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ABSTRACT 

 

Within a hydroelastic perspective and through a higher-order implementation, the performance of extended 

boundary integral equation method (EBIEM) for the removal of irregular frequencies that are inherent to the 

wave Green function based boundary element solution of the frequency domain wave-body interaction 

problems is investigated. The fundamental idea of the EBIEM is extending the computational domain by the 

assumed internal free surface, which is covered by a rigid lid to suppress the non-physical internal fluid 

motion. The EBIEM is expected to suppress the irregular frequencies completely, though higher-order 

applications often require a problem dependent analysis for an elimination through a wide frequency range. 

By focusing on the mesh fineness and element order and selecting two different surface piercing structuresa 

cylinder and a large floating platesome general conclusions are drawn. 

Keywords: Hydroelasticity, extended boundary element method, irregular frequency. 

 

 

1. INTRODUCTION 

 

Hydroelastic analysis of floating structures involves computation of the fluid loads imposed 

by the surrounding sea environment. Provided that the potential flow model is adopted for 

describing the fluid motion, the fluid actions can be related with two fundamental components: 

the radiation potential that describes the perturbations in the fluid domain prescribed by the 

structural motions and the diffraction component representing the incident and then scattered 

waves due to the presence of the structure. If the related boundary value problemsi.e., the 

radiation and diffraction problemsare transformed to boundary integral equations defined over 

the fluid-structure interface by using the wave Green function and discretely solved by the 

boundary element method (BEM), then the numerical solution crashes at specific frequencies, 
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which correspond to the eigenvalues of the non-physical Dirichlet type problem of internal fluid 

motion, as first pointed by John [1]. This ‘irregular frequency’ effect results from the fact that the 

wave Green function satisfies the free surface boundary condition over the whole theoretical free 

surfaceinside and outside of the floating bodyeven if there is no real fluid inside. The numerical 

consequence is that the coefficient matrix of the resulting linear system becomes ill-conditioned 

near each irregular frequency, consequently generating rather erroneous potential distributions 

within the associated frequency bandwidth. The bandwidths can be reduced, but not eliminated, 

by using finer meshes, but considering that the irregular frequencies get closer with increasing 

frequency and their geometry dependent locations cannot be predicted, the practical advantage is 

limited compared to the computational cost. 

Two main approaches that are applied for suppressing the irregular frequencies in wave-body 

interaction problems are modifying either the integral formulation or the integral domain. 

Considering that the BEM solution of acoustic radiation problem suffers from the same non-

uniqueness problem at certain frequencies, it is not surprising that some of the ideas of acoustics 

(e.g., Burton and Miller method [2], CHIEF method [3]) are transformed to the field. Kleinman 

[4] and Lee and Sclavounos [5] combined the fundamental boundary integral equation (BIE) with 

its normal derivative with respect to the field point (normal BIE). Both BIEs can independently 

solve the radiation and diffraction problems; the irregular frequencies, however, coincide with the 

eigenvalues of the interior problem of Dirichlet type for the fundamental BIE and of Neumann 

type for the normal BIE. By coupling the equations with a complex constant, it is found that the 

irregular frequencies can be completely removed, meaning that no solution exists for the mixed 

boundary condition if the same constant is used for proportion. The downside of the technique is 

that the normal BIE introduces computationally involved hypersingular boundary integrals, which 

also increases the condition number of the discretized system compared to the main BIE along the 

entire frequency range, except the irregular frequency regions. Lau and Hearn [6] imposed the 

constraint that the potential has zero values at certain internal free surface points to achieve a 

unique solution. Special care must be taken, however, when selecting the interior points; they 

should not coincide with the nodes of the eigenmodes associated with internal fluid motion. 

Liapis [7] supplemented the original boundary integral equation with a set of moment-like 

equations known as the null-field equations. The result is an overdetermined system, which is 

solved by a least square technique. The extra computational effort is shown to be limited, 

especially for high frequency range and for bodies having one or two symmetry planes. 

Considering that the irregular frequencies are associated with the sloshing of the imaginary 

internal flow, the artificial response can be suppressed by placing a rigid cover over the internal 

free surface. Ohmatsu [8] demonstrated the idea for the two-dimensional case, and Lee et al [9] 

proposed an extended boundary integral equation method (EBIEM) as a general low order 

removal technique by including the internal free surface into the computation domain and 

applying the rigid wall boundary condition over it. The method may suffer from the increased 

number of degrees of freedom due to the additional boundary surface and also the condition 

number generally become an order of magnitude larger compared to the unmodified integral 

equation. Some of the computational aspects of the EBIEM is lately studied by Liu and Falzarano 

[10].  

The objective of the present study is investigating the performance of the EBIEM for the 

removal of irregular frequencies within a hydroelastic perspective and through a higher-order 

BEM implementation. The choice of EBIEM here is mostly related with its straightforward 

integration to the classical BEM solution of the wave-body interaction problem.  The EBIEM is 

expected to suppress the irregular frequencies completely, though higher-order applications often 

require a problem dependent analysis for an elimination through a wide frequency range. Reaching 

out to higher frequencies for analysis, where the disruptive effect of irregular frequencies on 

solution becomes more severe, might be seen unimportant for routine seakeeping computations 

that involves the interaction of waves and rigid body motions, but as the flexibility of the structure 
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increases, the insignificant may become inevitable. Moreover, time domain analysis of ship 

motions frequently relies on the use of relevant data obtained from the frequency domain analysis 

instead of the direct solution of the BIE in the time domain; the components of impulse response 

function and time domain excitation forces are related to their frequency dependent counterparts 

through the Fourier transform that the accuracy of the frequency domain results over the relevant 

frequency interval becomes critical. In the study, the focus will be on the effect of internal free 

surface discretization, in terms of mesh fineness and element order, on regularization of the 

radiation and wave excitation forcesthe major indicators of pollution about irregular 

frequenciesespecially at higher frequencies. Two free surface piercing structures are selected for 

the analysis: the cylinder serves mostly as a benchmark, to compare the predictions and to 

demonstrate the effectiveness of the EBIEM for a standard application; the large floating plate, 

which displays strong influence within a wide frequency band, is the actual case for testing the 

capacity of the method for hydroelastic behavior.  

 

2. FREQUENCY DOMAIN HYDROELASTIC ANALYSIS 

 

2.1. Dynamic response of the floating structure 

 

The equation of motion of a floating structure can be given in the discretized form as, 
 

( ) ( ) ( ) ( )t t t tMq Cq + Kq = f                                                                                                         (1) 
 

Here, M, C, and K represent the mass, structural damping and stiffness matrices, respectively, 

q stands for the generalized displacements, which includes both the translational and rotational 

degrees of freedom, f is the vector of external forces, and t denotes time. 

The undamped free vibration of the structure is defined as the response in the absence of damping 

and external effects, and can be described by substituting the solution ni te q u  in Eq. (1): 
 

2( ) 0n  M K u                                                                                                                           (2) 
 

Solution of the eigenvalue problem (2) gives the dynamic characteristics, i.e., natural 

frequencies, nand corresponding normal modes, u, of the structure.  

The dynamic response of the floating structure can be given as the combination of responses 

in its normal modes: 
 

1

( ) ( ) ( )
mn

i i

i

t p t t


 q u Up                                                                                                                  (3) 

 

Here, the modal matrix 1 ..... mn
   U u u describes the nm-dimensional modal space that 

consists of the considered normal modes, and p(t) is the principle coordinate vector as the 

coordinates of the response in the modal space, also representing the participation of individual 

modes in the overall response; nm indicates the total number of modes taken into account in the 

series expansion. The modal matrix includes both the rigid body modes and elastic modes, in 

general. 

By using definition (3) in Eq. (1) and pre-multiplying by U
T, the generalized equation of 

motion of the floating structure is obtained as, 
 

( ) ( ) ( ) ( )t t t t  Mp Cp Kp f                                                                                                         (4) 
 

Here,
T T T, ,  M U MU C U CU K U KU are the generalized matrices of mass, damping, and 

stifness, respectively, and 
Tf U f  is the generalized external force, involving the forces of fluid-

structure interaction and wave excitation, and all other external effects. 
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2.2. Wave-structure interaction problem 
 

The viscosity of the fluid gains importance in the thin boundary layer around the floating 

body and at regions where the flow is considerably separated. Thus, the fluid surrounding the 

structure can be assumed ideal, i.e. inviscid and incompressible, and its motion is irrotational, so 

that the fluid velocity vector, v, can be taken as the gradient of a velocity potential function Φ as 

( , ) ( , ),t tv x x where x = (x, y, z)T denotes the position vector. From the continuity condition, 

Φ satisfies the Laplace equation, 
2 0,   throughout the fluid domain. Within a linear 

framework, which requires the fluid reactions are of the first order, the total potential function Φ 

can be decomposed into wave diffraction and radiation components that are related with the 

incoming free surface waves and fluid-structure interaction, respectively: 
 

( , ) ( , ) ( , )D Rt t t   x x x                                                                                                             (5) 
 

The radiation potential,R, represents the effects due to the oscillating body in the absence of 

incident waves; the diffraction potential,D, represents the incident wave system and its 

modification because of the floating body, which is assumed in a fixed position. D can be further 

decomposed as D=I+S, withI andS indicating the incident wave potential and scattering 

wave potential that represents the disturbed wave field due to the presence of the body. I for unit 

amplitude of regular oblique wave propagating in deep water can be given by 
 

 ( cos sin )
( , ) .

i k x y tkz

I

ig
t e e

  




  
x                                                                                                  (6) 

 

Here,  and k are the wave frequency and wave number, respectively,  is the incident angle 

with respect to x-axis, and g is the gravitational acceleration.  and k are related with the 

dispersion relation, 2 ,k g due to the free surface boundary condition  2

I Iz g      

imposed on the fluid free surface, Sf: 

A modal expansion similar to Eq. (3), that is used for the structural response, can be adopted 

for the radiation potential, by proposing a series of potential components corresponding to each 

considered normal mode: 
 

1

( , ) ( ) ( )
mn

R i i

i

t p t 


x x                                                                                                                   (7) 

 

Here,i is the radiation potential associated with the ith normal mode; if the body is enforced 

to oscillate in the ith mode, rigid or elastic, with unit amplitude in otherwise calm water, then the 

resulting fluid motion will be represented by i. 

The kinematic boundary condition for the velocity potential states the equality of the fluid and 

body normal velocities over the fluid-body interface, i.e., the wetted surface of the floating 

structure, Sw. Considering Eqs. (3) and (7), for the harmonic motion of the structure experiencing 

regular waves of frequency , the kinematic boundary condition can be given for the radiation 

potential by 
 

( 1 3)i in i n i                                                                                                                      (8) 
 

 
3

( 4 6)i i
n i i 


     r n                                                                                                  (9) 

 

for the components related with the rigid body modes, and by 
 

 6i inn i u i    
                                                                                                                 

(10) 
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for the components related with the elastic modes. Here, i is from the harmonic time 

dependence, n is the unit normal vector on Sw pointing out of the fluid domain, r is the position 

vector, and uin denotes the displacement of the structure along n for the elastic modes, with the 

first one corresponding to i = 7, second to i = 8, and so on. For the diffraction potential D, the 

body is taken in a fixed position so that the kinematic boundary condition on Sw becomes 
 

  0 onD I S wn n S                                                                                                 (11) 
 

i and S satisfy also the free surface boundary condition on Sf: 
 

    2, / , oni S i S fz g S                                                                                         (12) 
 

The fluid perturbations except the incident waves radiate away from the body. For the infinite 

fluid domain, the additional radiation condition states that the effects of the body on fluid domain 

will diminish and ensures a unique solution of the problem [11]. Since water is taken deep, no 

bottom condition is imposed here. 

 

2.3. Boundary element solution of the potential problem 
 

The boundary value problem for the radiation and diffraction potentials, defined by the 

Laplace equation and boundary conditions (8)-(12), can be expressed by a BIE over the wetted 

surface of the structure, by adopting the wave Green function as the fundamental solution: 
 

, ,( ) ( ) ( ) ( , ) ( ) ( , )

w w

n n

S S

c G da G da    ξ ξ x x ξ x x ξ

                                                               

      (13) 

 

Here,  represents R and D, G(x, is the free surface Green function, ξ = (T and x 

denote the source and field points of the Green function on Sw, respectively, and ( ),n= ∂( )/∂n  

indicates flux. The free term c() is due to the singular nature of G,n; it identifies the fraction of 

() that lies inside the fluid domain. For a three-dimensional homogenous field, the Green 

function can be given by  
 

 0 0 0

1 1
4 2 ( , ) 2 ( ) ( ) vG fN h v f E h iJ h e

r r
     


                                                               (14) 

 

Here, r is the distance between the field and source points, r’ is the distance between the field 

point and free-surface image of the source point, f=Lg is the non-dimensional frequency 

parameter with L characterizing the length of the radiating and diffracting body, h and v represent 

the horizontal components of r and vertical component of ,r respectively, J0 is the Bessel 

function of the first kind and zeroth order, and E0 is the Weber function. In Eq. (14), N0 represents 

the non-oscillatory local flow disturbance and the last term represents the circular surface waves 

radiating away from the source point  [12]. Since Eq. (14) satisfies the free surface boundary 

condition and radiation condition implicitly, Eq. (13) is defined over Sw, instead of the total fluid 

boundary surface, comprising Sw, Sf, and S∞, the control surface considered at infinity. 

For the numerical solution of Eq. (13), Sw is discretized as a collection of surface boundary 

elements, over which the potential function and flux distributions are approximated using the 

shape functions and related nodal values. For the ith boundary element, the corresponding 

representations,i and , ,i

n are given as 
 

, ,

1 1

( , ) , ( ) ( , ),
i in n

i i

ij j n n ij j

j j

N s t N s t   
 

                                                                               (15) 
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where ni is the number of nodal points assigned to the element, ij and (,n)ij respectively 

represent the potential and flux values at jth node of the element, and Nj denotes the associated 

shape function, with s, t indicating the local coordinates. 

By consecutively taking the nodal points of the discretization as the source point for Eq. (13)

and using the definitions (15), the potential distributions over the wetted surface of the floating 

structure can be expressed by the following set of algebraic equations: 
 

, ,

1 1 1 1

( ) 1,...,
e i e i

i i

n n n n

k k ij j n n ij j n

i j i jS S

c N G da N Gda k n  
   

                                                 (16) 

 

Here, nn and ne are the total numbers of nodes and boundary elements used in the 

discretization, respectively, Si is the area of the ith boundary element, and k denotes the potential 

of the kth nodal point. After completing the surface integrations and considering the radiation 

potential components by applying appropriate kinematical boundary condition for n, depending 

on the associated mode shape, the resulting system of equations for the radiation potential can be 

given as 
 

     1 1..... .....
m mn ni  H Φ Φ G w w                                                                                    (17) 

 

i is the vector of nodal potentials here and wi represents the right hand sides in Eqs. (8)-(10), 

i.e., stands for uin for elastic modes. G and H represent the frequency dependent, complex valued 

surface integrals involving the wave Green function and its flux; their components represent the 

boundary element interactions between nodes. The resulting i distributions can be obtained from 

the solution of Eq. (17). 

A similar solution course can be followed for the diffraction potential by enforcing the 

condition , ,S n I n    on Sw from Eq. (11). By applying the Haskind relations [11], however, the 

diffraction problem is avoided in this study and the related wave excitation forces are directly 

calculated by using the radiation potential solution. 

 

2.4. The extended boundary integral equation formulation 

 
When the wave Green function is used as the fundamental solution of the boundary integral 

equation (13), as in this study, the solution becomes non-unique at certain frequencies, which 

correspond to the eigenfrequencies of the non-physical Dirichlet-type problem of internal fluid 

sloshing. For eliminating the irregular frequencies, an extended boundary integral equation 

method [9] is adopted in this study. The fundamental idea of the method is extending the 

computational domain by the assumed internal free surface, over which the fluid motion is 

suppressed, i.e., covered with a rigid lid. Accordingly, Eq. (17) can be rewritten for the radiation 

potential component i as 
 

b bbb bf bb bf

i i

f ffb ff fb ff

i i

i
      

      
      

Φ wH H G G

Φ wH H G G
                                                                                  (18) 

 

Here, H and G matrices as well as  and w vectors are decomposed into body and internal 

free surface related parts, where superscripts b and f refer to the body and free surface 

associations, respectively; e.g., b contains the potential values over Sw, whereas H
bf is 

constructed by taking the source points as the body nodes and field points as the free surface 

nodes in boundary element expressions. The unmodified system composed of the matrices with 

the bb attachment, so that the computational load seems to rise significantly. However, since they 

are related with the rigid wall condition imposed over the free surface, the sub matrices Gff and 

G
bf are avoided in practice, and the number of free surface nodes are expected to be smaller than 

the number of wetted surface nodes, which together result a limited overload, in general. The 
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solution of Eq. (18) for i will return the potential distribution over Sw free from the irregular 

frequency effects. 

 

2.5. Generalized hydrodynamic forces 

 
By neglecting the second-order terms and hydrostatic component in the Bernoulli’s equation, 

the dynamic fluid pressure, P, can be given as ,f tP    . Using the potential decomposition, 

we can write 
 

 
1

,
mn

i t

f I S i i

i

P i p e     


 
    

 


                                                            

                         (19) 

 

where f is the fluid density, is the incident wave amplitude, and multiplication by i is due 

to the harmonic time dependence. The hydrodynamic force acting on the structure is defined by 

integrating the fluid pressure (19) over Sw and its amplitude is given by 
 

 
1

m

w w

n

f I S f i i

iS S

i da i p da    


    f n n                                                                      (20) 

 

The first term is due to the diffraction problem and represents the wave excitation forces, in 

proportion to the wave amplitude; the second term is related with the radiation problem and it 

defines the radiation force, also known as the fluid-structure interaction force since it results from 

the interaction through the kinematic boundary condition. 

Using the definition of generalized force, given in Section 2.1, and substituting the radiation 

potential distribution obtained from Eq. (17) into Eq. (20), the generalized radiation force can be 

expressed as 
 

 2( ) ( ) ( ) ,i     f A B p                                                                                                      (21) 
 

where A and B are the generalized matrices of added-mass and hydrodynamic damping, 

respectively, with the components 
 

   1 1Re , Im

w w

ij f i j ij f i j

S S

A da B da      w H G w w H G w                                             (22) 

 

By using the Haskind relations, the generalized wave excitation force, fw, can be directly 

obtained in terms of incident and radiation potential distributions without using the scattering 

potential field. The ith component can be written as 
 

 , ,

w

wi f I i n I n i

S

f da                                                                                                     (23) 

 

and using Eq. (17) becomes 
 

 1

,

w

wi f I I n i

S

f i da    Φ Φ H G w                                                                                         (24) 

 

By substituting the generalized wave radiation and excitation forces from Eqs. (21), and (24), 

the generalized equation of motion, Eq. (4), of the floating structure that is subjected to regular 

waves becomes 
 

  2 ( ) ( ) ( )wi        M A B K p f                                                                             (25) 
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Here, the structural damping and the restoring force due to hydrostatic pressure is neglected. 

The dynamic response of the structure can be obtained by using the principal coordinate vector 

obtained from the solution of Eq. (25) in the modal expansion (3), for each wave frequency. 

 

3. NUMERICAL APPLICATIONS 

 

To study the performance of the EBIEM for eliminating the irregular frequencies that are 

inherent to the BEM solution of wave-structure interaction problems and also investigate the 

effect of participating factors within the process, two free-floating surface piercing structures are 

selected for application: a cylinder, which is essentially used to verify the analysis method, and a 

large floating plate that significantly challenges the suppression procedure, especially at high 

frequencies. The discussion mainly encloses the effect of discretization regarding the wetted body 

and internal free surfaces, in terms of mesh fineness and element order, on regularizing the 

hydrodynamic forces. For the purpose of comparison and assessment, the radiation and wave 

excitation forces associated with the rigid body modes (for the cylinder) and elastic modes (for 

the plate) are used. The higher-order BEM implementation is conducted through four-noded 

linear and eight-noded quadratic isoparametric elements. The wetted surface is discretized using 

only linear elements; the internal surface is discretized using both linear and quadratic elements. 

Adopted idealizations, referred to as models, are identified by the number of elements distributed 

over the wetted surface and internal free surface, which are identified as NE and NEF, 

respectively. 

 

 
 

Figure 1. Generalized added mass coefficients of the cylinder due to the motions  

(a) surge, (b) heave, (c) pitch 
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Figure 2. Generalized hydrodynamic damping coefficients of the cylinder due to the motions  

(a) surge, (b) heave, (c) pitch 

 

The studied floating cylinder has 1 m radius and 1 m draught and the fluid density is taken as 

1000 kg/m3. Four relatively coarser models are used to display the convergence of the results and 

also to demonstrate the efficiency of the EBIEM when only a few irregular frequencies are 

observed with weak disruptive effects, at least for some of the principal indicators. These models, 

identified as (NE, NEF), are (20, 12), (36, 20), (81, 45), and (105, 57). A fine model comprising 

dense meshes are additionally adopted to present the converged BEM results. 

The predictions for the diagonal components of the generalized added mass and 

hydrodynamic damping matrices that are associated with the surge, heave and pitch motions of 

the cylinder are presented in Figs. 1 and 2, respectively, and compared with the numerical results 

of [13]. The smooth convergence attained with better models and close agreement between the 

converged results and reference values are apparent for all force components, even though the 

pitch related components converge slower than others. Focusing on the irregular frequencies, the 

effects are more noticeable for surge and heave motions and also for hydrodynamic damping 

coefficients. The first model clearly suffers from the effects after  = 6 rad/s. By slightly refining 

the model, the effects are quite reduced and the first observed irregular frequency is postponed to 

after  = 9 rad/s. After two similar refinements, the irregular frequencies are completely 

eliminated all along the studied frequency interval. They persist to exist, however, for higher 

frequencies (not shown here), and keep polluting the results within contained regions. The 

generalized wave excitation forces due to surge, heave and pitch motions of the cylinder, given in 

Fig. 3, exhibits the same behavior, but more explicitly. Similar to the radiation forces, finer 

models lead to better performance of the EBIEM for reducing the irregular frequency effects, but 

even the fourth model is far from a sufficient regularization. The converged solution, however, 

fairly agrees with the results of [13] and only a slight trace of irregularity exists at high 

frequencies. 
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Figure 3. Generalized wave excitation forces of the cylinder due to the motions 

(a) surge, (b) heave, (c) pitch 

 

The second set of computations is related with the elastic motions of a large floating plate. 

With its very small thickness, hence draught, the influence of the free surface effects on dynamic 

behavior will be large, so that the presence of irregular frequencies and their effects on results are 

expected to be strong, leading to a more compelling test for the EBIEM. The geometric and 

material properties of the plate are given in Table 1. The surrounding fluid is fresh water of 1025 

kg/m3 density. The wave radiation and excitation forces due to the first six modes of the plate are 

presented; corresponding mode shapes, each associated with vertical bending (VB), horizontal 

bending (HB), or torsion (T), can be seen in Fig. 4. Three different discretization of wetted 

surface and internal free surface are used for the analysis with NE values of 756, 1168, 1660, and 

2232, and NEF values of 360, 640, and 1000. Unlike the cylinder problem, where the linear free 

surface elements provide sufficient suppression at the end, both linear and quadratic free surface 

elements are adopted in this case. The diagonal components of the generalized added mass and 

hydrodynamic damping forces, and the components of the generalized wave excitation force are 

presented. 

 

 
 

Figure 4. First six elastic mode shapes of the floating plate 
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Table 1. Geometric and structural properties of the floating plate 
 

Length 100 m 

Breadth  10 m 

Height 2 m 

Draught  1 m 

Mass 1025 ton 

Elastic Modulus 15 GPa 

Poisson’s Ratio 0.3 

 

In Fig. 5, the generalized added mass coefficients that are obtained using the model (756, 640) 

and by adopting both linear (L) and quadratic (Q) free surface elements are given for the first, 

second, and fourth modes. Up to  = 4 rad/s, two group of results nicely agree, after which the 

irregular frequencies appear, ruining all predictions. Quadratic results, however, are less affected, 

giving a hint of being a better option to deal with the pollution. 

 

 
 

Figure 5. Generalized added mass coefficients of the plate obtained using the model (756, 640) 

 

 
 

Figure 6. Generalized added mass coefficients due to the first six modes of the plate obtained 

using linear free surface elements and (a) model (1186, 640), (b) model (1186, 1000) 

 

Suppressing the Irregular Frequencies in Wave …    /   Sigma J Eng & Nat Sci 9 (2), 175-192, 2018 



186 

 

 
 

Figure 7. Generalized added mass coefficients due to the first six modes of the plate obtained 

using quadratic free surface elements and (a) model (1186, 640), (b) model (1186, 1000) 

 

 
 

Figure 8. Generalized hydrodynamic damping coefficients due to the first six modes of the plate 

obtained using linear free surface elements and (a) model (1186, 640), (b) model (1186, 1000) 

 

 
 

Figure 9. Generalized hydrodynamic damping coefficients due to the first six modes of the plate 

obtained using quadratic free surface elements and (a) model (1186, 640), (b) model (1186, 1000) 
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Figure 10. Generalized added mass coefficients due to the first six modes of the plate obtained 

using linear free surface elements and (a) model (1660, 640), (b) model (1660, 1000) 

 

 
 

Figure 11. Generalized added mass coefficients due to the first six modes of the plate obtained 

using quadratic free surface elements and (a) model (1660, 640), (b) model (1660, 1000) 

 

 
 

Figure 12. Generalized hydrodynamic damping coefficients due to the first six modes of the plate 

obtained using linear free surface elements and (a) model (1660, 640), (b) model (1660, 1000) 
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Figure 13. Generalized hydrodynamic damping coefficients due to the first six modes of the plate 

obtained using quadratic free surface elements and (a) model (1660, 640), (b) model (1660, 1000) 

 

 
 

Figure 14. A11 value obtained using NEF = 640 and four different NE values 

 

 
 

Figure 15. Generalized added mass coefficients due to the first six modes of the plate obtained 

using the model (2232, 1000) and (a) linear free surface elements, (b) quadratic free surface 

elements 
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Figure 16. Generalized hydrodynamic damping coefficients due to the first six modes of the plate 

obtained using the model (2232, 1000) and (a) linear free surface elements, (b) quadratic free 

surface elements 

 

 
 

Figure 17. The generalized wave excitation force components of the plate obtained using linear 

free surface elements with NEF = 1000 and NE = 1168, 1660, 2322, and due to the (a) first mode, 

(b) second mode, (c) fourth mode 

 

The added mass and hydrodynamic damping coefficients due to the first six modes are 

presented in Figs. 6-9, where the models (1186, 640) and (1186, 1000) with linear (Figs. 6, 8) and 

quadratic (Figs. 7, 9) free surface elements are adopted. The irregularities in added mass 

coefficients are visibly reduced compared to the previous case, but unlike the cylinder problem, 

the irregular frequencies are not postponed either with increasing the NE or NEF value. In 

addition, the difference between the linear and quadratic elements are less apparent. As for the 

cylinder problem, the influence of irregular frequencies on damping coefficients is more severe. 

The results of another mesh refinement is given in Figs. 10-13. NE value is increased to 1660 this 

time, but NE values are still 640 and 1000. It is becoming clear that increasing the NE value for a 
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fixed value of NEF is more effective than increasing the NEF value for a fixed value of NE. It 

should be pointed that, however,  this is not related with the ‘convergence of results.’ As can be 

seen from Fig. 14, where A11 value obtained using four different NE values for the same NEF 

value is presented, that the predictions of coarsest and finest wetted surface meshes are almost 

same within the regular region; the mesh quality starts to pay off when the irregular frequencies 

are being observed. The results of final refinement are given in Figs. 15, 16, where the model 

(2232, 1000) is adopted. Now, the irregular frequencies are almost suppressed, yet traces can be 

observed, especially for the damping coefficients. 

The first, second, and fourth components of the generalized wave excitation force for the 

floating plate are given in Figs. 17 and 18, considering linear and quadratic free surface elements, 

respectively, for NE values of 1168, 1660, 2322, and NEF value of 1000. The finer two models 

are almost identical and some irregular frequency effects can be observed even with quadratic 

elements. This is not surprising, since the wave excitation are obtained using the Haskind 

relations, which rely on the radiation forces that possess irregularities. 

 

 
 

Figure 18. The generalized wave excitation force components of the plate obtained using 

quadratic free surface elements with NEF = 1000 and NE = 1168, 1660, 2322, and due to the (a) 

first mode, (b) second mode, (c) fourth mode 

 

4. CONCLUSIONS 

 

Performance of the extended boundary integral equation method (EBIEM) for eliminating the 

irregular frequencies that are inherent to the wave Green function based boundary element 

solution of the frequency domain wave-body interaction problems is investigated. The EBIEM is 

based on the idea that the non-physical internal fluid motion that is associated with the irregular 

frequencies can be suppressed by including the assumed internal free surface into the 

computational domain and covering it by a rigid lid, i.e., applying the rigid wall boundary 

condition over it. Two surface piercing structures, a cylinder and a large plate, are selected for 
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application; the focus is on the influence of internal free surface discretization, depending on the 

mesh fineness and element order, for the regularization of the radiation and wave excitation 

forces, where both rigid body and elastic modes are considered. Some conclusions are given as 

follows: 
 

 The method provides excellent predictions for the radiation forces due to the rigid body 

modes of the free floating cylinder. The irregular frequency effects, existing in relatively mild 

form, are effectively eliminated within the studied frequency interval, but it is observed that they 

persist to exist for higher frequencies. This suggest that even though the EBIEM is proposed as a 

complete removal technique, it is rather postponing the occurrence of irregular frequencies.  

 The second case of floating plate, the real testbed for studying the limits of the procedure, 

clearly indicates that the mesh refinement is essential for successful application of the EBIEM. 

Refining either the wetted surface or internal free surface weakens the irregular frequency effects, 

but effect of the former is more evident. It should be pointed that this is not related with the 

convergence of the numerical model, contrary a feature that is seen at the already converged 

results.  

 The benefit of using better representations are twofold, in general: deferring the first 

observed frequency and reducing both the effects and extent of the influenced zone. 

 Quadratic elements perform better than linear elements, especially when the wetted 

surface mesh is relatively coarse. Nevertheless, considering the increase of the degrees of 

freedom, hence computation time, for the same number of elements, the benefit is questionable 

for finer models, where the performance gap between linear and quadratic elements is narrow. 

 The effects are consistently much more visible for the hydrodynamic damping 

coefficients compared to the added mass coefficients; this is unexpected, since they are related 

with the same radiation force. This may also have a negative side effect on the wave excitation 

forces, because the adopted Haskind relations rely on the use of radiation forces for their 

computation. Both added mass and hydrodynamic damping coefficients are frequency dependent 

and they are related with the same time dependent impulse response functions through the Fourier 

transform, but in different forms. It may be an interesting exercise to obtain the time domain 

counterparts using the added mass values and then to compute the hydrodynamic damping values 

by applying the inverse transform to the impulse response functions. 
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