0.9999 
      0.9999           0.9999           0.9998              0.9999 

      0.9999           0.9999           0.9998              0.9999  

      0.9999           0.9999           0.9998              0.9999 
      0.9999           0.9999           0.9998              0.9999 

      0.9999           0.9999           0.9998              0.9999 

      0.9999           0.9999           0.9999              0.9999 
      0.9999           0.9999           0.9999              0.9999 

      0.9999           0.9999           0.9999              0.9999 
      0.9999           0.9999           0.9999              0.9999 

      0.9999           1.0000           0.9999              0.9999  

      0.9999           1.0000           0.9999              0.9999 
      0.9999           1.0000           0.9999              0.9999 

      0.9999           1.0000           0.9999              0.9999 
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Now, chosing the best distribution function for fuzzy data can be determined according to the 

lowest values RMSE, 𝜒2 and Max(F)Ent measure. Therefore, in order to obtain the performance 

of the mentioned distributions, it has been used various criterias as Chi-Square, Root Mean Square 

Error (RMSE) and maximum fuzzy entropy values of distributions. The obtained results are 

demonstrated in Table 5-6. 

 

 Table 5. The obtained results for  (MAXMAX(F)ENT)M⁡, M = 1,2  

 

 

 

 

 

 

Table 6. The obtained results for   (MINMAX(F)ENT)M⁡, M = 1,2 
 

 

 

 

 
 

 

Tables 5-6 show that in the sense of 𝜒2 criteria each of (MinMax(F)Ent)m (𝑚 = 1,2) 
distribution is better than corresponding⁡(MaxMax(F)Ent)m (𝑚 = 1,2)   distribution. In particular, 

(MinMax(F)Ent)2 distribution is more suitable for fuzzy data than (MinMax(F)Ent)1 distribution 

in the sense of RMSE, 𝜒2 criterias and Max(F)Ent measure. Therefore, it can be explained that 

(MinMax(F)Ent)m, 𝑚 = 1,2⁡distributions, which are regarded as the closest distributions, show 

better performance, since the moment functions sets chosen in this application can be suitable. Thus, 

it is noted that selection of moment functions is important in the application of the Max(F)Ent 

method just as MaxEnt method [21]. 

 

4. CONCLUSION 

 

The fuzzy entropy provides a quantitative measurement of the degree of uncertainty of fuzzy 

values. Generalization of fuzzy entropy measure is a new approach in the fuzzy set theory. In this 

paper, we introduce the concept optimization of maximum fuzzy entropy for fuzzy values and its 

mathematical properties. Then, we studied fuzzy entropy in terms of optimization measure and 

presented a framework of Max(F)Ent measure for finite fuzzy values when some Max(F)Ent 

characterizing moments are given. It should be noted that the suggested distributions 

(MinMax(F)Ent)m, (MaxMax(F)Ent)m  are applied for the first time to the fuzzy data. 

(MinMax(F)Ent)m and (MaxMax(F)Ent)m distributions according to estimated fuzzy data are 

compared using different criterias in terms of modelling data. It is shown that the obtained 

(MinMax(F)Ent)m distributions are more suitable in modelling fuzzy data than the 

(MinMax(F)Ent)m distributions in the sense of 𝜒2 and RMSE criterias. Moreover, the present 

study gives different and useful results for fuzzy data analysis. 
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