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ABSTRACT 

 

In this paper, modified cubic B-spline based differential quadrature method (MCB-DQM) has been used to 

obtain the numerical solutions for the fourth order extended Fisher-Kolmogorov equation (EFK). After using 

DQM for discretization of the EFK equation, ordinary differential equation systems have been obtained. For 

time integration, strong stability preserving Runge-Kutta method has been used. Numerical solutions of the 

three test problems have been investigated. The efficiency and accuracy of the method have been measured by 

calculating error norms 𝐿2 and  𝐿∞. The present obtained numerical results have been compared with the 

published numerical results and the comparison has shown that the method is an effective numerical scheme 

to solve the EFK equation. 

Keywords: Partial differential equations, differential quadrature method, EFK equation, modified cubic B-

Splines. 
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1. INTRODUCTION 

 

In this study, we have investigated numerical solutions of fourth order extended Fisher-

Kolmogorov (EFK) equation by using modified cubic B-spline Differential Quadrature Method 

(MCB-DQM). The EFK equation is given in the following form 
 

𝑢𝑡 + 𝛾𝑢𝑥𝑥𝑥𝑥 − 𝑢𝑥𝑥 + 𝜓(𝑢) = 0,    𝑥 ∈ [𝑎, 𝑏],   𝑡 ∈ [0, 𝑇]                                  (1) 

where 𝑢 ∈ [𝑎, 𝑏] × [0, 𝑇],  𝜓(𝑢) = 𝑢3 − 𝑢 and 𝛾 > 0.  
 

Coullet et al.[1] and van Saarlos [2-4]  and Dee and van Saarlos [5] introduced the EFK 

equation given in the Eq. (1) by adding a stabilizing fourth-order derivative for the value of the 

𝛾 ≠ 0. For the value of the 𝛾 = 0 the Eq. (1) turns into the standard Fisher-Kolmogorov (FK) 

equation. 
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EFK equ ation has many applications in several scientific field such as spatiotemporal chaos 

[1] pattern formation in bi-stable systems [5], propagation of domain walls in liquid crystals [6], 

phase transition near a Lifshitz point [7,8]. 

EFK equation (1) has been solved with various methods by many researchers. Among others, 

Danumjaya and Pani [9] used orthogonal cubic spline collocation method, Mittal and Arora [10] 

used quantic B-spline collocation, Mittal and Dahiya [11] used quintic B-spline differential 

quadrature method. In this paper, we investigated numerical solutions of EFK equation via 

modified cubic B-spline differential quadrature method since it has high accurate solutions. 

In recent years, DQM which is first introduced by Bellman et al. [12] 1972, has had wide 

application areas because of its using considerably less number of grid points. DQM is a method 

in which partial derivative of a function with respect to a coordinate direction is expressed as a 

linear weighted sum of all the functional values at all mesh points along that direction[13]. Many 

researchers have developed various types of DQM by using different base functions such as 

Legendre polynomials and spline functions [12,14-17], Lagrange interpolation polynomials [18-

20], Lagrange interpolated trigonometric polynomials [21], Hermite polynomials [22], radial basis 

functions [23], harmonic functions [24], Sinc functions [25,26], B-spline functions [27-33]. 

In the present study, MCB-DQM is going to be applied to obtain approximate solutions of the 

EFK equation. MCB-DQM has been preferred for solving fourth-order EFK equation since it has 

high accurate solutions, low storage allocation and simple applicability to equation. 

 

2. MODIFIED CUBIC B-SPLINE DQM 

 

We are going to consider the Eq. (1) with the boundary conditions taken from: 
 

𝑈(𝑎, 𝑡) = 𝑔1(𝑡),     𝑈(𝑏, 𝑡) = 𝑔2(𝑡),     𝑥 ∈ [𝑎, 𝑏],   𝑡 ∈ [0, 𝑇]                               (2) 
 

with the initial condition 
 

𝑈(𝑥, 0) = 𝑢0(𝑥),  𝑎 ≤ 𝑥 ≤ 𝑏.                                                               (3) 
 

Let us take the uniform grid distribution 𝑎 = 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 = 𝑏 of a finite interval [𝑎, 𝑏] 
into consideration. Provided that any given function 𝑈(𝑥) is smooth enough over the solution 

domain, its derivatives with respect to 𝑥  at a grid point 𝑥𝑖 can be approximated by a linear 

summation of all the functional values in the solution domain, namely, 
 

𝑑(𝑟)𝑈

𝑑𝑥(𝑟)
|
𝑥𝑖
= ∑ 𝑤𝑖𝑗

(𝑟)𝑁
𝑗=1 𝑈(𝑥𝑗),   𝑖 = 1, 2, … , 𝑁, 𝑟 = 1, 2, … , 𝑁 − 1                          (4) 

 

where 𝑟 represents the order of derivative, 𝑤𝑖𝑗
(𝑟)

 ’s denote the weighting coefficients of the 𝑟 -

th order derivative approximation, and 𝑁 represents the number of nodal points in the given 

solution domain. Here, the index 𝑗 indicates the fact that 𝑤𝑖𝑗
(𝑟)

 is the corresponding weighting 

coefficient of the value of the function 𝑈(𝑥𝑗). 

In this work, we are going to need the second and fourth order derivatives of the function 

𝑈(𝑥). So, we are going to begin to find the value of the equation (4) for the 𝑟 = 1. 

The main idea behind DQM approximation is to find out the corresponding weighting 

coefficients 𝑤𝑖𝑗
(𝑟)

 by means of a set of base functions spanning the problem domain. While 

determining the corresponding weighting coefficients, different basis may be used. In the present 

study, we will try to compute weighting coefficients with modified cubic B-spline basis. 

Let ∁𝑚(𝑥) be the cubic B-splines with knots at the points 𝑥𝑖 where the uniformly distributed 

N grid points are taken as 𝑎 = 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 = 𝑏 on the ordinary real axis. Then, the cubic 

B-splines {∁0, ∁1, … , ∁𝑁+1} form a basis for the functions defined over [𝑎, 𝑏]. 
The cubic B-splines ∁𝑚(𝑥)  are defined by the relationships: 
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∁𝑚(𝑥) =
1

ℎ3

{
 
 

 
 
(𝑥 − 𝑥𝑚−2)

3                                                                , [𝑥𝑚−2, 𝑥𝑚−1]

(𝑥 − 𝑥𝑚−2)
3 − 4(𝑥 − 𝑥𝑚−1)

3                                     , [𝑥𝑚−1, 𝑥𝑚]

(𝑥𝑚+2 − 𝑥)
3 − 4(𝑥𝑚+1 − 𝑥)

3                                     , [𝑥𝑚, 𝑥𝑚+1]

(𝑥𝑚+2 − 𝑥)
3                                                                 , [𝑥𝑚+1, 𝑥𝑚+2]

0                                                                                        , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

where ℎ = 𝑥𝑚 − 𝑥𝑚−1 for all 𝑚 [34].  

Using the modified cubic B-splines results in a diagonally dominant matrix system of 

equations. This structur e has great importance for the stability analysis. Modification of cubic B-

splines can be carried out differently. Among others, Mittal and Jain [35] have introduced 

modified cubic B-splines at the grid points as follows 
 

∅1(𝑥) = ∁1(𝑥) + 2∁0(𝑥) 
∅2(𝑥) = ∁2(𝑥) − ∁0(𝑥) 
∅𝑠(𝑥) = ∁𝑠(𝑥), for 𝑠 = 3,4,… , 𝑁 − 2                                                       (5) 

∅𝑁−1(𝑥) = ∁𝑁−1(𝑥) − ∁𝑁+1(𝑥) 
∅𝑁(𝑥) = ∁𝑁(𝑥) + 2∁𝑁+1(𝑥) 
 

where ∅𝑘 , (𝑘 = 1, 2,… , 𝑁) forms a basis functions over the [𝑎, 𝑏] domain. 

 

2.1.  Weighting Coefficients of the First Order Derivative 

 

From Eq. (4) with value of 𝑟 = 1, we have obtained the following equation 
 

∅′𝑘(𝑥𝑖) = ∑ 𝑤𝑖𝑗
(1)𝑁

𝑗=1 ∅𝑘(𝑥𝑗)  for 𝑖 = 1, 2, … , 𝑁;  𝑘 = 1, 2, … , 𝑁                            (6) 
 

For the first grid point 𝑥1, from Eq. (6) we get an equation in the following form 
 

∅′𝑘(𝑥1) = ∑ 𝑤1𝑗
(1)𝑁

𝑗=1 ∅𝑘(𝑥𝑗)  for   𝑘 = 1, 2, … , 𝑁                                                     (7) 
 

and by using the value of modified cubic basis functions 
 

[
 
 
 
 
 
 
6 1
0 4 1

1 4 1
⋱ ⋱ ⋱

1 4 1
1 4 0

1 6 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 𝑤1,1

(1)

𝑤1,2
(1)

𝑤1,3
(1)

⋮

𝑤1,𝑁−1
(1)

𝑤1,𝑁
(1)

]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
−6 ℎ⁄

6 ℎ⁄
0
⋮

0
0 ]

 
 
 
 
 
 
 

                                       (8) 

 

the above equation system is obtained. Similarly, by using the value of modified cubic basis 

functions at the grid points 𝑥𝑖, (2 ≤ 𝑖 ≤ 𝑁 − 1), respectively, 
 

[
 
 
 
 
 
 
6 1
0 4 1

1 4 1
⋱ ⋱ ⋱

1 4 1
1 4 0

1 6 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 𝑤𝑖,1

(1)

⋮

𝑤𝑖,𝑖−1
(1)

𝑤𝑖,𝑖
(1)

𝑤𝑖,𝑖+1
(1)

⋮

𝑤𝑖,𝑁
(1)
]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
0
⋮
0

−3 ℎ⁄
0
3 ℎ⁄
0
⋮
0 ]

 
 
 
 
 
 
 
 

                                       (9) 

 

the above equation system is obtained. For the last grid point 𝑥𝑁 
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[
 
 
 
 
 
 
6 1
0 4 1

1 4 1
⋱ ⋱ ⋱

1 4 1
1 4 0

1 6 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 𝑤𝑁,1

(1)

𝑤𝑁,2
(1)

⋮

𝑤𝑁,𝑁−2
(1)

𝑤𝑁,𝑁−1
(1)

𝑤𝑁,𝑁
(1)

]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0
0
⋮

0
−6 ℎ⁄

6 ℎ⁄ ]
 
 
 
 
 
 
 

                                     (10) 

 

the above equation system is obtained. So, weighting coefficients 𝑤𝑖,𝑗
(1)

 which are related to 

the 𝑥𝑖  (𝑖 = 1, 2, … , 𝑁) are found quite easily by solving system of Eqs. (8)-(10) with Thomas 

algorithm. 

 

2.2.  Weighting Coefficients of the Second Order Derivative 

 

This method depends on the first order weighting coefficients when obtaining weighting 

coefficients of the second order derivatives. By the Shu's recurrence formula, the second order 

weighting coefficients are determined for 𝑖 = 1, 2, … , 𝑁 and 𝑗 = 1, 2, … , 𝑁 as below [13]: 
 

𝑤𝑖,𝑗
(2) = 2𝑤𝑖,𝑗

(1) (𝑤𝑖,𝑖
(1) −

1

𝑥𝑖−𝑥𝑗
), for 𝑖 ≠ 𝑗                                                     (11) 

 

𝑤𝑖,𝑖
(2) = −∑ 𝑤𝑖,𝑗

(2)𝑁
𝑗=1,𝑗≠𝑖                                                                    (12) 

 

2.3.  Weighting Coefficients of the Fourth Order Derivative 

 

This method depends on the second order weighting coefficients to obtain the weighting 

coefficients of the fourth order derivatives. By the matrix multiplication approach, the fourth 

order weighting coefficients are determined as below [13]: 
 

[𝐴(𝑚)] = [𝐴(1)][𝐴(𝑚−1)] = [𝐴(𝑚−1)][𝐴(1)]                                             (13) 
 

where [𝐴(𝑚−1)] and [𝐴(𝑚)] are the weighting coefficients matrices of the (𝑚 − 1) − 𝑡ℎ and 

𝑚 − 𝑡ℎ order derivatives, respectively. Although Eq. (13) looks simple, it involves more 

arithmetic operations as compared to Eqs. (11) and (12). It is noted that the calculation of each 

weighting coefficient by Eq. (13) involves N multiplications and (N-1) additions, i.e. a total of 

(2N-1) arithmetic operations. On the other hand, Shu's recurrence relationship (11) involves two 

multiplications, one division and one subtraction, i.e. a total of four arithmetic operations [13]. 

 

3. NUMERICAL DISCRETIZATION 

 

The EFK equation of the form 
 

𝑈𝑡 + 𝛾𝑈𝑥𝑥𝑥𝑥 − 𝑈𝑥𝑥 + 𝑈
3 − 𝑈 = 0                                                                (14) 

 

with the boundary conditions (2) and the initial condition (3) is rewritten as 
 

𝑈𝑡 = −𝛾𝑈𝑥𝑥𝑥𝑥 + 𝑈𝑥𝑥 − 𝑈
3 + 𝑈.                                                                     (15) 

 

Then, the differential quadrature derivative approximations of the second and the fourth 

orders have been used in Eq. (15) 
 

𝑑𝑈(𝑥𝑖)

𝑑𝑡
= −𝛾∑ 𝑤𝑖𝑗

(4)𝑁
𝑗=1 𝑈(𝑥𝑗 , 𝑡) + ∑ 𝑤𝑖𝑗

(2)𝑁
𝑗=1 𝑈(𝑥𝑗 , 𝑡) − 𝑈

3(𝑥𝑖 , 𝑡) + 𝑈(𝑥𝑖 , 𝑡), 𝑖 = 1, 2, … , 𝑁     (16) 
 

and ordinary differential equation (16) is obtained. Then, the ordinary differential equation 

given by Eq. (16) is integrated with respect to time. Here, we have preferred strong stability-
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preserving low storage Runge-Kutta43 method[36] due to its advantages such as accuracy, 

stability and memory allocation properties. 

 

4. NUMERICAL EXAMPLES AND STABILITY 

 

Here, we have obtained the numerical solutions of the EFK by the MCB-DQM. The accuracy 

of the numerical method is checked using the error norms 𝐿2 and 𝐿∞, respectively: 
 

𝐿2 = ‖𝑈 − 𝑢‖2 ≅ √ℎ∑|𝑈𝑗 − 𝑢𝑗|
2

𝑁

𝑗=1

, 

𝐿∞ = ‖𝑈 − 𝑢‖∞ ≅ max
𝑗
|𝑈𝑗 − 𝑢𝑗|,  𝑗 = 1,2, …𝑁 − 1. 

 

Since the analytical solution of EFK equation does not exist, newly obtained numerical 

solution is compared with those solutions obtained when grid number is taken N=160 instead of 

exact solution. 

Stability analysis of a numerical method for a nonlinear differential equation requires the 

determination of eigenvalues of coefficient matrices. With the numerical discretization of partial 

differential equation EFK, it turns into an ordinary differential equation. 

The stability of a time-dependent problem: 
 

𝜕𝑈

𝜕𝑡
= 𝑙(𝑈),                                                                                      (17) 

 

with the proper initial and boundary conditions, where 𝑙 is a spatial differential operator. After 

discretization with DQM, Eq. (17) is reduced into a set of ordinary differential equations in time 

as follows 
 

𝑑{𝑈}

𝑑𝑡
= [𝐴]{𝑢} + {𝑏}                                                                        (18) 

 

where {𝑢} is an unknown vector of the functional values at the grid points except the left and 

right boundary points, {𝑏} is a vector containing the non-homogenous part and the boundary 

conditions and 𝐴 is the coefficient matrix. The stability of a numerical scheme for numerical 

integration of Eq. (18) depends on the stability of the ordinary differential Eq. (18). If the ordinary 

differential Eq. (18) is not stable, numerical methods may not generate converged solutions. The 

stability of Eq. (18) is related to the eigenvalues of the matrix 𝐴, since its exact solution is directly 

determined by the eigenvalues of the matrix 𝐴. When all 𝑅𝑒(𝜆𝑖) ≤ 0 for all it is enough to show 

the stability of the exact solution of {𝑢} as 𝑡 → ∞ where 𝑅𝑒(𝜆𝑖) denotes the real part of the 

eigenvalues 𝜆𝑖 of the matrix 𝐴. The matrix 𝐴 in Eq. (18) is determined as 𝐴𝑖𝑗 = −𝛾𝑤𝑖𝑗
(4) +𝑤𝑖𝑗

(2) −

𝛼𝑖
3 + 𝛼𝑖 where 𝛼𝑖 = 𝑈(𝑥𝑖 , 𝑡) [13]. The eigenvalues of matrix 𝐴 should be in the stability region as 

shown in Figure 1 [37]. 
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Figure 1. Stability regions of fourth order SSPRK eigenvalues. 

 

4.1 Test Problem 1 

 

The first test problem has initial condition as follows: 
 

𝑈(𝑥, 0) = −𝑠𝑖𝑛(𝜋𝑥)                                                                        (19) 
 

with boundary conditions 
 

𝑈(𝑥0, 𝑡) = 𝑈(𝑥𝑁, 𝑡) = 0,                                                                  (20) 

at the domain −4 ≤ 𝑥 ≤ 4. 
 

We fix the number of grid points N=81 and time increment ∆𝑡 = 0.0001 when 𝛾 = 0, 

𝛾 = 0.0001 and 𝛾 = 0.1, respectively. Numerical simulations are given in Figures 2-4. 

 

 
 

Figure 2. Simulations for 𝛾 = 0. 
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Figure 3. Simulations for 𝛾 = 0.0001. 
 

 
 

Figure 4. Simulations for 𝛾 = 0.1. 

 

Table 1. 𝐿2 and 𝐿∞ error norms at 𝑡 = 0.2. 
 

 

N 

Present (MCB-DQM) Quin. Coll. [10] Quin. DQM[11] 

𝐿2 𝐿∞ 𝐿2 𝐿∞ 𝐿2 𝐿∞ 

20 0.01881 0.01839 0.01158 0.00551 0.02135 0.00116 

40 0.00230 0.00222 0.00282 0.00134 0.00222 0.00122 

80 0.00024 0.00023 0.00057 0.00028 0.00031 0.00015 

 

As it seen straightforwardly from Figure 2 and Figure 3 that the behaviour of solutions for 

𝛾 = 0 and 𝛾 = 0.0001 are similar to each other. Except for 𝛾 = 0.1 simulations given in Figure 4 

that solutions decline to 0 very rapidly because of stabilizing behaviour of EFK. The calculated 

and compared values of the error norms 𝐿2 and 𝐿∞ are given in Table 1. As it is seen 

straightforward from comparison with earlier works [10, 11] given in Table 1 that the present 

error norms 𝐿2 and 𝐿∞ are acceptably good. 
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4.3.  Test Problem 2 

 

The second test problem has initial condition as follows: 
 

𝑈(𝑥, 0) = 10−3𝑒𝑥𝑝(−𝑥2)                                                                  (21) 
 

with boundary conditions 
 

𝑈(𝑥0, 𝑡) = 𝑈(𝑥𝑁, 𝑡) = 1,                                                                  (22) 

at the domain −4 ≤ 𝑥 ≤ 4. 
 

The behaviours of solutions for time running up from 𝑡 = 0.25 to 𝑡 = 4.5 are given in Figure 

5. As it seen from Figure 5 that approximate solution of 𝑈 declines as time increases and 

eventually it comes close to the value 1. Numerical results are agreeable to those given in [9]. 

 

 
 

Figure 5. Simulations for 𝛾 = 0.0001. 

 

4.3.  Test Problem 3 

 

Our last test problem has initial condition 
 

𝑈(𝑥, 0) = −10−3𝑒𝑥𝑝(−𝑥2)                                                           (23) 
 

with boundary conditions 

 

𝑈(𝑥0, 𝑡) = 𝑈(𝑥𝑁, 𝑡) = −1,                                                           (24) 

at the domain −4 ≤ 𝑥 ≤ 4. 
 

The behaviours of solutions for time running up from 𝑡 = 0.25 to 𝑡 = 4.5  are given in Figure 

6. As it seen from Figure 6 that the approximate solution of 𝑈 decline by time increases and 

eventually it come close to the value -1. Numerical results are agreeable to the as given in [9]. 
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Figure 6. Simulations for 𝛾 = 0.0001. 

 

A matrix stability analysis is also carried out for the MCB-DQM. We have used matlab 

r2013b program to obtain the eigenvalues of the coefficient matrix for the first test problem. 

Eigenvalues of the suggested method for N=21, N=41, N=81 and N=161 are presented in Figure 7. 

None of them has imaginary parts. All the eigenvalues are in convenience with stability criteria 

[37]. 

 

    

  
 

Figure 7. Eigenvalues for various number of grid points. 

 

Also, maximum absolute value of eigenvalues for various value of 𝛾 = 0, 𝛾 = 0.0001 and 

𝛾 = 0.1 for different number of grid points N=21 , N=41, N=81 and N=161 are tabulated in Table 

2. All results are pure real eigenvalues when 𝛾 = 0, 𝛾 = 0.0001 and 𝛾 = 0.1. As it seen from 
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Table 2 when the number of the grid points are increased, absolute value of eigenvalue grows, so 

time step should be decrease to obtain the stable solution. 

 

Table 2. Maximum absolute value of eigenvalues at various number of grid points. 
 

𝛾 = 0 

Grid Number 21 41 81 161 

𝑀𝑎𝑥|𝑅𝑒(𝜆)| 2.6 × 103 1.0 × 104 4.2 × 104 1.6 × 105 

𝑀𝑎𝑥|𝐼𝑚(𝜆)| 0 0 0 0 

𝛾 = 0.0001 

Grid Number 21 41 81 161 

𝑀𝑎𝑥|𝑅𝑒(𝜆)| 3.2 × 103 2.1 × 104 2.1 × 105 3.0 × 106 

𝑀𝑎𝑥|𝐼𝑚(𝜆)| 0 0 0 0 

𝛾 = 0.1 

Grid Number 21 41 81 161 

𝑀𝑎𝑥|𝑅𝑒(𝜆)| 6.8 × 105 1.1 × 107 1.7 × 108 2.8 × 109 

Max|Im(λ)| 0 0 0 0 

 

5. CONCLUSION 

 

In this study, we have implemented MCB-DQM for numerical solution of EFK equation. To 

obtain the second order weighting coefficients, we used Shu's recurrence formulae and to obtain 

the fourth order weighting coefficients we used the matrix multiplication approach. The 

performance and accuracy of the method have been shown by calculating the error norms 𝐿2 and 

𝐿∞. As can be observed by the comparison between the obtained values of the error norms of the 

present method and earlier works, MCB-DQM results are acceptable good. The obtained results 

show that MCB-DQM can be used to produce reasonable accurate numerical solutions of the EFK 

equation. As the results of investigation of eigenvalues, the present method is stable. So, MCB-

DQM is a reliable one for getting the numerical solutions of some physically important nonlinear 

problems. 
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