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ABSTRACT 
 
This paper presents a point stabilization method which is a hybrid form of Exact Euclidian Distance 
Transform (EEDT) and Model Predictive Control (MPC) theory. An optimal control problem is evaluated 
using a wheeled mobile robot’s mathematical model. The model is represented in polar coordinates 
considering non-holonomic constraints. The optimal input parameters are obtained by solving a sequential 
quadratic cost function. The EEDT algorithm provides via-points starting from the initial position to the 
desired final coordinates. The line segments connected by these points form the shortest obstacle free static 
trajectory. Assuming that all of the occupied regions in the map are fully known, states of the mobile robot are 
constrained by avoiding the intersection of the obstacles and the planned path.  Point stabilization phase is 
performed in a partial manner by applying MPC algorithm on consecutive via points. The overall stabilized 
trajectory between the start and goal is obtained by connecting the stabilized sub-trajectories. This approach 
provides a way to stabilize a trajectory without determining convex sub-regions on a non-convex map. The 
results on a simulated differentially driven mobile robot prove that the proposed algorithm gives satisfactory 
results for point stabilization problem in presence of static obstacles on a non-convex map. 
Keywords: Model predictive control, point stabilization, static path planning, mobile robot. 
 
 
1. INTRODUCTION 
 

The mobile robot control has a rising interest in past decades. Kinematic model description 
caters simplicity for modelling a wheeled mobile robot (WMR). However, stabilizing the control 
laws based on the kinematic model is challenging. In addition to the non-holonomic constraints, 
physical limitations resulting from the actuators of the WMR should be taken into account. These 
requirements lead some difficulties to obtain smooth feedback control laws [1], [2]. In real-time 
applications, achieving the input and state limitations is not a trivial work, as the input control 
action tends to arise continuously. To overcome such problem, plenty of solutions dealing with 
adaptive and robust control of WMR motion planning task is presented in [3] and [4]. Even 
though time-variant control approaches offer considerable solutions to point stabilization problem 
of WMRs, real-time application is not feasible due to the requirement of online optimal-control 
requirements. 
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Model predictive control (MPC) is proposed as a solution for point stabilization problem of 
WMRs in [5], [6]. MPC is not a new method but collaboration with motion control of WMRs is a 
recent topic. WMR motion planning and stabilization problem contains both state limitations 
resulting from the obstacles and input restrictions dealing with the mechanical limits. These 
constraints should be satisfied in real-time; therefore, the input and state limitations have to be 
considered simultaneously. MPC generates the input control signal based on a finite horizon 
strategy. The limitations on the input can be handled in a straightforward way while generating 
the control action. Besides, the state restrictions depend on the configuration of the convex 
regions on the map [7]. Limitations of both the state and input control signals, which respect the 
actuators limit, are the main issues of MPC. This feature makes MPC an appropriate scheme for 
complex and constrained environments in real-time [8]. 

MPC consists of three main components: system model, objective function and finite horizon. 
Composing these stages, MPC can be utilized to solve a finite optimal control problem in a 
receding horizon policy. In this paper, a non-holonomic WMR model is formulated as the plant 
model and the input is constrained with certain limits. The objective function of the constrained 
regulation problem is used to determine a collision free trajectory through the desired goal while 
taking into account of the kinematic constraints. 

For stationary environments, many collision-free path-planning methods are studied in the 
literature [9], [10], [11], [12], [13], [14], [15]. One of the recent static path planning approaches is 
Exact Euclidian Distance Transform (EEDT) [14]. This method encompasses the static obstacle 
avoidance by establishing a visibility protocol between the free cells in the configuration space. 
This approach provides the shortest obstacle-free trajectory between two coordinates. The 
collision-free trajectory is generated by EEDT before executing MPC. Thus, the state restriction is 
not necessary for collision avoidance. EEDT algorithm provides the via-points through which the 
WMR should pass. The configuration space of the WMR is processed by utilizing these points 
between the start and goal coordinates. 

Executing MPC algorithm on consecutive via-points provides an effective way to compute 
partially stabilized obstacle-free trajectories. The total path is evaluated by connecting these 
stabilized trajectory parts. This method makes the objective function less complex than state-
constrained quadratic form. 

Once the static via points are eliminated by EEDT, the only constraint is the goal orientation 
of via-points and kinematic limits of the WMR. The orientation of the WMR on a via-point is 
calculated by averaging the tangents of the line segments connected by the current point. This 
operation smoothens the transitions between the sub-trajectories along with the global target. 
Safety of the trajectory is guaranteed by EEDT; therefore, states do not have to be regarded in the 
objective function. The map on which the point stabilization is processed must satisfy convex 
conditions. To overcome this issue, the study in [5] offers splitting the map into convex half 
planes. The methods presented in [16],[17],[18],[19] have significantly high computational cost. 
Besides, these methods require large number of decision variables. In this study, we offer a new 
approach to obtain stabilized trajectories in both convex and non-convex situations. This method 
shortens the path and computational cost with respect to previous MPC based point stabilization 
schemes.  

The paper is organized as follows: In section 2, the technical basis of the proposed scheme is 
explained. The experimental results are presented in section 3 and the results are concluded in 
section 4. 
 
2. TECHNICAL BACKGROUND 
 
A. Kinematic Model of the Wheeled Mobile Robot  

The mathematical model of the wheeled mobile robot (WMR) given in Fig 1 is expressed in 
(1). 
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Figure 1. Cartesian coordinate system of the WMR 
 

The mobile robot expressed within (1) is assumed to be a rigid platform with non-slipping 
wheels. The contact between the ground and the wheels is pure rolling. C and {Xc, Yc} denotes the 
center point of the wheels of the WMR and the local coordinate system of the WMR respectively. 
{x, y, θ} denotes the configuration of the WMR with respect to the global frame OXY. The input 
parameters are linear and angular velocities, where v is linear velocity and w is angular velocity of 
the WMR. The kinematic model of the WMR can be described in a brief form as given in (2). 

),( uxx f                                                                                                                                (2) 
 

where u is the input control vector. The kinematic model given in (2) should be discretized to 
be able to study in discrete time conditions. The discrete-time model of the WMR is given in (3), 

))(),(()1( dis kkfk uxx                                                                                                     (3) 
 

where k is the sampling step. 
The mathematical model of the WMR can be defined in polar coordinates by transforming the 

states {x, y, θ} to the discrete-time set {e, ψ, α}. MPC based point stabilization scheme described 
in polar coordinates provides smoother trajectories for the WMR plants as the x and y states are 
decoupled from the common input v unlike the models described in Cartesian space. This 
coupling leads steady-state errors in x and y states [5]. The transformed parameters are given in 
(4), 
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When the robot is forced to converge to origin, the first two state variables e and ψ both 
converge to 0 even if the final heading angle is non-zero. Therefore, making the two state 
variables converge to zero does not guarantee that the heading angle θ will also converge to zero. 
The third state variable α is included in the state vector so that, when xp is forced to converge 
zero, not only x and y converge to zero but the orientation angle θ also converges to zero.  
 
B. Model Predictive Control (MPC) 

MPC is an optimal control scheme, which utilizes the plant model to generate an optimal 
control structure by minimizing an objective function. In a prediction horizon, MPC uses the plant 
model to estimate the system behavior. An optimal input sequence is obtained and the first 
element of this sequence is feed backed to each recursive loop. The current optimal input is given 
to the plant to precede the control algorithm to the next step. This procedure is repeated over a 
prediction horizon recursively. The time window is shifted to the next state at each control loop 
and the first element of the obtained control sequence is assumed to be the optimal solution of the 
inputs: linear velocity (v) and angular velocity (w). The objective function is a quadratic function 
of the states and inputs as given in (5), 
 

   N
i k|ikk|ikk|ikk|ikk 1

T
p

T
pp ))1()1()()()(Φ RuuQxx   (5) 

 

where N is the prediction horizon of the MPC; Q and R are penalty matrices for weighting the 
states and the inputs respectively. The state vector xp denotes the polar states [e ψ α]T. The 
optimization problem can be stated as to find u* which minimizes the objection function. This 
issue is expressed in (6). 
 

 )(Φp kminarg*

u
u                                                                                                            (6) 

 

The expression n(m|t) corresponds the value of n at the immediate time m predicted at the 
instant t. Thus, the control sequence obtained at tth step deals with the future predictions from the 
step t to t+m. The control sequence is appeared as in (7). 
 

 )1()2()1()( i|Ni,,i|i,i|i,i|i  uuuuu                                                 (7) 
 

Solving (6) for each step along with the prediction horizon at the instant time i, optimal 
control sequence of the inputs is eliminated as given in (8).   
 

 )1()2()1()( i|Ni,,i|i,i|i,i|i *****  uuuuu                                    (8) 
 

Considering the limitations of the actuators, input signal is restricted with an upper and a 
lower bound.  

The constrained optimization problem in (6) is solved within a prediction horizon N and 
u*(k|k) is selected as the instant solution. While minimizing the objective function, the state 
vector tends to zero, but if the state vector is desired to set another configuration, a series of 
rotations and translations are applied to the state vector. Point stabilization for a non-zero 
reference point is expressed in (9) and (10). Starting from the point {xinit, yinit, θinit}, assume that 
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the target configuration is {xtar, ytar, θtar}. The target point is translated to the origin and the 
translated initial point is rotated around the origin. The translated and rotated point is assumed the 
temporary initial pose while the origin {0, 0, 0} is the temporary target configuration.   
 

   tartartarinitinitinit  ,y,x,y,x MPC                                                                 (9) 
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After MPC is executed between {x*
init, y

*
init, θ

*
init } and {0, 0, 0} the stabilized trajectory is 

obtained by the inverse transformation of the ones given in (10), where θ*
init = θinit - θtar. Assuming 

the stabilized path coordinates between {x*
init, y

*
init, θ

*
init } and {0, 0, 0} are denoted with  x0 and 

y0, the inverse transformation is given in below. 
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As given in (11), the stabilized trajectory coordinates between custom points are determined 
as the vectors x and y in {XY} plane.  

Given a sequence of via-points, the stabilization procedure given above can be applied on the 
point pairs consecutively, and the total trajectory can be created by connecting the partial 
trajectories. EEDT algorithm will be used to generate the via-points, which will be stabilized. A 
Matlab routine ‘quadprog’ is used for solving all quadratic equations within this study. 
 
C. Exact Euclidian Distance Transform (EEDT) 

Workspace of a WMR can be populated with obstacles; therefore, obstacle avoidance and safe 
trajectory planning modules are inevitable for motion planning of WMRs.  
 

Point Stabilization Technique Using Model Predictive   …  /   Sigma J Eng & Nat Sci 35 (3), 389-403, 2017



394 

 

 
 

Figure 2. Unprocessed paths generated by EEDT 
 

 
 

Figure 3. Euclidian distance transform (Jarvis) 
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Jarvis distance transform algorithm [14] and EEDT are similar as both of the methods are 8-
neigbourhood based approaches. However, EEDT outperforms the travelled distance cost by 
following a visibility-based approach.  Fig 2 depicts the path generated by EEDT where the 
crosses on the figure depict the via-points. Fig 3 shows the path determined by Jarvis’ transform. 
As clearly seen in Fig 3, Jarvis’ method limits the next move with the angle of 45o. This is not an 
optimal solution for path planning problem though. The EEDT-based path is in an open polygonal 
format; therefore, corners of the trajectory are needed to be smoothened to increase the feasibility 
for real-time applications. For this purpose, each branch of the trajectory is processed by MPC 
algorithm independently. The goal orientation on a via-point is calculated by averaging the 
tangents of the branches connected at the via-point. The angle of the first via-point is given to 
MPC as the target orientation starting from the global start configuration. Then the next via-point 
is selected as the instant target by shifting the target points. The total point-stabilized trajectory is 
obtained by connecting the stabilized branches to each other.  

A symbolic description of the hybrid point stabilization method is illustrated in Fig 4. Given a 
start and global target configuration, it is purposed that planning a collision-free trajectory which 
passes through the via-points determined by EEDT algorithm. The angular positions, on which 
the mobile robot has to carry at the via-points, are determined by averaging the tangents of 
consecutive static path branches connected by the current via-point. MPC algorithm is executed 
between each consecutive point pairs, therefore, the angular orientations that the WMR has to be 
settled on the via-points, are calculated partially. Starting from the initial configuration, the WMR 
visits the via-points by satisfying the pre-determined angular orientations respecting the input 
constraints. As clearly seen in Fig 4, the WMR is initially positioned at an arbitrary location with 
an orientation of 0o. The main concern of the algorithm is to settle the WMR on the given target 
with an orientation angle 90o. First, EEDT algorithm is executed to obtain the static path lines and 
the via-points, which the WMR has to visit. Then the orientation conditions of each via-point are 
calculated by averaging the consecutive path lines. Finally, MPC algorithm is implemented to the 
consecutive via-points by utilizing the orientations calculated at the previous step. The stabilized 
trajectory parts are combined to obtain the overall stabilized trajectory. The final obstacle-free 
trajectory satisfies the goal orientation and kinematic constraints of the WMR. 
 

Point Stabilization Technique Using Model Predictive   …  /   Sigma J Eng & Nat Sci 35 (3), 389-403, 2017



396 

 

 
 

Figure 4. Obstacle free stabilized path by EEDT and MPC 
 

3. RESULTS  
 

In this section, simulation results of the algorithm are presented. The simulation platform is 
Matlab software.  The developed scheme is compared with another MPC based point stabilization 
method in terms of trajectory length and processing burden. Stabilized trajectories generated by 
these methods are plotted on common two-dimensional figures. The gray regions in 2D figures 
correspond the static obstacles. The path-planning algorithm inflates the obstacles to improve 
safety. The hybrid method outperforms the path-planning effort and trajectory length, as the other 
scheme needs to divide the non-convex map into convex partitions. This process is also an 
optimization problem and increases the computational burden. In addition to map splitting, the 
conventional approach determines such via-points that make length of the trajectory unnecessarily 
long. The hybrid method handles this issue by utilizing the via-points determined by EEDT 
algorithm rather than convex map splitter. The hybrid method is executed on a three-dimensional 
mobile robot toolbox, which is explained in [20]. A simulated differential drive mobile robot is 
defined and the input controls are restricted regarding the simulated WMR’s kinematic 
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capabilities. An example solution is given in Fig 5. Considering umin={-0.5 m/s, -1.4 rad/s} and 
umax={0.5 m/s, 1.4 rad/s}, initial position and orientation of the WMR is {0 m, 6 m, 90o}, where 
the final configuration is {0 m, 0 m, 0o}. The planned trajectory shows the trajectory starts from 
the initial pose and settles to the final configuration successfully. The linear velocity is negative 
why the simulated WMR moves in reverse direction during its travel. This scenario illustrates a 
simple map without any obstacles. In fact, this operation is performed for each branch on 
unprocessed static path as given in Fig 6 and Fig 7.  
 

 
 

Figure 5. Input control signals and the stabilized path 
 

The common use of MPC in point stabilization on existence of stationary obstacles, depends 
on the bounding the states as well as the input variables [5]. For such a task, it is necessary to split 
the configuration space in multi-convex sub-regions. In addition, upper and lower bounds of the 
states for each convex region have to be defined. The goal configurations of the states are also to 
be determined in every single convex region. This situation increases the length of the planned 
trajectory with increasing complexity of the configuration space. The proposed method decreases 
the length of the trajectory by avoiding the map splitting. 
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In Fig 6, a comparison between the conventional method [5], [6] and the proposed scheme is 
given. Convex regions for the conventional MPC based point stabilization scheme are given in 
(12). 
 

 
 

Figure 6. Planned trajectories with state-bounding and MPC-EEDT approaches 
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Figure 7. Planned trajectories with state-bounding and MPC-EEDT approaches 
 

Fig 6 shows the trajectories of the robot in the XY-plane where occupied polygons 
demonstrates the stationary walls, dashed-line depicts the path generated by conventional MPC 
(state bounding) and continuous line depicts the path generated by the proposed scheme. The 
starting and goal coordinates are (-4,4) and (0,0) points respectively. The conventional method 
divides the configuration space in two convex parts where it is already an independent 
optimization problem. For this scenario the line, x = 1, defines the limit between two convex 
planes. For each half plane, different reference state vectors (xr) and state constraints are 
considered (12). The length of path generated by the proposed method is 15% shorter than the one 
produced by the conventional approach.  

Another comparison between two methods is given in Fig 7 while the blue and red trajectories 
depict the conventional method and the proposed scheme results respectively. Convex splitting 
conditions  are given in (13).  In (12) and (13) xr denotes the local target of the WMR in current 
convex region. The convex splitting is another optimization problem, which requires extra 
computational effort. Path length and cost are reduced approximately 15% and 30% respectively 
for the scenario given in Fig 7. 
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The presented method is also verified on a three-dimensional Matlab simulation toolbox 
recently presented in [20]. This toolbox provides a visual effect for the analysis performed in 2D 
plots. The point stabilization in an obstacle-free map is illustrated in Fig 8. The simulated WMR 
is initialized at 60o intervals and navigated through the origin of the map. 
 

 
 

Figure 8. Point stabilization scheme for obstacle-free environments 
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Fig 9 illustrates that the simulated WMR starts from the initial configuration {45 m, 5 m, 10o} 
to the target {15 m, 90 m, 95o}. The average positioning error of 0.1 m and the angular error of 
0.09o is achieved during this simulation.  
 

 
 

Figure 9. Point stabilization scheme for occupied environments-1 
 

 
 

Figure 10. Point stabilization scheme for occupied environments-2 
 

Another result is given in Fig 10. The goal configuration of the WMR is {72.09 m, 121.43 m, 
0o} where the simulated WMR settles at the final configuration {72.10 m, 121.43 m, 0.06o}.The 
positioning error of the point stabilization scheme for this scenario is {0.01 m, 0 m, 0.06o}. As 
clearly seen in Fig 10, the simulated WMR makes a reverse maneuvering to achieve the final 
pose. The results prove the efficacy of the proposed point stabilization scheme in existence of 
obstacles around a WMR. The positioning and angular errors of the goal configurations are 
satisfactory for many applications.  
 

Table 1. Experimental results 
 

# Experiment x-error (%) y-error (%) θ-error (%) 
1 0.2 0.8 0.1 
2 0.6 0.8 0.3 
3 0.4 0.4 0.2 
4 0.6 0.2 0.4 
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4. CONCLUSIONS 
 

In this paper, a hybrid point stabilization method is proposed. EEDT and MPC algorithms are 
collaborated to calculate a trajectory consistent with the positioning constraints of a WMR. State 
limitations are considered by EEDT where the input constraints are considered by MPC. The 
optimization problem is handled by solving the objective function without convex splitting. This 
reduces the computational cost when solving the constrained objective function. The method is 
verified on a 3D Matlab simulation toolbox. For the future work, it is required to be implemented 
complexity analysis for real-time implementation. In addition, dynamic obstacle avoidance 
capability is needed to improve safety. The current version of this study provides an input-
controlled static point stabilization scheme for researchers. 
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