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ABSTRACT 

 

In the present study; by using symmetry, anti-symmetry, axial symmetry properties and maintaining the 

feature of being the exact solution of the problem; model minimization and more accurate and detailed 

information acquisition techniques in the minimized model are discussed with examples on the analysis by the 

Finite Element method. On the other hand, the computer programs "ESKA-2" and "ESKA-4" (Axisymmetric 

Shell Analysis) which are formulated on the classical shell structure theory and developed within the scope of 

the study are introduced. By means of these programs, model modifications can be made in an extremely 

practical way compared to the Finite Element Method in axially symmetric shell structures; load and load 

combinations, boundary conditions and so on. In addition to all these conveniences, more detailed and more 

accurate analysis results can be obtained than the Finite Element Method, which can only analyse with a 

limited number of unknowns with the capacity of computers. ESKA-2 has been developed for the analysis of 

systems (high walled) where the analysis of axial symmetric wall with two integral constants is suitable. 

ESKA-4 is formulated with four integral constants and gives accurate results regardless of the wall height. 

Keywords: Axially symmetric shell structure, classic shell structure theory, Finite Element method, post 

tensioning, structural optimization. 

 

 

1. INTRODUCTION 

 

Shell structures have geometries that are smaller in thickness than other sizes and principal 

radius of curvature. There are many degrees of freedom for such structures in analysis with 

prevalent Finite Element Method. For this reason, about the solution of the unknowns, the number 

of equations, that push the limits of computers and software, becomes the subject. In this case, 

technical problems are experienced frequently. Some of these problems are confronted by the 

limitations of the computer program, or the operating system used, or the inadequacies of the 

computer hardware. These limitations often require a large number of dynamic storage areas, 

(RAM and similar units) which may be insufficient during operations of these variables, for 

dimensioned variables such as vectors and matrices during the solution of the problem. In 

addition to the development of computer technologies and software; progression in analysis 

methods, developed in matrix operations, (for example all hard disks and similar magnetic or 

digital storage areas may be defined to take on a task as RAM, or only the values of the 
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symmetric half terms and diagonal terms of the square system stiffness matrix, which are different 

from zero, may be stored in a vector; thus inverse and other matrix operations can be made by 

means of this vector) are inadequate because of engineering problems that are increasing and 

pushing the limits of the same subject. On the other hand, with the technological advancement, 

expectatio ns about the analysis of more complex systems also augment. In this case, analysis 

with the models, that does not exceed the limits, is made do.  

One of the system analysis methods used prevalently in the field of civil engineering and has 

a high transaction volume is Finite Element Method. Although some assumptions are concerned, 

the general-purpose Finite Element Method is used as the exact solution. The method provides 

very successful results in solving problems related to structural systems in building types as well 

as other structural systems such as dams, suspension bridges, closed conduits, tunnels, shell 

structures and even parts and / or bodies of aircraft, submarines, space ships and similar 

mechanical systems. However, in the analysis of the shell structure and similar problems where 

the cross-sectional effects may show non-local alterations, the Finite Element Method has 

problems with the above-mentioned limitations, the inevitable changes in the geometry due to the 

complexity of the problem, a large number of alternative model analysis is required; therefore, the 

method is not practical. According to the Finite Element formulation; the criteria that must be 

satisfied in terms of the aspect ratio corner angles, the member connectivity, in relation to the 

element geometry in the finite element types often result in an increase in the number of elements 

and nodal point and consistently the degree of freedom. Since these conditions are not satisfied 

time to time; it is possible to cause some errors such as run-time, syntax and round off. If not 

checked, the system stiffness matrix and the errors that occur during the solution of the equations 

result in distortion of the matrices or equations and very incorrect analysis results may be 

obtained. In civil engineering problems, especially for building type structures, analysis is carried 

out for different loading and load combinations by keeping data such as system geometry, cross-

section and material properties, boundary conditions and external loads constant. Even only for 

the optimization of the cross-section geometry, a large number of model changes are involved. On 

the other hand, in systems where precise solution methods are inevitable, analyses of different 

boundary conditions and different geometric details are often important. Additionally, even 

modification of the points and/or areas of load application, requires the preparation of a large 

number of different computer models. One of the engineering fields of study, in which 

aforementioned problems are frequently encountered, is the shell structures. 

Axially symmetric shell structures consist of combinations of structural components such as 

spherical parabolic or partial spherical dome, axially symmetrical wall, circular beam at the top 

and/or bottom of the wall, or circular plate. In particular, reinforced concrete shell structures, 

which can be exposed to loads such as water pressure inside, are preferred not to be exposed to 

tensile stresses in order to ensure their structural safety and prevent water leakage. The system 

should be under compression for all types of load and load combinations. It is considered 

appropriate to apply post tensioning to keep the system under constant compression, to reduce the 

possible tensile stresses in the system, or even to convert them to reasonable compression stresses 

if necessary. It is a preferred method to apply points of load application, load sizes, generally 

staggered load application system, gradual load applications according to friction losses, and 

application of horizontal and vertical tension loads determined by detailed analyses. However, 

even optimization of the locations of horizontal post tensioning cables requires the preparation of 

multiple (sometimes hundreds) different mathematical models. Cross-sectional distributions may 

show non-local changes [1]. On the other hand, the principal cross-sectional forces, that constitute 

the basis for calculations, can be reduced by utilizing the eccentric settlements at the connections 

of the structural components or the stiffness distribution at the boundary conditions for the 

optimum design. This necessity also requires the preparation of additional mathematical models. 

All these studies cannot be done practically with the Finite Element Method. Moreover, often the 

problem is not analysed in the desired detail due to the limitations mentioned before. Minimizing 
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the number of unknowns of the problem by reducing, increases the risk of sudden and non-local 

stress distributions. For this and similar reasons, analysis methods formulated with the classical 

shell theory, are suggested as very practica l and more accurate alternative methods for the 

analysis of shell structures. Practical methods are also reminded and presented for the dynamic 

interaction with the structure and the fluid in it. 

Öztorun and Utku [2], suggested an analytical solution that uses the superposition method in 

the analysis of axially symmetric cylindrical walls. In their studies, water tanks consisting of 

structural members as dome, circumferential beam and cylindrical wall, were analysed using 

flexibility method. Analysed water reservoirs were built in Saudi Arabia [1, 3-5]. Öztorun et al. in 

another study [6], they performed cylindrical wall analyses using five moment equations. 

In this study, computer programs "ESKA-2" and "ESKA-4" (Axisymmetric Shell Analysis), 

formulated on the classical shell structure theory and developed within the scope of the study, are 

introduced. An example of axially symmetric shell structure is analysed by means of these 

programs. Later, the results obtained from analyses on "ESKA-2", "ESKA-4" programs for this 

axially symmetric shell structure are compared with the results of same axially symmetric shell 

structure analysed by using Finite Element Method. Subsequently, the advantages of classical 

shell structure theory over Finite Element Method are discussed. 

 

2. MATERIALS AND METHODS 

 

 2.1. Field Equations and Formulation 

 

For the Shell that provides long wall criteria, in the analysis carried out by the Billington 

method [7], the general displacement expression (2.1) of a cylindrical wall is defined by equation 

[8]. 
 

pw

wr

wtwE

dy

wd
wD 




24

4
                                                                                                    (2.1) 

 

In equation (2.1) terms are given as Dw, bending stiffness of the wall, tw, wall thickness, rw, 

average radius of the wall, Ew, elasticity of the wall, w linear displacement and p radial 

compression. 

By using 

wDwr

wtwE

.
2

.4

.4   notation in the equation (2.1), it becomes as eq. (2.2) 

 

wD

zp

dy

wd
 44

4

4
                                                                                                                 (2.2) 

 

This obtained expression is the same as the equation (2.3) obtained for a prismatic bar with a 

bending stiffness Dw, which is subjected to a load pz and placed on continuous elastic foundation. 
 

zpkw
dy

wd
EI 

4

4
                                                                                                                (2.3) 

 

In this equation, 
4

4

dy

wd
EI  is the bending rigidity of the beam, kw is the reaction is the 

foundation stiffness. When both equations are examined together k is equal to Ewtw/rw
2. This term 

can be named as equivalent foundation modulus of the cylindrical wall. 
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The general solution of this equation; 
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Particular solution f(y) based on the load in the equation above, is composed of membrane 

solution
wtwE

wrzp
w






2

. 

In the formula above; C1, C2, C3, C4 are constants of integration depending on the boundary 

conditions of the cylinder wall. They correspond to linear and angular displacements because of 

shear force at the top and bottom of the wall Q0 and bending moment M0. Since each of these 

axially symmetrical loads is self-balancing, according to the Saint-Venant principle, it is possible 

to draw conclusion that effects of these forces will remain in areas close to the sides. If the 

cylinder wall is long (high) enough so that the effect of the forces Q0 and M0 can be neglected at 

the other end, both ends of the wall can be analysed independently of each other. On the other 

hand, it can be clearly seen that eβy increases with y. Because of this reason, even if C1 and C2 are 

not zero, the effect will be dampened and will approach zero. Under the circumstances, the 

constants can be taken as zero and the function can be solved within practical limits. In this case, 

the formula becomes, 
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In the equation (2.6), since f(y) is not taken into account, only the effects of the end forces can 

be calculated. 
 

yM

y
dy

wd
wDXM 































0
2

2
.20                                                                                  (2.7) 

 

yQ

y
dy

wd
wDXQ 































0
3

3
.10                                                                                        (2.8) 

 

    yyCyyC
y

e
dy

dw



 sincos4sincos3 


                                                  (2.9) 

 

 yCyC
y

e
dy

dw



 cos4sin3

22
2

2



                                                                   (2.10) 

 

    yyCyyC
y

e
dy

wd



 sincos4sincos3.32

3

3



                                             (2.11) 

 

can be obtained. In the general method developed by Öztorun and Utku for long and short 

wall analyses [5], H is on the point of being the height of the wall, 
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By this formula for unknown forces at the points where y= 0 and y= H, the first coefficient 

matrix [KM1] with dimensions 4x4 which includes solutions of the unknowns X1, X2, X3, X4 can 

be obtained. {C} is the vector that includes the integral constants related to the boundary 

conditions of the cylinder wall. 
 

     CKMwX 1                                                                                                                      (2.12) 
 

Following the same path, the cylinder displacements (angular and linear displacements) can 

be written as, 
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When the coefficients of the above equations are written in matrix form, a matrix of 4x4 

dimensions is obtained. This second coefficient matrix in dimensions 4x4 is named as [KM2].  

Displacement vector {D}, 
 

    CKMD 2                                                                                                                      (2.13) 
 

With the equation (2.13), 
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can be written. Flexibility matrix [Fw], in dimensions 4x4 and which belongs to the wall, can 

be obtained by using (2.12) and (2.13). 
 

1]1[]2[][  KMKMwF                                                                                                         (2.14) 
 

Similarly, the 1, 2, 3 and 4 terms of the unknowns, obtained by multiplying the inverse of the 

flexibility matrix and the displacement vector, are the unknowns of the wall. 
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3.RESULTS 

 

The present study is continuation of ref. [9] where the modelling details of the analysed 

axially symmetric shell structure is given. 
 

• Wall height: 20 m 

• Liquid height: 20 m 

• Liquid specific weight: 1.0 tonf/m3 

• Wall thickness: 0.65 m 

• Radius to the centre of the wall thickness: 50 m 

• Material elasticity module: 2.5x106 tonf/m2 

• Poisson ratio: 0.2 

• Spherical dome thickness: 0.25 m 

• Dome radius: 86.02325 m 

• Dome horizontal radius (to the middle of the wall  

thickness): 50.0 m 

• Uniformly distributed load over dome: 0.625 tonf/m2 
 

Definitions of SAP-A, B, C, D groups are given in the previous study [9]. Results of ESKA-2 

and ESKA-4 compared to SAP 2000 [10] are given in the Figures 1.a and 1.b. The graphics relate 

to the strain in the radial direction and the moment distribution along the wall height of the axi-

symmetrical cylindrical wall. In accordance with the formulation of the classical shell theory and 

sign convention, the values of the system in the direction of the negative horizontal axis (-y 

direction or left side) are presented. 

According to the classical shell theory (the flexibility method) unknowns are forces and the 

number of equations is defined by the degree of unknowns (the degree of indeterminacy). These 

values are maximum 2 for ESKA-2 and 4 for ESKA-4 for existing structural members. 

Displacements are obtained by retrospective solution. In the Finite Element Method, the number 

of unknowns is defined by the degree of freedom. In the analysis of shell structures with Finite 

Element Method (stiffness method), generally the "shell" element type is used. In this three-

dimensional element type formulation, there are 5 degrees of freedom at each node (the sixth 

degree of freedom is still a research topic and can only be partially incorporated into the 

formulation with some approaches). In this case, 5 unknowns are considered at each nodal point. 

It is possible to reduce this number due to boundary conditions in nodal points. However, it can 

be said that the numeral of unknowns may reach the number approximately 60000. After the 

solution of the unknowns, nodal point displacements are obtained and cross-section forces are 

calculated with retrospective solution. 

The geometry of the example problem is chosen to push the limits of the long wall criteria 

(H≥π/β). It is nearly in the short wall range, which increase the risk of making mistakes for the 

computer program ESKA-2. Despite these values, the ESKA-2 program gives almost the same 

results as the ESKA-4 program. Extremely small differences are values that are not essential to be 

taken into account. The results of both programs are highly successful. Compared to the Finite 

Element Method, the same success can only be achieved in the model, which is prepared in detail 

to push the limits of the computer and the software. Deviations in analysis results of the Finite 

Element (SAP-A, B, C, D) are more evident in Figure 1.b. Errors in the displacement calculations 

may cause much larger mistakes in the cross sectional force distribution obtained with the 

retrospective solution. 
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    a. Displacement of the wall in radial direction   b. Moment distribution along the wall height 

 

Figure 1. Comparison between results of ESKA-2, ESKA-4 and analysis with Finite Element 

Method (SAP 2000) 

 

4. CONCLUSIONS 

 

Two computer programs, named as "ESKA-2" and "ESKA-4" (Axisymmetric Shell Analysis), 

have been developed within the scope of this study. ESKA-2 is developed for the analysis of 

systems with a high wall where the analysis of the axial symmetric wall with two integral 

constants is suitable. ESKA-4 is formulated with four integral constants and gives accurate results 

regardless of the wall height. 

By employing these programs, model modifications can be made in an extremely practical 

way as compared to the Finite Element Method. With other existent ready-to-use general purpose 

software, that make use of finite element method, direct analysis results at the desired point can 

only be obtained if there is a defined nodal point in the structural member at that particular point. 

Apart from that, by using ESKA-2 and ESKA-4; load and load combinations, boundary 

conditions and other parameters can be easily modified. Another advantage of these programs is 

that more detailed and accurate analysis results can be obtained with ESKA-2 and ESKA-4 than 

the Finite Element Method, which can only analyse with a limited number of unknowns due to the 

finite capacity of computers. As can be seen, ESKA-2 and ESKA-4 give almost the same results 

although the geometry of the example problem is chosen to invoke and test the limits of the long 

wall criteria. On the other hand, different results, for the analysis of the same axially shell 

structure with Finite Element Method, may be obtained depending on different modelling 

techniques. It is worth-mentioning that the results obtained in this case are the values at the centre 

of gravity of the finite element part containing the point of interest. For this reason, in the analysis 

with ready-to-use general purpose finite element software, it is necessary to model the system 
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with more number of finite elements in order to be able to obtain the results at a certain point or 

for results to be more precise. However, the number of finite elements, that can be defined, 

depends on the computer programs and the technical capacity of the computer to be used. If the 

number of defined end elements increases; it becomes a time-consuming job with the increase in 

the transaction volume at the stages of generation of model, analysis and interpretation of results. 

Nevertheless, it is very practical to define the structural members with the developed programs 

ESKA-2 and ESKA-4 to obtain the desired analysis results at any defined point in a short period 

of time. 

 

Acknowledgements  
 

This work was supported by Scientific Research Projects Coordination Unit of Istanbul 

University. Project number, 38301. 

 

REFERENCES 
 

[1]  Öztorun, N.K., Eksenel simetrik ve ard çekme yükleri altında su depolarının inşaatı, 

TMMOB İnşaat Mühendisleri Odası XV. Teknik Kongresi, Ankara, November 1999, 27-

42. 

[2] Öztorun, N.K., Utku, M., Çıtıpıtıoğlu, E., Silindirik Su Tanklarının Klasik Kabuk 

Teorisini Kullanarak Bilgisayarlarla Analizi, VIII. Ulusal Mekanik Kongresi, Antalya, 

September 1993 510-523, 1993. 

[3] Öztorun, N.K., Utku, M., Çıtıpıtıoğlu, E., Dairesel plaklı silindirik su tankları, IX. Ulusal 

Mekanik Kongresi, Antalya, September 1995 571-580. 

[4] Öztorun, N.K., Utku, M., Ard Çekme Yükleri Altında Betonarme Su Depoları. Yapı 

Dünyası Aylık Mesleki Bilim Teknik ve Haber Dergisi, October 2001, S:67 ISSN 1300-

977X. 

[5] Öztorun, N.K., Utku, M., Computer aided design of post – tensioned concrete reservoirs, 

Computers & Structures, vol. 80 (2002), pp. 2195-2207. doi:10.1016/s0045-

7949(02)00244-4. 

[6] Öztorun, N.K., Altın, S., Anıl, Ö., Eksenel Simetrik Silindirik Duvarların Beş Moment 

Denklemi ile Analizi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 11(2), 

1996, 55-72. 

[7] Billington, D.P., Betonarme kabuk yapılar (Çeviren; Karataş, H., Pultar, M.), Çağlayan 

Press, Istanbul, 1975. 

[8] Timoshenko, S.P., Woinowsky-Krieger, S., Theory of plates and shells 2nd edition, 

McGraw-Hill, New York, 1984. 

[9] Öztorun, E., Damcı, E., Öztorun, N.K., Eksenel Simetrik Yapıların Sonlu Elemanlar İle 

Analizinde Model Hazırlama Teknikleri, Yapı Dünyası Aylık Mesleki Bilim Teknik ve 

Haber Dergisi, vol 218-219, 2014, pp. 17-22; ISSN 1300-977X. 

[10] SAP2000 Structural Analysis Program Computers and Structures, Inc. Linear and 

Nonlinear Static and Dynamic Analysis and Design of Three-Dimensional Structures. 

E. Öztorun, E. Damcı, N.K. Öztorun  / Sigma J Eng & Nat Sci 9 (2), 235-242, 2018 


