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ABSTRACT 

 

The objective of this study is to investigate the dynamic behaviour of a linear viscoelastic elliptical beam 

subjected to the vertical distributed loading by using the mixed finite method based on Timoshenko beam 

theory. It is assumed that, the linear viscoelastic material exhibits the standard type of distortional behaviour 

while having elastic Poisson's ratio. The finite element analysis is carried out in Laplace space, the material 

properties are implemented into the formulation through the use of the correspondence principle. The results 

are transformed back to the time domain numerically by using of the Modified Durbin's transformation 

algorithm. Through the analysis, two different types of impulsive load are considered, namely, isosceles 

triangular and right triangular impulsive load with the same duration and the maximum intensity of distributed 

load. A circular and two different elliptically oriented cross-sections are selected keeping the net cross-

sectional areas equal to each other. The influence of different types of impulsive loads and cross-sections on 

the dynamic behaviour of viscoelastic elliptical planar beam with fixed-fixed boundary condition is 

investigated in detail and the examples are presented as original examples for the literature.  

Keywords: Elliptical planar beam, viscoelastic material, dynamic analysis, impulsive load, mixed finite 

element method. 

 

 

1. INTRODUCTION 

 

Referring to the developing technology, curved beam elements are widely used in mechanical, 

civil, mechatronics and aerospace engineering as a structural construction member. They are used 

in advanced structures such as bridges, railways, aircrafts, turbine blades, connector elements and 

space vehicles. These needs are required to a wide range of curved element (elliptic, parabola, 

catenary, cycloid, and circle) having curvature range along the arc length with different section 

shapes and sizes. Due to internal friction, viscous effects are important on behaviour under 

dynamic and impulsive type loads etc, of some materials, such as polymers. Different viscoelastic 

mechanical models, such as the well-known Standard, Kelvin and Maxwell model etc, can 

simulate the viscous effects.  
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When elastic material is considered, there are numerous studies about static and dynamic 

analysis of elastic space (straight, curved planar and 3D) beams in the literature. Some of these 

works related to circular / non-circular planar curves can be given as follow: Static analysis is 

considered in [1] and [2]. Free vibration analysis are investigated in [3]-[9]. Dynamic analysis are 

studied without damping effect in [10]-[12], and, with damping effect in [13], respectively. When 

viscoelastic material is considered, there are many studies for linear viscoelastic straight beam in 

[14]- [20], whereas the studies about linear viscoelastic planar curved beams are limited for 

circular beam in [21]-[23], and, for non-circular beams in [24]. 

In this study, the dynamic analysis of a linear viscoelastic planar elliptical beam having three 

different cross-sections (circular cross-section, two different elliptically oriented cross-sections) 

are examined via mixed finite element method (MFEM) based on Timoshenko beam theory. By 

using the linear shape functions, the exact nodal arc length and curvature values are inserted into 

the finite element matrix [25]. The exact analytical expression of arc length and curvature of an 

elliptical plane curve is derived by using the formulation given in [26]. The analysis is performed 

in Laplace space by using the correspondence principle [27] and the results are transformed back 

to time domain numerically by Modified Durbin algorithm [28]-[30]. The mixed finite element 

algorithm used in this study was verified by Eratlı et al. 2014 [31], also used in [32] and [33]. 

Through the analysis, the viscoelastic model exhibits standard type of distortional behaviour 

while having elastic Poisson’s ratio. The linear viscoelastic analysis of planar elliptical beam 

subjected to isosceles triangular and right triangular impulsive type of uniformly distributed load 

is performed. Beam is fixed at both ends. As far as the knowledge of the authors, this study is a 

new contribution to the literature with some benchmark examples. 

 

 
 

Figure 1. Planar elliptical beam having different cross-sections subjected to vertical distributed 

impulsive type dynamic load 

 

2. FUNCTIONAL IN LAPLACE SPACE AND MIXED FE FORMULATION 

 

Space Curve in Frenet Frame: A space curve is described by a position vector ( )sR , where s is 

the arc length parameter of the rod axis. The unit vectors of the Frenet Coordinate system can be 

given as: ( )
,

t R
s

s = , , ,( ) = ss sssn R R/ , ( ) ( ) ( )s s sb t n=  where t , n  and b are the tangential, 

normal and binormal unit vectors, respectively. The differentiation with respect to arc length s is 

denoted by comma (e.g. ,d / d ss R R ). The differential relations between the unit vectors of 

M. Ermis, A. Kutlu, N. Eratlı, M.H. Omurtag  / Sigma J Eng & Nat Sci 9 (2), 157-168, 2018 



159 

 

Frenet c  oordinate are 
,( ) ( ) ( )ss s st n= , ,( ) ( ) ( ) ( ) ( )ss s s s s n b t= , ,( ) ( ) ( )ss s sb n=  where 

,( ) sss  R  and ,( ) ( ) ( ) ss s s  b n  represent the curvature and the torsion of the space curve 

[34], respectively. By choosing the position vector  ( ) ( ), ( ), ( )x y z   R  in Cartesian 

coordinate system as a parametric function of horizontal angle  , the differential relation 

between arc length s  and the horizontal angle   can be defined as 
, ,( )s c   R  with ( )c   

being the gradient of arc length [26].  
 

Plane Curve: A planar curve is described by a position vector ( )r  , the analytical expressions 

for the curvature and the arc length in terms of position vector becomes 
,( )p

ss   r , 

,( )pc  r , , ( )p ps c  . We note that the superscript “ p ” is used to denote that these 

quantities are written for a plane curve. For a planar elliptical curve shown in Fig.1a, 

max( ) cosx R  , 
min( ) siny R   where 

minR  and 
maxR  are the minimum and maximum 

radius, respectively.  
 

Viscoelastic Material Model: In this study, the viscoelastic material exhibits the standard type of 

distortional behaviour while having elastic Poisson’s ratio, and the complex shear modulus can be 

expressed as given in [35] and [36]:    1 / 1G G G

r rG G z z     ; / 1G

gG G   where G

r  is 

the retardation time, G  is the equilibrium value of shear modulus and gG  is the instantaneous 

value of relaxation function associated with shear modulus.  
 

Field Equations: The field equations for a space rod are based on Timoshenko beam theory. The 

associated functional in Laplace transformed space is given by:  
 

   

   

21 1 1
, , 2 2 2

21
2

[ , ] [ , ] [ , ] [ , ] [ , ] ,

ˆˆ ˆ ˆ , , , [( ), [( ), ] [ ] [ , ]

s s A z

z

 

   





       



            

I y u T t Ω T M Ω C M M C T T u u

Ω Ω q u m Ω T T u] M M Ω u,T Ω M
  (1) 

 

In Eq. (1), the Laplace transformed variables are denoted by the over bars; z is the Laplace 

transformation parameter; ( , , )t n bu u uu , ( , , )t n b  Ω , ( , , )t n bT T TT  and ( , , )t n bM M MM  

are the displacement, rotation, force and moments vectors, respectively (given in terms of Frenet 

frame components).  q
 

and m are the distributed external force and moment vectors, 

respectively. C  and C are the compliance matrices.   is the density of homogenous material, 

A  is the area of cross-section and ( , , )t n bI I II  is the moment of inertia vector. In the mixed 

finite element formulation, a two noded curvilinear element is used to discretize the domain of the 

planar curved beam. The derivation procedure of a functional Eq. (1), exists in [31], is based on 

Gâteaux differentiation and potential operator concept [37]-[39] . 

 

3. NUMERICAL EXAMPLES 

 

Common parameters: Through the analysis, geometric parameters of elliptical beam and cross-

sections are taken as follows: the minimum radius of elliptical beam to the maximum radius of 

elliptical beam ratio 
min max/ 0.5R R   where 

max 1mR  ; a circular and two elliptical cross-section 

having different orientations are used in the analysis. The orientations of the two different 

elliptical cross-sections are as shown in Fig.1b. The abbreviations "ellipse_n" and "ellipse_b" are 

used to denote, respectively, the elliptical cross-sections having major axis oriented horizontal 

and vertical. The cross sectional areas of the circular and the two elliptical sections are taken the 
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same. The dimensions of the elliptical and circular cross-sections are 5cma  , 2.5cmb   and 

3.53553cmr  . The beam is fixed at both ends. Torsional moment of inertia for an elliptical 

cross-section is calculated by using the equation    3 3 2 2/tI a b a b  [40].  
 

A convergence and verification example for elastic analysis: A convergence analysis is 

performed over the natural frequencies of the planar elliptical beam having the circular, 

elliptical_n and elliptical_b cross-sections and verified with the solutions of SAP2000 in [41]. 
 

Viscoelastic analysis: The material parameters are the shear modulus 57 10 PaG   , Poisson’s 

ratio 0.3  , the density of material 37850kg / m  , the retardation time 0.05sG

r   and the 

ratio 1.5G  . By using the parameters G

r , G  and G , the complex shear modulus G  is 

determined. The quasi-static and dynamic responses of the beam which is subjected to a vertical 

distributed dynamic load ( )zq q t  are investigated within 0 100st  . Isosceles triangular and 

right triangular impulsive type loads are used (Fig.1c). The area of the forced vibration zone of 

these loads is kept constant, the duration of load is 40sloadt   and the maximum intensity of 

distributed load is 310 N / moq  . The analyses are carried out in Laplace transform space and 

the results are transformed back to time domain numerically by Modified Durbin algorithm [28]-

[30]. For the inverse Laplace transformation algorithm, 
112N   and 6aT  are used  [31]. The 

vertical displacements M ( )bu t  at the midpoint M, the rotations C( )n t  at point C, the forces A ( )bT t  

and the moments A ( )tM t  and A ( )nM t  at point A of the elliptical beam (Fig.1a) are investigated 

within time interval 0 100st  . For points A, C and M see Fig. 1a. 
 

A convergence example for viscoelastic analysis: A convergence analysis of the planar 

elliptical beam having circular cross-section is carried out for 16, 24, 32, 40 and 48 elements. The 

first extremum peak values of the time histories of M ( )bu t , C( )n t , A ( )bT t , A ( )tM t  and A ( )nM t  

for the isosceles triangular and the right triangular impulsive loads are tabulated in Tables 1-2, 

respectively. The results ( M ( )bu t , C( )n t , A ( )bT t , A ( )tM t  and A ( )nM t ) obtained by using 40 

elements are normalized with respect to the results of 48 elements and percent differences are also 

given in Tables 1-2. In the following examples, 40 elements are employed. 

 

Table 1. The convergence analysis for the isosceles triangular impulsive load. ( :en number of 

element) 
 

 

en  

the first peak of the dynamic behaviour of elliptical beam having circular 

cross-section 
M 310bu   

(mm) 

C 610n

   

(rad) 

A 410bT   

(N) 

A 210tM   

(N.mm) 

A 210nM   

(N.mm) 

16 -47.65 61.81 -12.10 -29.71 44.05 

24 -47.34 60.86 -12.09 -29.94 43.25 

32 -47.24 60.54 -12.09 -30.01 43.00 

40 -47.19 60.38 -12.09 -30.04 42.88 

48 -47.17 60.25 -12.09 -30.06 42.82 

%diff. -0.04 -0.22 0.00 0.07 -0.14 

 40el 48eldiff.% 1 / 100     ,  : M

bu  , C

n , A

bT , A

tM , A

nM  
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Table 2. The convergence analysis for the right triangular impulsive load. ( :en number of 

element) 
 

 

en  

the first peak of the dynamic behaviour of elliptical beam having circular 

cross-section 
M 310bu   

(mm) 

C 610n

   

(rad) 

A 410bT   

(N) 

A 210tM   

(N.mm) 

A 210nM   

(N.mm) 

16 -90.02 116.57 -19.67 -54.96 78.62 

24 -89.51 114.82 -19.68 -55.33 77.10 

32 -89.33 114.23 -19.68 -55.45 76.63 

40 -89.24 113.96 -19.68 -55.50 76.42 

48 -89.20 113.82 -19.68 -55.53 76.30 

%diff. -0.04 -0.13 0.00 0.05 -0.16 

 40el 48eldiff.% 1 / 100     ,  : M

bu  , C

n , A

bT , A

tM , A

nM  

 

The effect of the dynamic impulsive load: The time history of M ( )bu t  of the planar elliptical 

beam having circular cross-section are given for isosceles triangular and right triangular 

impulsive type loads in Fig.2. The dynamic behaviour of the viscoelastic elliptical beam 

dissipates within the sampling time interval and approaches to the quasi-static case (see Fig.2). 

Under the same damping parameters, the behaviour of the viscoelastic case is oscillating close 

around the quasi-static case results for the impulsive isosceles triangular loading whereas it is not 

the case for impulsive right triangular case. The first extremum peak of M ( )bu t  belonging to the 

isosceles triangular impulsive load case are normalized with respect to the first extremum peak of 
M ( )bu t  belonging to the right triangular impulsive load for dynamic and quasi static cases, and, 

these percent differences are 47.12%, and -0.89%, respectively. 
 

The effect of the cross-section: The dynamic behaviour of viscoelastic elliptical beams having 

three different cross-sectional geometries are compared with each other for isosceles triangular 

and right triangular impulsive type loads. For this purpose, circular, ellipse_n and ellipse_b cross-

sections are considered. The time histories of  M ( )bu t , C( )n t , A ( )bT t , A ( )tM t  and A ( )nM t  are 

given in Figs.3 and 4. For points A, C and M see Fig. 1a. It is seen that; the time histories are 

significantly affected from the shape of the cross-section. Figs.3 and 4 may be discussed within 

the two time intervals namely, 0s 40st   and 40s 100st  . In this case:  
 

 For the forced vibration zone ( 0s 40st  ), the first extremum peaks of M ( )bu t , C( )n t , 

A ( )bT t , A ( )tM t  and A ( )nM t  of the isosceles triangular impulsive load are normalized with respect 

to the first extremum peaks of M ( )bu t , C( )n t , A ( )bT t , A ( )tM t  and A ( )nM t  of the right triangular 

impulsive load for each type of cross-sections: 

- In elips_b cross-section: The percent reductions in the amplitude of M ( )bu t , C( )n t , 

A ( )bT t , A ( )tM t  and A ( )nM t  are 47.1%, 47.0%, 38.6%, 45.9%, 43.9%, respectively.   

- In circular cross-section: The percent reductions in the amplitude of M ( )bu t , C( )n t , 

A ( )bT t , A ( )tM t  and A ( )nM t  are 46.2%, 46.0%, 36.6%, 44.5%, 42.1%, respectively.   

- In elips_n cros-section: The percent reductions in the amplitude of M ( )bu t , C( )n t , A ( )bT t

, A ( )tM t  and A ( )nM t  are 46.1%, 46.1 %, 39.8%, 45.3% , 43.9%, respectively.   
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 For the free vibration zone ( 40s 100st  ), the dynamic response of M ( )bu t , C( )n t , 

A ( )bT t , A ( )tM t  and A ( )nM t  oscillates around zero along the free vibration zone with decreasing 

amplitude for both types of impulsive loads. The reduction in the amplitudes of these responses 

are more influential in the case of isosceles triangular impulsive type of loading. The responses 

determined for circular and ellipse_b cross-sections damp rapidly when compared with the 

ellipse_n.  

 

 
(a) isosceles triangular impulsive load. 

 

 
(b) right triangular impulsive load 

 

Figure 2. The vertical displacements M ( )bu t of the elliptical beam having circular cross-sections 
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(a) the vertical displacements M ( )bu t

 
 

 
(b) the rotations C( )n t  

 

 
(c) the forces A ( )bT t  

 

 
(d)  the moments A ( )tM t

 
 

 
(e) the moments A ( )nM t

 
 

Figure 3. Time histories of the planar elliptical beam having cross-sections (circular, elips_n, and 

elips_b) subjected to isosceles triangular impulsive load. 
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(a) the vertical displacements M ( )bu t  

 

 
(b) the rotations C( )n t  

 

 

(c) the forces A ( )bT t  
 

 
(d) the moments A ( )tM t

 

 
(e) the moments A ( )nM t  

 

Figure 4. Time histories of the planar elliptical beam having cross-sections (circular, elips_n, and 

elips_b) subjected to right triangular impulsive load. 
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4. CONCLUSION 

 

The dynamic viscoelastic response of the planar elliptical beam having a circular and two 

elliptical cross-sections with different orientations are analysed by using mixed FEM. For this 

purpose, the viscoelastic material behaviour is simulated by using the standard model and 

viscoelastic properties are accounted using the correspondence principle. The finite element 

solutions are carried out in the Laplace space. The results obtained in frequency domain are 

transformed back to time domain using modified Durbin’s algorithm.  

The effect of the cross-section on the time histories of the variables are: 
 

 The vibration periods of M ( )bu t , C( )n t , A ( )bT t , A ( )tM t  and A ( )nM t  for the beam having 

ellipse_n cross-section is the largest compared to the other two cross-sections.  

 The first extremum peaks of M ( )bu t , C( )n t  and A ( )tM t  for the beam having  ellipse_n 

cross-section is the largest when compared with those obtained for the other two cross-sections.  

 The difference between the first extremum of the time histories of A ( )bT t  are insignificant 

for the three cross-sectional geometries used in this study. This judgement is also valid for the 

time histories of A ( )nM t . 

 The first extremum peaks of M ( )bu t  and C( )n t  for circular and ellipse_b cross-section are 

normalized with respect to the first extremum peaks of M ( )bu t and C( )n t  of the ellipse_n cross-

section. The discussion is as follows: 

- In isosceles triangular impulsive load: The percent reductions in the amplitudes of M ( )bu t

and C( )n t  are 47.4 % and 47.4% for the beam having circular cross-section, and, 67.8% and 

68.5% for the beam having ellipse_b cross-section, respectively. 

- In right triangular impulsive load: The percent reductions in the amplitudes of M ( )bu t and 

C( )n t  are 46.4% and 46.5% for the beam having circular cross-section, and, 67.8% and 67.6% 

for the beam having ellipse_b cross-section, respectively. 
 

The effect of the impulsive load type on the time histories of the variables are: 
 

 If the first extremum peaks of the time histories of the quasi-static case for the isosceles 

triangular and right triangular impulsive loads (see Fig.2) are normalized with respect to the first 

extremum peaks of the corresponding dynamic loading cases, the percent reductions are obtained 

as 0.39%, 47.79%, respectively.  

 The results show that, the dynamic behaviour of the linear viscoelastic planar elliptical 

beam is affected from the form of applied dynamic loading, although the forced vibration areas 

and the duration of loading are the same. As a result, the type of cross-section and loading to be 

used in special problems must be carefully selected.  
 

As far as the knowledge of the authors, the linear viscoelastic elliptical beam analysis using 

mixed FEM is an original example. 
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