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ABSTRACT 

 

This article has explored a hybrid numerical approach in analysis of the Burgers equation with involving steep 
gradients. The technique is based on a quadratic B-spline finite element method in strong form for space 

variation. This paper discovers how to find an α-family optimization approach for temporal variations. The 

proposed method has been shown to be unconditionally stable for 𝛼 ≥ 0.5.  Yet, the efficiency of the 
proposed scheme on relatively coarse grids has been demonstrated. The numerical illustrations show that the 
present method has been seen to be more accurate than the literature and effectively captures the shock 

behaviours. 

Keywords: Finite element method, α-family of approximation, advection-diffusion process, Burgers equation, 
optimization, B-spline. 

 

 

1. INTRODUCTION 

 

Many physical processes encountered in physical environment are represented by differential 

equations. Most of the processes are used to model physical flows in various fields of sciences 

such as wave propagation, convection–diffusion processes, biological waves etc. One of those 

physical models is Burgers equation attracting much attention in dealing with evolution equations 

constituting different models [1]. Computation of the Burgers equation is an important first step 

towards developing methods. Under certain conditions, uniqueness and existence of solutions to 

the Burgers equation were shown and discussed [2]. 

The Burgers equation is the nonlinear model equation for diffusive waves in fluid dynamics. 

The corresponding equation has also many applied areas including theory of shock waves, sound 

waves in a viscous medium, mathematical modeling of turbulent fluid and so on. 

Much effort has been spent in solving the Burgers equation for last couple of decades. Since 

some exact solutions fail for small kinematic viscosity values [3], 𝜀 < 0.01, many authors [1,4–

20] have suggested various methods such as finite element, finite difference, boundary element in 
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numerically analysing the processes represented by the model problem. The Burgers equation 

were also solved exactly by using Hopf-Cole transformation [21,22]. 

Model of advection mechanisms, and diffusion transports leading to the Burgers equation is 

the nonlinear model equation for diffusive waves in fluid dynamics. Yet, the corresponding 

equation has many applied areas including some wave mechanisms in a viscous medium, 

modelling of turbulent fluid etc.  

This study proposes to establish a Galerkin type finite element method (FEM) in which a 

strong form of the considered equation is preferred rather than the weak form. Because, the use of 

the strong form of the FEM in analysing the advection-diffusion processes represented by the 

Burgers equation has some superiorities comparison to the latter. The weak form of the equation 

needs more complicated computers codes, more computational time than the first one. Note that 

the weak form and strong form are mathematically equivalent to each other but computationally it 

is not the case. As the weak form of the equation requires additional matrices for residual term of 

the integration, this gives rise to excessive computational time and may therefore lead to loss of 

accuracy. 

It is noticeable that there are few studies [23,24] mainly used quadratic B-splines Galerkin 

method in solving the Burgers equation. In reference [24], they considered the fist-order splitted 

direct Crank-Nicolson method. The present article prefers to use the considered equation itself 

and general time approximation. This is the main difference between the present approach and 

their approach. In order to find the first approximate solution, an additional equation is required 

for both the present approach and for theirs. As will be seen in Section 4, the derivative of the 

initial condition is used here to find one additional condition whilst they used homogeneous 

condition. Some results have been given to explain the developed procedure in Section 6. Note 

also that the procedure followed here is fully different from Aksan’s work [23]. 

The proposed technique produces accurate and unconditionally stable results. The 

computational cost of the technique is acceptable. Even when the advection dominated cases of 

the Burgers equation are considered, the present approach produces oscillation-free results. The 

B-spline basis functions cover the spatial domain and for each of the elements of the spatial 

domain the well approximated solutions can be obtained. In addition to the spatial superiorities, 

the present time approximation is very suitable for the solution of the dynamical process of the 

considered equation. Thus, the 𝛼-family of time approximation is flexible and unconditionally 

stable for suitable choices of the parameter 𝛼.   
Here a hybrid numerical approach is proposed to solve the Burgers equation. To the best of 

the authors’ knowledge, this approach has not previously been suggested. The present method has 

been shown to be unconditionally stable for α ≥  0.5. Behaviour of many processes arising in 

various fields of science leads to the Burgers equation problem is considered into the following 

form 
 

𝑢𝑡 + 𝑢𝑢𝑥 = 𝜀𝑢𝑥𝑥  ,    𝑎 ≤ 𝑥 ≤ 𝑏                                                                                                 (1) 
  

with the boundary conditions  
 

𝑢(𝑎, 𝑡) = 𝑓1(𝑡),   𝑡 > 0,  𝑢(𝑏, 𝑡) = 𝑓2(𝑡),   𝑡 > 0                                                       (2) 
 

and initial condition 
 

𝑢(𝑥, 0) = 𝑔(𝑥), 𝑎 < 𝑥 < 𝑏                                                                                                          (3) 
 

where 𝜀 is viscosity constant for 𝜀 > 0 and  𝑓1 , 𝑓2 and 𝑔 are known functions. The subscripts 

𝑥 and 𝑡 represent differentiations with respect to 𝑥 and 𝑡 respectively.  

The outline of this paper is as follows. The proposed technique is explained in Section 2. The 

implementation to the model equation is given in Section 3. The stability of the method is 

analysed in Section 4. Some numerical illustrations are presented in Section 5. Section 6 consists 

of some concluding remarks. This article proposes a numerical approach to solve the Burgers 

equation (1) with a set of boundary and initial conditions given by equations (2) and (3). 
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2. THE NUMERICAL METHOD 
 

2.1. Quadratic B Spline Basis Functions  
 

Galerkin finite element method in strong form with quadratic B-spline basis functions is used 

for spatial approximation to solve equation (1) with given initial and boundary conditions (2) and 

(3). The selection of these types of basis functions is very effective and has some advantages as 

we are compared with other basis functions. One of the most important advantages of using 

quadratic B-splines is the continuity of approximate solution and also first derivatives of the 

solutions at all-region which include interpolation grid points. 

The interval [𝑎, 𝑏] was partitioned into 𝑁 finite elements. Each element has equal length ℎ 

and element nodes are defined as 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 = 𝑏 where 𝑥𝑖+1 = 𝑥𝑖 + ℎ    (𝑖 =
0,1.… , 𝑁 − 1). Let 𝜑𝑖   be the quadratic B-spline basis functions and it is given [25] as 
 

𝜑𝑖(𝑥) =
1

  ℎ2

{
 
 

 
 

                                 
(𝑥𝑖+2 − 𝑥)

2 − 3(𝑥𝑖+1 − 𝑥)
2 + 3(𝑥𝑖 − 𝑥)

2,

(𝑥𝑖+2 − 𝑥)
2 − 3(𝑥𝑖+1 − 𝑥)

2,

  (𝑥𝑖+2 − 𝑥)
2,

0,

  𝑥 ∈ {

[𝑥𝑖−1, 𝑥𝑖]

[𝑥𝑖 , 𝑥𝑖+1]

    [𝑥𝑖+1, 𝑥𝑖+2]

    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                           (4) 

 

for 𝑖 = −1,0, … , 𝑁. The corresponding quadratic B-spline basis functions include the set of 

splines {𝜑−1, 𝜑0, … , 𝜑𝑁} for spatial approximation to the equation (1) and the global 

approximation function �̃�𝑁(𝑥, 𝑡) can be written as 
 

�̃�𝑁(𝑥, 𝑡) = ∑ 𝛿𝑖(𝑡)𝜑𝑖(𝑥)
𝑁
𝑖=−1                                                                             (5)  

 

where 𝛿𝑖(𝑡) is the time part of global approximation function �̃�𝑁(𝑥, 𝑡) and will be determined 

from temporal approximation. 

Considering (4) and 𝜎 = 𝑥 − 𝑥𝑖 with 0 ≤ 𝜎 ≤ 1, to use local coordinate system to the 

required computations, the basis functions will be in the following form 
 

 𝜑𝑖(𝑥)  =
1

ℎ2
{

ℎ2 − 2ℎ𝜎 + 𝜎2,

ℎ2 + 2ℎ𝜎 − 𝜎2,

𝜎2,
0,

   𝑥 ∈  {

[𝑥𝑖−1, 𝑥𝑖]

[𝑥𝑖 , 𝑥𝑖+1]

    [𝑥𝑖+1, 𝑥𝑖+2]

    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                                      (6) 

 

Each finite element [𝑥𝑖 , 𝑥𝑖+1] is covered by the set of three quadratic B-spline 
{𝜑𝑖−1, 𝜑𝑖 , 𝜑𝑖+1}. Table 1 shows the values of 𝜑𝑖  and 𝜑𝑖

′ at the boundaries of element [𝑥𝑖 , 𝑥𝑖+1]. 
Local approximation function on the element [𝑥𝑖 , 𝑥𝑖+1] can be expressed as                                                  
 

�̃�𝑁(𝑥, 𝑡) = ∑ 𝛿𝑖(𝑡)𝜑𝑖(𝑥)
𝑙+1
𝑖=𝑙−1 .                                                                                  (7) 

     

Table 1.Values of approximate function and its derivatives at the end points of the element 
 

𝑥 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 

𝜑𝑖 0 1 1 0 

𝜑𝑖
′ 0 -2/h 2/h 0 

 

Values of the locally approximated solution �̃�𝑁(𝑥, 𝑡) and its first derivative at the end points 

of the interval [𝑥𝑖 , 𝑥𝑖+1] are obtained in terms of time dependent quantities 𝛽𝑖(𝑡) using Table 1 as 

follows 
 

�̃�𝑁(𝑥𝑖 , 𝑡)= 𝛿𝑖−1+𝛿𝑖 
�̃�𝑁(𝑥𝑖+1, 𝑡)= 𝛿𝑖+𝛿𝑖+1            

 �̃�𝑁
′ (𝑥𝑖 , 𝑡) =

2

ℎ
(𝛿𝑖+1 − 𝛿𝑖−1)                                                                                                       (8) 
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�̃�𝑁
′ (𝑥𝑖+1, 𝑡) =

2

ℎ
(𝛿𝑖+2 − 𝛿𝑖).       

 

By considering element[𝑥𝑖 , 𝑥𝑖+1], equation (1) is multiplied by test function 𝑤 and integrated 

over the element. Then one can write 
 

∫ 𝑤(𝑢𝑡 + 𝑢𝑢𝑥 − 𝜀𝑢𝑥𝑥)𝑑𝑥 = 0
𝑥𝑙+1
𝑥𝑙

.                                                                                                 (9) 
 

The selection of the test functions is so important and in this study test function 𝑤 is selected 

as equal to the B-spline basis functions. This type of selection is called Galerkin approach in the 

finite element method. Using (7) and local coordinate system (6), equation (9) can thus be 

rewritten as follows 
 

∑ [∫ 𝜑𝑖𝜑𝑗𝑑𝜎
ℎ

0

]

𝑙+1

𝑗=𝑙−1

𝑑𝛿𝑗
𝑒

𝑑𝑡
+∑ ∑ [∫𝜑𝑖𝜑𝑗

′

ℎ

0

𝜑𝑘𝑑𝜎]

𝑙+1

𝑘=𝑙−1

𝑙+1

𝑗=𝑙−1
𝛿𝑘
𝑒𝛿𝑗

𝑒 − 𝜀 ∑ [∫ 𝜑𝑖𝜑𝑗
′′𝑑𝜎

ℎ

0

]

𝑙+1

𝑗=𝑙−1

𝛿𝑗
𝑒 = 0 

 

or more compactly 
 

𝑀𝑒 𝑑δ
e

𝑑𝑡
+ δeT𝐿𝑒δe − 𝜀Keδe = 0                                                                         (10) 

 

where 
 

Mij
e = ∫ 𝜑𝑖𝜑𝑗𝑑𝜎

ℎ

0
, 

Kij
e = ∫ 𝜑𝑖𝜑𝑗

′′ℎ

0
𝑑𝜎,          

L ijk
e = ∫ 𝜑𝑖𝜑𝑗

′′ℎ

0
𝜑𝑘𝑑𝜎,                                                                                       (11) 

δe = (𝛿𝑖−1, 𝛿𝑖 , 𝛿𝑖+1)
T. 

 

In (10), 𝑀𝑒 and 𝐾𝑒  are (3 × 3) matrices are independent of time. A (3 × 3 × 3) matrix 𝐿 can 

then be transformed to a time dependent matrix 𝑅 by using the following procedure 
 

𝑅𝑖𝑗 = ∑ 𝐿𝑖𝑗𝑘
𝑒 𝛿𝑘

𝑒𝑙+1
𝑘=𝑙−1  .                                                                                                              (12) 

 

After assembling process for each element, the system matrix will finally take the following 

form                                                
 

𝑀∗  
𝑑δ

𝑑𝑡
+𝑅∗δ-𝜀𝐾∗𝛿 = 0                                                                                                                 (13) 

 

where 𝑀∗, 𝑅∗ and 𝐾∗ are  (𝑁 + 2) × (𝑁 + 2) matrices and  𝛿 = (𝛿−1, 𝛿0, … , 𝛿𝑁−1, 𝛿𝑁)
T is 

the unknown time approximation vector. 

 

2.2. 𝛂-family of time approximation 

 

The α-family of approximation is based on finite difference method and can be used for the 

time integration of system (13). Detailed discussion on the corresponding issue can be found, for 

instance, in [26], the time discretization procedure of the equation can be written as 
 

{𝛿}𝑠+1  = {𝛿}𝑠  + 𝑑𝑡{𝛿}𝑠+𝛼   

{𝛿}𝑠+𝛼  = (1 −  𝛼) { �̇�}𝑠 +  𝛼{ �̇�}𝑠+1 
 

or 
 

 𝑑𝑡[(1 −  𝛼) { �̇�}𝑠 +  𝛼{ �̇�}𝑠+1] =  {𝛿}𝑠+1 − {𝛿}𝑠 
 

where 0 ≤ 𝛼 ≤ 1, 𝑡𝑠+1 − 𝑡𝑠 = 𝑑𝑡, and �̇� stands for the time differentiation. Use of the 

aforementioned procedure makes equation (13) 
 

[𝑀∗ + 𝛼𝑑𝑡 (𝑅𝑠+1
∗ − 𝜀 𝐾∗)]{𝛿}𝑠+1 = [𝑀

∗ − 𝑑𝑡(1 − 𝛼)(𝑅𝑠
∗ − 𝜀 𝐾∗)]{𝛿}𝑠                                   (14) 

 

where matrices 𝑀∗ and 𝐾∗  are independent of time while 𝑅∗  depends on time. 
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Note that a hybrid approximation technique has been proposed here to produce the present 

accurate solutions. The stability of the resulting algebraic system (14) will be dealt with in 

Section 5. 

The selection of the parameter α  is one of the reasons affecting the accuracy of the produced 

solutions. It is noticeable that the time element number plays an important role in the selection of 

parameter α. As relatively high number of uniform time increment is taken, the acceptance of α  
to be 0.5 results in stable and accurate solution. Moreover, choice of parameter α is utilized to 

cope with difficulties in the nonlinearity in the time dependent matrix 𝑅𝑠+1
∗  as is the following 

case 
 

{𝛿}𝑠+1 = (1 − 𝛼){𝛿}𝑠
∗
+ 𝛼{𝛿}𝑠.                                                                                                                                              (15) 

 

By using the recursive relation in (14) and corrector relation in (15), the Burgers equation 

under consideration of conditions (2) and (3) is solved by computer codes produced MATLAB 

R2010b. 

 

3. IMPLEMENTATION  

 

Time dependent quantities {𝛿}𝑙 must be found out using (14) and (15) to evaluate globally 

approximated solution (5). The following procedures are implemented to find {𝛿}𝑙: 

(i) The first approximation {𝛿}l
0 is obtained from the initial condition (3). (𝑁 + 1) equations 

are found from the initial condition as well as one additional condition found from Table 1 using 

first derivative of the approximate function as follows 
 

�̃�(𝑥𝑙 , 0) = 𝑔(𝑥𝑙) = {𝛿}l−1
0 +{𝛿}l

0 

�̃�𝑁
′ (𝑥𝑙 , 0) = 𝑔

′(𝑥𝑙) =
2

ℎ
({𝛿}l

0 − {𝛿}l−1
0 )                                                 (16) 

  

Thence the algebraic system will be (𝑁 + 2) × (𝑁 + 2) and is solved using the Thomas 

algorithm. 

(ii) To find second approximation  {𝛿}l
1, the above approximation {𝛿}l

0 is used at the right-

hand side of equation (14). The time dependent matrix 𝑅1
∗ is required correction of {𝛿}l

0. To 

approximate 𝑅1
∗ first, {𝛿}l

1 = {𝛿}l
0 is chosen and then {𝛿}l

1∗ is found. Thus, for the rest of 

iterations, the coming combination is used about 10 times, to approximate {𝛿}l
1. 

 

{𝛿}l
1 = 𝛼{𝛿}l

0 + (1 − 𝛼){𝛿}l
1∗                                                                                       (17) 

 

(iii) For the other iterations, {𝛿}l
I for 𝑖 = 2,… , 𝐽 (𝐽 is the chosen time element number), case 

(ii) is applied except that here the refinement is done only about 5 times. 

               

4. STABILITY ANALYSIS OF THE HYBRID METHOD                             

 

Theorem: The proposed method for solving Equation (1) is unconditionally stable for α ≥  0.5. 

Proof: To realize limitations of the computed solution under the consideration of the proposed 

hybrid approach (14), the stability analysis has been carried out with von Neumann theory taking 

Fourier growth factor defined by  
 

𝛿s
n = 𝛿n𝑒𝑖𝑠𝑘ℎ                                                                                                                                (18) 

  

where 𝑘 is mode number and ℎ  is the spatial element size selected for recursive 

approximation (14). To obtain a typical row of (14), values of δs+1 and δs in the time dependent 

matrices 𝑅𝑠+1
∗  and 𝑅𝑠

∗ are taken to be locally constant and equal to 𝑝.  A typical row of penta-

diagonal system (14) can thus be stated as 
 

𝑐1δs−2
n+1 + 𝑐2δs−1

n+1 + 𝑐3δs
n+1 + 𝑐4δs+1

n+1 + 𝑐5δs+2
n+1 

 = 𝑐6δs−2
n + 𝑐7δs−1

n + 𝑐8δs
n + 𝑐9δs+1

n + 𝑐10δs+2
n                                                                   (19) 
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where 
 

𝑐1 = 𝑟1 − 𝑟2,    𝑐2 = 26𝑟1 − 2𝑟2,    𝑐3 = 66𝑟1 + 6𝑟2 

𝑐4 = 26𝑟1 − 2𝑟2,    𝑐5 = 𝑟1 − 𝑟2,   𝑐6 = 𝑟1 + 𝑟3 

𝑐7 = 26𝑟1 + 2𝑟3,  𝑐8 = 66𝑟1 − 6𝑟3,  𝑐9 = 26𝑟1 + 2𝑟3,  𝑐10 = 𝑟1 + 𝑟3  

𝑟1 =
ℎ

30
,  𝑟2 =

2𝜀𝛼△t

3ℎ
, 𝑟3 =

2𝜀(1−𝛼)△t

3ℎ
.                                                                                           (20) 

 

Substitution of (18) into (19) and use of Euler expansion for exponential terms give rise to 
 

𝑔δ̃n+1 = 𝑔* δ̃n                                                                                                                             (21) 
 

where 
 

𝑔 = (𝑟1 − 𝑟2)cos(2𝑘ℎ) + (26𝑟1 − 2𝑟2) cos(𝑘ℎ) + 33𝑟1 + 3𝑟2                                                  (22) 

𝑔∗ = (𝑟1 + 𝑟3)cos(2𝑘ℎ) + (26𝑟1 + 2𝑟3) cos(𝑘ℎ) + 33𝑟1 − 3𝑟3         
 

It can be seen that 
 

δ̃n+1 =
𝑔∗

𝑔
δ̃n = zδ̃n.                                                                                       (23) 

  

Scheme (14) is stable if and only if |𝑧| < 1. Thus the following inequality must be fulfilled 
 

|𝑧| = |
𝑔∗

𝑔
| < 1.                                                                                                                         (24) 

 

When 𝛼 ≥ 0.5,   the inequality  𝑟3 ≤ 𝑟2 is automatically satisfied.  In expression (22), since 𝑟1 

is depends only parameter ℎ and 𝑟1 ≪ 1, the absolute value of the term | 𝑟1 − 𝑟2| behaves like 
| 𝑟2| and the term | 𝑟1 + 𝑟3| behaves like | 𝑟3|. Notice that when 𝛼 ≥ 0.5,  |33𝑟1 + 3𝑟2| > 

|33𝑟1 − 3𝑟3|. Hence under the condition of being 𝛼 ≥ 0.5, |𝑔| > |𝑔∗| and (24) is satisfied. Then 

the proposed hybrid approximation is unconditionally stable under the consideration of the 

aforementioned cases. The other selections of 𝛼 values lead to a conditionally stable 

approximation. 

 

5. NUMERICAL EXPERIMENTS 

 

To figure out the effect of Galerkin FEM in strong form and α-family of approximation over 

numerical solutions of the Burgers equation, let us consider the following two test problems. To 

produce accurate results by dealing with meaningfully different values of the kinematic viscosity 

constant 𝜀 is considered. 

Example 1 [1] Let us consider homogeneous problem with initial condition 
 

𝑢(𝑥, 0) = 𝑔(𝑥) = sin 𝜋𝑥,  0 < 𝑥 < 1                                                                        (25) 
 

and homogenous Dirichlet boundary conditions 
 

𝑢(0, 𝑡) = 0 ,   𝑡 > 0                                                                                                                     (26) 
 

𝑢(1, 𝑡) = 0 , 𝑡 > 0                                                                                                        (27) 
 

A smooth exact solution of (1) under the consideration of the cases (25)-(27) given by Cole 

[22] is 
  

𝑢(𝑥, 𝑡) = 2𝜋𝜀
∑ 𝑎𝑛 exp(−𝑛

2𝜋2𝜀𝑡)𝑛𝑠𝑖𝑛(𝑛𝜋𝑥)∞
𝑛=1

𝑎0+∑ 𝑎𝑛 exp(−𝑛2𝜋2𝜀𝑡)𝑐𝑜𝑠(𝑛𝜋𝑥)
∞
𝑛=1

                                                       (28) 

 

with the Fourier coefficients  

 

𝑎0 = ∫ 𝑒𝑥𝑝{−(2𝜋𝜀)−1[1 − cos(𝜋𝑥)]}𝑑𝑥
1

0
, 
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𝑎𝑛 = 2∫ 𝑒𝑥𝑝{−(2𝜋𝜀)−1[1 − cos(𝜋𝑥)]}cos (𝑛𝜋𝑥)𝑑𝑥
1

0
. 

 

In the present example, comparison of the produced results with the results of the literature 

[1,9,12,26-28] and exact solutions has been carried out in Tables 2-4, for various spatial points at 

both small and large times. As realized from the tables, the produced results here are more 

accurate and more economical, even with less number of time elements, comparison to the taken 

results from the literature. 

The computed results revealed that use of far less number of time elements for the proposed 

method is capable of catching better accuracy than the compared results [1,9,12,26-28]. Figure 1 

shows the effect of parameter 𝛼 under the consideration of 𝐿2 error. Now it is time to deal with 

the smaller kinematic viscosity constants. Comparison of the currently produced solutions has 

been done with the literature and the exact solution for various values of the physical factors, with 

challenging kinematic viscosity values as seen in Tables 3-4. The computed results revealed that, 

even with the use of far less number of time elements, one can find similar or sometimes more 

accurate results than the literature [1,9,12].  

The calculated solutions are depicted at various values of parameters 𝜀, 𝑑𝑡, ℎ at different times 

in Figures 2-7. The present method is observed to be very effective on capturing the steep 

behavior of the solution function as seen in Figures 2-3. Figures 8-9 show effects of the 

optimization factor on the computed results. As seen in Figure 8 under the fixed parameters 

𝜀 = 1, ℎ = 0.025  and  𝑑𝑡 = 0.02, the optimal value of 𝛼 is equal to 0.525. Under the 

consideration of parameters 𝜀 = 1, ℎ = 0.01 and  𝑑𝑡 = 0.05, the optimal value of 𝛼 is seen to be 

0.550 (see Figure 9).  

The present technique has also been compared with the work of Dag et al. [24] numerically 

and the current results are seen to be more accurate than theirs. The absolute errors are 1.6𝐸 − 06 

and 0.6𝐸 − 05 (their Table 3), respectively, for the same physical parameters. Their result is 

taken from their Table 3. 

Note that behaviour of the solution of the Burgers equation for various values of viscosity 

constant 𝜀 were discussed in the literature, e.g. Dag et al. [24], Sari and Gurarslan [1]. Physical 

behaviour of the nonlinear advection-diffusion process calculated by the proposed technique in 

terms of the viscosity constant exhibits the expected physical characteristics of the problem. 

Comparison of the present method with the differential quadrature based methods [29-31] has 

also been done in Table 5. Even if their time approximation technique is the RK4 and 

conditionally stable, the present results are the same as with their results or more accurate than 

theirs as seen in Table 5.  
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Figure 1. Comparison of 𝐿2 error norms presented in Table 1 

 

 
 

Figure 2. Numerical solution of the problem at different times produced for the parameters  

 𝜀 = 0.001, ℎ = 0.0016, 𝛼 = 0.50 and 𝑑𝑡 = 0.1 
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Figure 3. Numerical solution of the problem at different times produced for the parameters 

𝜀 = 0.0005, ℎ = 0.0014, 𝛼 = 0.50 and 𝑑𝑡 = 0.1 

 

 
 

Figure 4. Numerical solution of the problem produced for the parameters 𝜀 = 1, ℎ = 0.0125, 
𝛼 = 0.50 and 𝑑𝑡 = 0.01 
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Figure 5. Numerical solution of the problem produced for the parameters 𝜀 = 0.1, ℎ = 0.0125, 

𝛼 = 0.50 and  𝑑𝑡 = 0.01 

 

 
 

Figure 6. Numerical solution of the problem produced by 𝜀 = 0.01, ℎ = 0.0125, 𝛼 = 0.50 and 

𝑑𝑡 = 0.01 
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Figure 7. Numerical solution of the problem produced by 𝜀 = 0.001, ℎ = 0.0025,  

𝛼 = 0.50  and 𝑑𝑡 = 0.1 

 

 
 

Figure 8. Numerical and analytical solutions of the problem at 𝑡 = 0.5 produced by 𝜀 = 1, 

ℎ = 0.025  and  𝑑𝑡 = 0.02 where a) 𝛼 = 0.500   b) 𝛼 = 0.525  c) 𝛼 = 0.550  d) 𝛼 = 0.575 e) 

𝛼 = 0.600   f) Exact. 
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Figure 9. Numerical and analytical solutions of the problem at 𝑡 = 0.5 produced by 𝜀 = 1,  

ℎ = 0.01 and  𝑑𝑡 = 0.05 where a) 𝛼 = 0.500   b) 𝛼 = 0.525  c) 𝛼 = 0.550  d) 𝛼 = 0.575  

e) 𝛼 = 0.600 f) Exact  

 

Table 2. Comparison of the results produced with 𝜀 = 0.05, ℎ = 0.01 for various values of the 

parameter 𝛼 and different selection of 𝑑𝑡. 
 

𝑥 𝑡 

Present 

α=0.49 

𝑑𝑡 = 0.004 

Present 

α=0.50 

𝑑𝑡 = 0.004 

Present 

𝛼 = 0.51 

𝑑𝑡 = 0.004 

Ref. [12] 

𝑑𝑡 = 0.001 

Ref. [1] 

𝑑𝑡 = 0.001 Exact 

𝑥 = 0.1 

t=0.50 0.12113 0.12114 0.12115 0.12079 0.12114 0.12114 

t=2.00 0.04296 0.04296 0.04297 0.04300 0.04295 0.04296 

t=4.00 0.02310 0.02310 0.02311 0.02324 0.02310 0.02310 

        

𝑥 = 0.3 

t=0.50 0.36024 0.36027 0.36030 0.36113 0.36027 0.36027 

t=2.00 0.12883 0.12884 0.12885 0.12887 0.12882 0.12884 

t=4.00 0.06930 0.06931 0.06931 0.06935 0.06930 0.06931 

        

𝑥 = 0.5 

t=0.50 0.58866 0.58869 0.58873 0.59559 0.58870 0.58870 

t=2.00 0.21454 0.21456 0.21457 0.21468 0.21455 0.21456 

t=4.00 0.11549 0.11549 0.11550 0.11550 0.11549 0.11549 

        

𝑥 = 0.7 

t=0.50 0.79349 0.79350 0.79351 0.81257 0.79354 0.79349 

t=2.00 0.29998 0.30000 0.30001 0.30075 0.29999 0.30000 

t=4.00 0.16121 0.16121 0.16122 0.16125 0.16121 0.16121 

        

𝑥 = 0.9 

t=0.50 0.93822 0.93813 0.93805 0.97184 0.93822 0.93811 

t=2.00 0.37324 0.37327 0.37329 0.37452 0.37328 0.37328 

t=4.00 0.16604 0.16605 0.16606 0.16515 0.16605 0.16606 
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Table 3. Comparison of the results produced with 𝜀 = 0.003, ℎ = 0.01 for various values of 

parameters 𝛼 and 𝑑𝑡. 
 

𝑥 𝑡 
Present α=0.49     

𝑑𝑡 = 0.0125 

Present α=0.50     

𝑑𝑡 = 0.0125 

Present α=0.51     

𝑑𝑡 = 0.0125 

Ref. [9]                 

𝑑𝑡 = 0.001 
Exact 

𝑥 = 0.25 

𝑡 = 1 0.18896 0.18900 0.18904 0.18902 0.18901 

𝑡 = 5 0.04697 0.04698 0.04698 0.04698 0.04698 

𝑡 = 10 0.02422 0.02422 0.02422 0.02422 0.02422 

𝑡 = 15 0.01632 0.01632 0.01632 0.01631 0.01631 

       

𝑥 = 0.5 

𝑡 = 1 0.37613 0.37620 0.37628 0.37623 0.37619 

𝑡 = 5 0.09394 0.09395 0.09396 0.09396 0.09395 

𝑡 = 10 0.04844 0.04844 0.04845 0.04844 0.04843 

𝑡 = 15 0.03263 0.03263 0.03263 0.03263 0.03263 

       

𝑥 = 0.75 

𝑡 = 1 0.55917 0.55926 0.55935 0.55928 0.55924 

𝑡 = 5 0.14090 0.14091 0.14093 0.14092 0.14095 

𝑡 = 10 0.07260 0.07260 0.07261 0.07261 0.07260 

𝑡 = 15 0.04838 0.04839 0.04839 0.04839 0.04841 

 

Table 4. Comparison of maximum error norms of various schemes for 𝜀 = 0.01, ℎ = 0.0125. 
 

𝑥 𝑡 
EFDM 

[28] 

 

EEFDM 

[28] 

 

TFPM 

[27] 

 

Present 

α=0.45 

 

Present 

α=0.50 

Present 

α=0.5 

 
  𝑑𝑡 = 0.0001 𝑑𝑡 = 0.001 

 

 

𝑥 = 0. 25 

𝑡 = 0.4 5.54E-4 1.60E-5 9.28E-6 3.41E-5 2.88E-07 3.36E-5 

𝑡 = 0.6 3.49E-4 1.10E-5 1.05E-5 2.87E-5 2.48E-07 2.82E-5 

𝑡 = 0.8 2.46E-4 4.40E-6 8.46E-6 2.35E-5 1.99E-07 2.31E-5 

𝑡 = 1.0 1.85E-4 5.10E-6 5.12E-6 1.93E-5 1.59E-07 1.90E-5 

𝑡 = 3.0 2.23E-4 2.30E-6 6.35E-6 5.17E-5 3.15E-08 5.10E-5 

        

 
 

𝑥 = 0.50 

𝑡 = 0.4 5.22E-4 7.50E-6 1.44E-5 3.60E-5 5.78E-08 3.61E-5 

𝑡 = 0.6 4.46E-4 4.50E-6 7.61E-6 4.33E-5 1.77E-07 4.30E-5 

𝑡 = 0.8 3.56E-4 3.90E-6 2.57E-6 4.02E-5 2.20E-07 3.97E-5 

𝑡 = 1.0 2.96E-4 4.00E-6 1.14E-5 3.50E-5 2.10E-07 3.46E-5 

𝑡 = 3.0 3.49E-5 5.10E-6 1.09E-5 1.02E-5 5.91E-08 1.01E-5 

        

 

 

𝑥 = 0.75 

𝑡 = 0.4 1.12E-4 1.80E-5 4.41E-5 4.71E-5 1.24E-06 4.46E-5 

𝑡 = 0.6 2.05E-4 5.00E-6 7.80E-5 2.00E-5 4.32E-07 2.08E-5 

𝑡 = 0.8 2.62E-4 1.80E-6 8.28E-5 3.95E-5 2.40E-08 3.95E-5 

𝑡 = 1.0 2.44E-4 5.60E-6 7.31E-5 4.19E-5 1.19E-07 4.17E-5 

𝑡 = 3.0 3.21E-5 2.10E-6 9.26E-6 1.55E-5 3.78E-07 1.47E-5 
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Table 5. Comparison of the produced results for 𝛼 = 0.50 and 𝜀 = 0.1. 
 

𝑥 𝑡 

Present 
N=20  

𝑑𝑡 = 0.001 

WDQM [29]                    
N=25 

 𝑑𝑡 = 0.0001 

LDQM [30]                           
N=30 

 𝑑𝑡 = 0.001 

PDQM [31] 
N=20 

 𝑑𝑡 = 0.01 Exact 

 

 

𝑥 = 0.25 
 

 

𝑡 = 0.4 0.30889 0.30880 0.30889 0.30889 0.30889 

𝑡 = 0.6 0.24073 --- 0.24074 0.24074 0.24074 

𝑡 = 0.8 0.19567 0.19565 0.19568 0.19568 0.19568 

𝑡 = 1.0 0.16256 0.16221 0.16256 0.16256 0.16256 

𝑡 = 3.0 0.02719 0.02720 0.02720 0.02720 0.02720 

       

 

 

𝑥 = 0.50 
 

 

𝑡 = 0.4 0.56963 0.56953 0.56963 0.56963 0.56963 

𝑡 = 0.6 0.44720 --- 0.44721 0.44721 0.44721 

𝑡 = 0.8 0.35922 0.35922 0.35924 0.35924 0.35924 

𝑡 = 1.0 0.29189 0.29190 0.29192 0.29192 0.29192 

𝑡 = 3.0 0.04019 0.04020 0.04021 0.04021 0.04021 

       

 
 

𝑥 = 0.75 
 
 

𝑡 = 0.4 0.62538 0.62554 0.62544 0.62544 0.62544 

𝑡 = 0.6 0.48712 --- 0.48722 0.48722 0.48721 

𝑡 = 0.8 0.37382 0.37309 0.37392 0.37392 0.37392 

𝑡 = 1.0 0.28739 0.28746 0.28747 0.28747 0.28747 

𝑡 = 3.0 0.02976 0.02977 0.02977 0.02977 0.02977 

 

Example 2 [1] Let us take now then Burgers equation (1) with initial condition 
 

𝑢(𝑥, 0) = 𝑔(𝑥) = 4𝑥(1 − 𝑥),    0 < 𝑥 < 1                                                                          (29)  
 

and homogenous boundary conditions 
 

𝑢(0, 𝑡) = 0, 𝑡 > 0                                                                                                        (30) 
 

𝑢(1, 𝑡) = 0, 𝑡 > 0.                                                                                                        (31)  
 

The exact solution of (1) under the consideration of the cases (22)-(24) given by Cole [21] as 

in (28) but with the Fourier coefficients 
 

𝑎0 = ∫ 𝑒𝑥𝑝{−𝑥2(3𝜀)−1(3 − 2𝑥)}𝑑𝑥
1

0
, 

𝑎𝑛 = 2∫ 𝑒𝑥𝑝{−𝑥2(3𝜀)−1(3 − 2𝑥)}cos (𝑛𝜋𝑥)𝑑𝑥
1

0
. 

  

Table 6 includes comparison of currently produced solutions with exact solution and the 

literature [16,28] for different values of physical parameters under the consideration of various α 

values. The computed results for less number of time elements, comparison to some works carried 

out [16,28], are seen to be more accurate or of the same accuracy with the corresponding 

literatures. By taking into account various values of the processes of interest, all the presented 

numerical solutions in Table 7 are compared with exact solution and the literature [8,14]. The 

numerical behaviour at 𝑡 = 0.5 for challenging values of the kinematic viscosity is exhibited both 

quantitatively and qualitatively (see Table 6 and Figure 10). The present work has required less 

number of time elements for more accurate results as compared to the studies done in references 

[8,14]. As previously stated, the optimum values of the parameter α are affected from the number 

of the time elements although the corresponding optimum values are seen to be not seriously 

affected from the number of spatial elements (see Figure 11). 
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Figure 10. Numerical solution of Example 2 at 𝑡 = 0.5 with different kinematic viscosity 

constants: a) 𝜀 = 1 b) 𝜀 = 0.5  c) 𝜀 = 0.1  d) 𝜀 = 0.01  e) 𝜀 = 0.005 f) 𝜀 = 0.001 

 

 
 

Figure 11. Numerical and analytical solutions of the Example 2 at 𝑡 = 0.5 produced by 𝜀 = 1,  

 ℎ = 0.025 and 𝑑𝑡 = 0.02 where a) 𝛼 = 0.500   b) 𝛼 = 0.525  c) 𝛼 = 0.550  d) 𝛼 = 0.575  

e) 𝛼 = 0.600 f) Exact  
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Table 6. Comparison of the results produced with 𝜀 = 1 for various values of parameters 𝛼, 𝑑𝑡 
and ℎ in Example 2 

 

𝑥 𝑡 

Present α=0.49                                   

ℎ = 0.0125,          
𝑑𝑡 = 0.0002 

Present 

α=0.50            

ℎ = 0.0125,                       
𝑑𝑡 = 0.0002 

Present 

α=0.51             

ℎ = 0.0125,          
𝑑𝑡 = 0.0002 

Ref. [27] 

ℎ = 0.0125, 
𝑑𝑡 = 0.0001 

Ref. [16]  

ℎ = 0.250 

𝑑𝑡 = 0.0001 

Exact 

x=0.25 

t=0.05 0.4262796 0.4262850 0.4262904 0.42629 0.4262864 0.4262855 

t=0.10 0.2614741 0.2614793 0.2614845 0.26149 0.2614801 0.2614797 

t=0.15 0.1614726 0.1614772 0.1614819 0.16148 0.1614777 0.1614776 

t=0.25 0.0610844 0.0610873 0.0610903 0.06109 0.0610875 0.0610875 

        

x=0.50 

t=0.05 0.6280775 0.6280833 0.6280892 0.62809 0.6280846 0.6280837 

t=0.10 0.3834143 0.3834218 0.3834294 0.38343 0.3834228 0.3834224 

t=0.15 0.2340479 0.2340548 0.2340617 0.23406 0.2340554 0.2340553 

t=0.25 0.0872281 0.0872324 0.0872366 0.08724 0.0872327 0.0872327 

        

x=0.75 

t=0.05 0.4652483 0.4652521 0.4652558 0.46526 0.4652528 0.4652526 

t=0.10 0.2815666 0.2815721 0.2815775 0.28158 0.2815727 0.2815726 

t=0.15 0.1697327 0.1697378 0.1697429 0.16974 0.1697383 0.1697382 

t=0.25 0.0622865 0.0622896 0.0622927 0.06229 0.0622898 0.0622898 

 

Table 7. Comparison of the results produced with 𝜀 = 0.1, ℎ = 0.0125 for various values of 

parameters 𝛼 and 𝑑𝑡 in Example 2 
 

𝑥 𝑡 
Present 

α=0.49            

𝑑𝑡 = 0.001 

Present 

α=0.50            

𝑑𝑡 = 0.001 

Present  

α=0.51            

𝑑𝑡 = 0.001 

Ref. [14] 

𝑑𝑡 = 0.0001 

Ref. [8]                   

𝑑𝑡 = 0.0001 
Exact 

𝑥 = 0.25 

𝑡 = 0.4 0.31752 0.31752 0.31753 0.32091 0.31749 0.31752 

𝑡 = 0.6 0.24613 0.24614 0.24614 0.24910 0.24612 0.24614 

𝑡 = 0.8 0.19955 0.19956 0.19956 0.20211 0.19954 0.19956 

𝑡 = 1.0 0.16560 0.16560 0.16560 0.16782 0.16559 0.16560 

𝑡 = 3.0 0.02776 0.02776 0.02776 0.02828 0.02776 0.02776 

        

𝑥 = 0.50 

𝑡 = 0.4 0.58453 0.58454 0.58454 0.58788 0.58448 0.58454 

𝑡 = 0.6 0.45797 0.45798 0.45798 0.46174 0.45793 0.45798 

𝑡 = 0.8 0.36739 0.36740 0.36740 0.37111 0.36736 0.36740 

𝑡 = 1.0 0.29834 0.29834 0.29835 0.30183 0.29831 0.29834 

𝑡 = 3.0 0.04106 0.04106 0.04107 0.04185 0.04106 0.04106 

        

𝑥 = 0.75 

𝑡 = 0.4 0.64562 0.64561 0.64561 0.65054 0.64547 0.64562 

𝑡 = 0.6 0.50267 0.50267 0.50268 0.50825 0.50255 0.50268 

𝑡 = 0.8 0.38533 0.38533 0.38534 0.39068 0.38523 0.38534 

𝑡 = 1.0 0.29585 0.29586 0.29586 0.30057 0.29578 0.29586 

𝑡 = 3.0 0.03044 0.03044 0.03044 0.03106 0.03044 0.03044 

 

5. CONCLUSIONS AND RECOMMENDATION 

 

This paper has proposed a hybrid numerical technique to deal with the Burgers equation. The 

designed technique has then been shown to be unconditionally stable for parameter α ≥  0.5. The 

technique has been illustrated to have great potentiality in analysing the Burgers equation with 

less number of elements used in both time and space even for challenging cases of the problem. 

The computed results have also been realized to have the same level of accuracy or to be better 
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than existing results in the literature, even with the use of a modest time approximation. Note that 

the suggested approach is seen to be a very good alternative to achieve a high degree of accuracy 

while analysing the advection-diffusion processes. In addition to both time and space 

discretization, the choice of parameter α is observed to be effective on capturing the behavior of 

the problem. The presented results have validated all cases of α-optimization. Advantages of the 

current algorithm are clearly seen especially from the steep behavior of the produced results. As is 

the case for all versions of the finite element based methods, storage drawbacks of the proposed 

methods are expected to come out in two/three dimensional cases of the current models for very 

large domains. Future studies can focus on designing of the current technique to physical 

processes represented by more involved time-dependent models. 
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