Research Article SOME NEW INTEGRAL INEQUALITIES FOR n- TIMES DIFFERENTIABLE QUASI-CONVEX FUNCTIONS

İmdat İŞCAN ${ }^{\mathbf{1}}$, Huriye KADAKAL ${ }^{\mathbf{2}}$, Mahir KADAKAL ${ }^{\mathbf{3}}$ *
${ }^{1}$ Department of Mathematics, Giresun University-GIRESUN; ORCID 0000-0001-6749-0591
${ }^{2}$ Institute of Science, Ordu University-Ordu; ORCID 0000-0002-0304-7192
${ }^{3}$ Department of Mathematics, Giresun University-GIRESUN; ORCID 0000-0002-0240-918X

Received: 19.01.2017 Accepted: 06.04.2017

Abstract

In this work, by using an integral identity together with both the Hölder and the Power-Mean integral inequality we establish several new inequalities for n-time differentiable quasi-convex functions. Using this inequalities, we obtain some new inequalities connected with means.

Keywords: Convex function, quasi-convex function, Hölder Integral inequality and Power-Mean Integral inequality.
2000 Mathematics Subject Classification: 26A51, 26D10, 26D15.

1. INTRODUCTION

Convexity theory has appeared as a powerful technique to study a wide class of unrelated problems in pure and applied sciences. For some inequalities, generalizations and applications concerning convexity see [7,11-14]. Recently, in the literature there are so many papers about n times differentiable functions on several kinds of convexities. In references [4-6, 8, 12, 14, 19-20] readers can find some results about this issue. Many papers have been written by a number of mathematicians concerning inequalities for different classes of quasi -convex functions see for instance the recent papers $[1-3,9,15-18]$ and the references within these papers.
Definition 1.1: A function $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is said to be convex if the inequality

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

is valid for all $x, y \in I$ and $t \in[0,1]$. If this inequality reverses, then f is said to be concave on interval $I \neq \emptyset$. This definition is well known in the literature.
Definition 1.2: A function $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is said to be quasi-convex if the inequality

$$
f(t x+(1-t) y) \leq \max \{f(x), f(y)\}
$$

holds for all $x, y \in I$ and $t \in[0,1]$. Clearly, any convex function is a quasi-convex function. Furthermore, there exist quasi-convex functions which are not convex [10].

Let $0<a<b$, throughout this pap er we will use

[^0]\[

A(a, b)=\frac{a+b}{2}, L_{p}(a, b)=\left\{$$
\begin{array}{lr}
\left(\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right)^{\frac{1}{p}}, & p \neq-1,0 \\
\frac{b-a}{\ln b-\ln a}, & p=-1 \\
\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}}, & p=0
\end{array}
$$\right.
\]

for the arithmetic and generalized logarithmic mean for $a, b>0$ respectively. Furthermore we will use the following notation:

$$
M_{n, q}(f)=\max \left\{\left|f^{(n)}(a)\right|^{q},\left|f^{(n)}(b)\right|^{q}\right\}
$$

We will use the following Lemma for we obtain the main results [14].
Lemma 1.1: Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be n-times differentiable mapping on I° for $n \in \mathbb{N}$ and $f^{(n)} \in$ $L[a, b]$, where $a, b \in I^{\circ}$ with $a<b$, we have the identity

$$
\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x=\frac{(-1)^{n+1}}{n!} \int_{a}^{b} x^{n} f^{(n)}(x) d x
$$

where an empty sum is understood to be nil.

2. MAIN RESULTS AND THEIR APPLICATIONS

Theorem 2.1. For $\forall n \in \mathbb{N}$; let $f: I \subset(0, \infty) \rightarrow \mathbb{R}$ be n-times differentiable function on I° and $a, b \in I^{\circ}$ with $a<b$. If $\left|f^{(n)}\right|^{q}$ for $q>1$ is quasi-convex on $[a, b]$, then the following inequality holds:

$$
\left|\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x\right| \leq \frac{1}{n!}(b-a) M_{n, q}^{\frac{1}{q}}(f) L_{n p}^{n}(a, b)
$$

Proof. If $\left|f^{(n)}\right|^{q}$ for $q>1$ is quasi-convex on $[a, b]$, using Lemma1.1, the Hölder integral inequality and

$$
\left|f^{(n)}(x)\right|^{q}=\left|f^{(n)}\left(\frac{x-a}{b-a} b+\frac{b-x}{b-a} a\right)\right|^{q} \leq M_{n, q}(f)
$$

we have

$$
\begin{gathered}
\left|\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x\right| \leq \frac{1}{n!}\left(\int_{a}^{b} x^{n p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}\left|f^{(n)}(x)\right|^{q} d x\right)^{\frac{1}{q}} \\
=\frac{1}{n!}\left(\int_{a}^{b} x^{n p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}\left|f^{(n)}\left(\frac{x-a}{b-a} b+\frac{b-x}{b-a} a\right)\right|^{q} d x\right)^{\frac{1}{q}} \\
\leq \frac{1}{n!}\left(\int_{a}^{b} x^{n p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b} M_{n, q}(f) d x\right)^{\frac{1}{q}} \\
=\frac{1}{n!}\left(\left.\frac{x^{n p+1}}{n p+1}\right|_{a} ^{b}\right)^{\frac{1}{p}}\left(M_{n, q}(f)(b-a)\right)^{\frac{1}{q}} \\
= \\
\frac{1}{n!}(b-a) M_{n, q}^{\frac{1}{q}}(f)\left[\frac{b^{n p+1}-a^{n p+1}}{(n p+1)(b-a)}\right]^{\frac{1}{p}}
\end{gathered}
$$

$$
=\frac{1}{n!}(b-a) M_{n, q}^{\frac{1}{q}}(f) L_{n p}^{n}(a, b)
$$

This completes the proof of theorem.
Corollary 2.1. Under the conditions Theorem 2.1 for $n=1$ we have the following inequality:

$$
\left|\frac{f(b) b-f(a) a}{b-a}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq M_{1, q}^{\frac{1}{q}}(f) L_{p}(a, b)
$$

Proposition 2.1. Let $a, b \in(0, \infty)$ with $a<b, p, q>1, \frac{1}{p}+\frac{1}{q}=1$ and $m \in \mathbb{Z} \backslash\{-2 q,-q\}$, we have the following inequalities:

$$
\begin{cases}L_{\frac{m}{q}+1}^{\frac{m}{q}+1}(a, b) \leq b^{\frac{m}{q}} L_{p}(a, b), & \text { for } m>0 \\ L_{\frac{m}{q}+1}^{\frac{m}{q}+1} & m, b) \leq a^{\frac{m}{q}} L_{p}(a, b), \\ \text { for } m<0\end{cases}
$$

Proof. Let $f(x)=\frac{q}{m+q} x^{\frac{m}{q}+1}, x \in(0, \infty)$. Then $\left|f^{\prime}(x)\right|^{q}=x^{m}$ is quasi-convex on $(0, \infty)$ and the result follows directly from Corollary 2.1.
Theorem 2.2. Let $f:(0, \infty) \subset \mathbb{R} \rightarrow \mathbb{R}$ be n-times differentiable function and $0 \leq a<b$. If $\left|f^{(n)}\right|^{q} \in L[a, b]$ and $\left|f^{(n)}\right|^{q}$ for $q \geq 1$ is quasi-convex on $[a, b]$, then the following inequality holds:

$$
\left|\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x\right| \leq \frac{1}{n!}(b-a) M_{n, q}^{\frac{1}{q}}(f) L_{n}^{n}(a, b)
$$

where $p=1-\frac{1}{q}$ and $p>1$.
Proof. From Lemma1.1 and Power-mean integral inequality, we obtain

$$
\begin{aligned}
&\left|\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x\right| \\
& \leq \frac{1}{n!}\left(\int_{a}^{b} x^{n} d x\right)^{1-\frac{1}{q}}\left(\int_{a}^{b} x^{n}\left|f^{(n)}(x)\right|^{q} d x\right)^{\frac{1}{q}} \\
&= \frac{1}{n!}\left(\int_{a}^{b} x^{n} d x\right)^{1-\frac{1}{q}}\left(\int_{a}^{b} x^{n}\left|f^{(n)}\left(\frac{x-a}{b-a} b+\frac{b-x}{b-a} a\right)\right|^{q} d x\right)^{\frac{1}{q}} \\
& \leq \frac{1}{n!}\left(\int_{a}^{b} x^{n} d x\right)^{1-\frac{1}{q}}\left(\int_{a}^{b} x^{n} M_{n, q}(f) d x\right)^{\frac{1}{q}} \\
&=\frac{1}{n!}(b-a) M_{n, q}^{\frac{1}{q}}(f) L_{n}^{n}(a, b)
\end{aligned}
$$

Corollary 2.2. Under the conditions Theorem 2.2 for $n=1$ we have the following inequality:

$$
\left|\frac{f(b) b-f(a) a}{b-a}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq M_{1, q}^{\frac{1}{q}}(f) A(a, b)
$$

Proposition 2.2. Let $a, b \in(0, \infty)$ with $a<b, q \geq 1$ and $m \in \mathbb{Z} \backslash\{-2 q,-q\}$, we have the following inequalities:

$$
\left\{\begin{array}{l}
\frac{\frac{m}{q}+1}{L_{\frac{m}{q}}^{q}+1}(a, b) \leq b^{\frac{m}{q}} A(a, b), \text { for } m>0 \\
L_{\frac{m}{q}+1}^{q}(a, b) \leq a^{\frac{m}{q}} A(a, b), \text { for } m<0
\end{array}\right.
$$

Proof. The result follows directly from Theorem 2.2 for the function $f(x)=\frac{q}{m+q} x^{\frac{m}{q}+1}, x \in$ ($0, \infty$).
Corollary 2.3. Using Proposition 2.2. for $m=1$, we have following inequalities:

$$
L_{1+\frac{1}{q}}^{1+\frac{1}{q}}(a, b) \leq b^{\frac{1}{q}} A(a, b)
$$

Corollary 2.4. Using Proposition 2.2. for $q=1$, we have following inequalities:

$$
\left\{\begin{array}{l}
L_{m+1}^{m+1}(a, b) \leq b^{m} A(a, b), \text { for } m>0 \\
L_{m+1}^{m+1}(a, b) \leq a^{m} A(a, b), \text { for } m<0
\end{array}\right.
$$

Corollary 2.5. Using Corollary 2.4. for $m=1$, we have following inequality:

$$
L_{2}^{2}(a, b) \leq b A(a, b)
$$

Corollary 2.6. Under the conditions Theorem 2.2 for $q=1$ we have the following inequality:

$$
\left|\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x\right| \leq \frac{1}{n!}(b-a) M_{n, 1}(f) L_{n}^{n}(a, b)
$$

A generalization of Theorem 2.1. is given as follow:
Theorem 2.3. Let $f:(0, \infty) \subset \mathbb{R} \rightarrow \mathbb{R}$ be n-times differentiable function and $0 \leq a<b$. If $\left|f^{(n)}\right|^{q} \in L[a, b]$ and $\left|f^{(n)}\right|^{q}$ for $p, q>1$, is quasi-convex on $[a, b]$, then the following inequalities holds:

$$
\left|\sum_{k=0}^{n-1}(-1)^{k}\left(\frac{f^{(k)}(b) b^{k+1}-f^{(k)}(a) a^{k+1}}{(k+1)!}\right)-\int_{a}^{b} f(x) d x\right| \leq \frac{b-a}{n!} M_{n, q}^{\frac{1}{q}}(f) L_{i p}^{i}(a, b) L_{(n-i) q}^{n-i}(a, b),
$$

where $i=0,1,2, \ldots n$ and $\frac{1}{p}+\frac{1}{q}=1$.
Proof: If $\left|f^{(n)}\right|^{q}$ for $q>1$ is quasi-convex on [a,b], using Lemma1.1 and the Hölder integral inequality, we have the following inequalities respectively:

$$
\begin{gathered}
\left|\frac{(-1)^{n+1}}{n!} \int_{a}^{b} x^{n} f^{(n)}(x) d x\right| \leq \frac{1}{n!}\left(\int_{a}^{b} 1^{p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b} x^{n q}\left|f^{(n)}(x)\right|^{q} d x\right)^{\frac{1}{q}} \\
\leq \frac{1}{n!}\left(\int_{a}^{b} 1 \cdot d x\right)^{\frac{1}{p}}\left(\int_{a}^{b} x^{n q} M_{n, q}(f) d x\right)^{\frac{1}{q}} \\
=\frac{1}{n!}(b-a) M_{n, q}^{\frac{1}{q}}(f) L_{n q}^{n}(a, b)
\end{gathered}
$$

$$
\begin{gathered}
\left|\frac{(-1)^{n+1}}{n!} \int_{a}^{b} x^{n} f^{(n)}(x) d x\right| \leq \frac{1}{n!}\left(\int_{a}^{b} x^{p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b} x^{(n-1) q}\left|f^{(n)}(x)\right|^{q} d x\right)^{\frac{1}{q}} \\
\leq \frac{1}{n!}\left(\int_{a}^{b} x^{p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b} x^{(n-1) q} M_{n, q}(f) d x\right)^{\frac{1}{q}} \\
=\frac{1}{n!}(b-a) M_{n, q}^{\frac{1}{q}}(f) L_{p}(a, b) L_{(n-1) q}^{n-1}(a, b), \\
\vdots \\
\left|\frac{(-1)^{n+1}}{n!} \int_{a}^{b} x^{n-1} x f^{(n)}(x) d x\right| \leq \frac{1}{n!}\left(\int_{a}^{b} x^{(n-1) p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b} x^{q}\left|f^{(n)}(x)\right|^{q} d x\right)^{\frac{1}{q}} \\
\leq \frac{1}{n!}\left(\int_{a}^{b} x^{(n-1) p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b} x^{q} M_{n, q}(f) d x\right)^{\frac{1}{q}} \\
=\frac{1}{n!}(b-a) M_{n, q}^{\frac{1}{q}}(f) L_{(n-1) p}^{n-1}(a, b) L_{q}(a, b) .
\end{gathered}
$$

The proof of case $i=n$ is given in Theorem 2.1.
Corollary 2.7. Under the conditions Theorem 2.3 for $n=1$ we have the following inequalities respectively:

$$
\left|\frac{f(b) b-f(a) a}{b-a}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq M_{1, q}^{\frac{1}{q}}(f) \min \left\{L_{q}(a, b), L_{p}(a, b)\right\},
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Proposition 2.3. Let $a, b \in(0, \infty)$ with $a<b, q>1$ and $m \in \mathbb{Z} \backslash\{-2 q,-q\}$, we have

$$
\begin{cases}L_{\frac{m}{q}+1}^{\frac{m}{q}+1}(a, b) \leq b^{\frac{m}{q}} \min \left\{L_{q}(a, b), L_{p}(a, b)\right\}, & \text { for } m>0 \\ A(a, b) \leq \min \left\{L_{q}(a, b), L_{p}(a, b)\right\}, & \text { for } m=0 \\ \frac{m}{L_{\frac{m}{q}}^{q}+1}(a, b) \leq a^{\frac{m}{q}} \min \left\{L_{q}(a, b), L_{p}(a, b)\right\}, & \text { for } m<0\end{cases}
$$

Proof. The result follows directly from Corollary 2.7 for the function $f(x)=\frac{q}{m+q} x^{\frac{m}{q}+1}, x \in$ $(0, \infty)$.
Corollary 2.8. For $m=1$ from Proposition 2.3, we obtain the following inequality:

$$
L_{\frac{1}{q}+1}^{\frac{1}{q}+1}(a, b) \leq b^{\frac{1}{q}} \min \left\{L_{q}(a, b), L_{p}(a, b)\right\}
$$

REFERENCES

[1] M. Alomari, and M. Darus. "On some inequalities Simpson-type via quasi-convex functions with applications", RGMIA Res. Rep. Coll 13.1 (2010).
[2] M. Alomarı, M. Darus And S. S. Dragomir, "New Inequalities of Hermite-Hadamard Type for Functions whose Second Derivatives Absolute Values are Quasi-Convex", Tamkang Journal of Mathematics Volume 41, Number 4, 353-359, Winter 2010.
[3] M. Alomari, S. Hussain, "Two Inequalities of Simpson Type for Quasi-Convex Functions and Applications", Applied Mathematics E-Notes, 11(2011), 110-117.
[4] S.-P. Bai, S.-H. Wang and F. Qi, "Some Hermite-Hadamard type inequalities for n-time differentiable (a, m) -convex functions", Jour. of Ineq. and Appl., 2012, 2012:267.
[5] P. Cerone, S.S. Dragomir and J. Roumeliotis, "Some Ostrowski type inequalities for ntime differentiable mappings and applications", Demonstratio Math., 32 (4) (1999), 697712.
[6] P. Cerone, S.S. Dragomir, J. Roumeliotis and J. Sunde, "A new generalization of the trapezoid formula for n-time differentiable mappings and applications", Demonstratio Math., 33 (4) (2000), 719-736.
[7] S.S. Dragomir and C.E.M. Pearce, "Selected Topics on Hermite-Hadamard Inequalities and Applications", RGMIA Monographs, Victoria University, 2000, online: http://www.staxo.vu.edu.au/RGMIA/monographs/hermite hadamard.html.
[8] D.-Y. Hwang, "Some Inequalities for n-time Differentiable Mappings and Applications", Kyung. Math. Jour., 43 (2003), 335-343.
[9] S. Hussain, S. Qaisar, "New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity", Punjab University, Journal of Mathematics (ISSN 10162526), Vol. 45 (2013), pp 33-38.
[10] D. A. Ion, "Some estimates on the Hermite-Hadamard inequality through quasi-convex functions", Annals of University of Craiova, Math. Comp. Sci. Ser. Volume 34, 2007, Pages 82-87.
[11] İ. İşcan and S. Turhan, "Generalized Hermite-Hadamard-Fejer type inequalities for GAconvex functions via Fractional integral", Moroccan J. Pure and Appl. Anal.(MJPAA), Volume 2(1) (2016), 34-46.
[12] İ. İşcan, "Hermite-Hadamard type inequalities for harmonically convex functions", Hacettepe Journal of Mathematics and Statistics, Volume 43 (6) (2014), 935-942.
[13] W.-D. Jiang, D.-W. Niu, Y. Hua and F. Qi, "Generalizations of Hermite-Hadamard inequality to n-time differentiable function which are s-convex in the second sense", Analysis (Munich), 32 (2012), 209-220.
[14] S. Maden, H. Kadakal, M. Kadakal and İ. İşcan, "Some new integral inequalities for ntimes differentiable convex and concave functions". Available online at: https://www.researchgate.net/publication/312529563.
[15] M. A. Latif, S. Hussain and S. S. Dragomir, "Refinements of Hermite-Hadamard-Type Inequalities for Co-Ordinated Quasi-Convex Functıons", International Journal Of Mathematical Archive-3(1), 2012, Page 161-171.
[16] W. Liu, "New Integral Inequalities via (α, m)-Convexity and Quasi-Convexity", Hacettepe Journal of Mathematics and Statistics Volume 42 (3) (2013), 289-297.
[17] K. Murota, A. Shioura, "Quasi M-convex and L-convex functions-quasiconvexity in discrete optimization", Discrete Applied Mathematics 131, (2003), 467-494.
[18] K. Murato, A. Shioura, "Quasi M-convex and L-convex Functions Quasiconvexity in Discrete Optimization", RIMS Preprint No. 1306, Kyoto University, December 2000.
[19] S.H. Wang, B.-Y. Xi and F. Qi, "Some new inequalities of Hermite-Hadamard type for ntime differentiable functions which are m-convex", Analysis (Munich), 32 (2012), 247262.
[20] Ç. Yıldız, "New inequalities of the Hermite-Hadamard type for n-time differentiable functions which are quasiconvex", Journal of Mathematical Inequalities, 10, 3(2016), 703711.

[^0]: * Corresponding Author/Sorumlu Yazar: e-mail/e-ileti: mahirkadakal@ gmail.com, tel: (454) 3101444

