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ABSTRACT 

 

The target of this study is to introduce some fixed point theorems in soft metric spaces which are the 

generalizations of Banach fixed point theorem of soft mappings. For this reason, we define the notion of a soft 

altering distance function. Then we consider some fixed point theorems in soft metric spaces in terms of these 

functions by giving an illustrative example. 
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1. INTRODUCTION 

 

Banach contraction principle in metric spaces is one of the most important results in fixed 

point theory and nonlinear analysis in general. So far, according to its importance and simplicity, 

many authors ([7], [8]) have obtained interesting extensions and generalizations of the Banach 

contraction principle. 

In 1999, the concept of soft set was introduced by Molodtsov [10], is a new mathematical tool 

for dealing with uncertainties. Soft set is a parameterized general mathematical tool which deal 

with a collection of approximate descriptions of objects. Works on soft set theory has been 

progressing rapidly since Maji et al. [9] introduced several operations of soft sets. Since then, Pei 

and Miao [11] and Ali et al. [3] introduced and studied several soft set operations as well. Soft set 

theory has also potential applications in many fields.   

Das and Samanta [5,6]  introduced the notions of soft element,  soft real number and soft 

point, and discussed their properties. Based on these notions, they introduced the concept of a soft 

metric [6]. Wardowski [12] defined the concept of a soft mappings and obtained some fixed point 

results. After,  Abbas [1] gave the similar definitions about soft cartesian products and soft 

mappings with Wardowski.  Abbas et al. [1,2] introduced the notion of soft contraction mapping 

based on the theory of soft elements of soft metric spaces. They studied fixed points of soft 

contraction mappings and obtained among others results. 
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2. PRELIMINARIES 

 

Throughout this paper, 𝑋 refers to an initial universe, and 𝐸 the set of parameters for 𝑋. Let 

𝐸1 and 𝐸2 be the non-empty parameter subsets of 𝐸. We denote by 𝒫(𝑋) the family of all subsets 

of 𝑋.  
 

Definition 2.1. [10] A pair (𝐹, 𝐸) is called a soft set over 𝑋 if 𝐹 is a mapping given by 𝐹: 𝐸 →
𝒫(𝑋). In other words, the soft set is a parametrized family of subsets of the set 𝑋. Every set   

𝐹(𝑒), 𝑒 ∈ 𝐸, from this family may be considered as the set of 𝑒 − 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 of the soft set (𝐹, 𝐸), 
or as the set of 𝑒 − 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 elements of the soft set. 
 

For any soft set (𝐹, 𝐸1), we can extend the soft set (𝐹, 𝐸1) to the soft set (�̅�, 𝐸) where  
 

�̅� ∶ 𝐸 → 𝒫(𝑋) , �̅�(𝑒) =  {
𝐹(𝑒)  ,   𝑖𝑓 𝑒 ∈ 𝐸1
∅        ,   𝑖𝑓 𝑒 ∉ 𝐸1

 
 

We denote the collection of soft sets over a common universe 𝑋 by 𝑆(�̃�). 
 

Definition 2.2. [9] Let (𝐹, 𝐸1), (𝐺, 𝐸2) ∈  𝑆(�̃�). We say that (𝐹, 𝐸1) is a soft subset of (𝐺, 𝐸2) if  
𝐹(𝑒) ⊆  𝐺(𝑒) for all 𝑒 ∈  𝐸1.  We write (𝐹, 𝐸1)  ⊆̃  (𝐺, 𝐸2).  Two soft sets (𝐹, 𝐸1) and (𝐺, 𝐸2) 
over a common universe 𝑋 are said to be soft equal if  (𝐹, 𝐸1) is a soft subset of  (𝐺, 𝐸2) and 

(𝐺, 𝐸2) is a soft subset of  (𝐹, 𝐸1). 
 

Definition 2.3. [4] The complement of a soft set (𝐹, 𝐸1) ∈ 𝑆(�̃�)   is denoted by (𝐹, 𝐸1)
𝑐  =

 (𝐹𝑐 , 𝐸1), where 𝐹𝑐 ∶  𝐸1 →  𝒫(𝑋)  is a mapping given by 𝐹𝑐(𝑒) =  𝑋 ∖ 𝐹(𝑒), for all 𝑒 ∈  𝐸1. 
 

Definition 2.4. [9] (1) (Null Soft Set) A soft set (𝐹, 𝐸1) ∈ 𝑆(�̃�)  is said to be a null soft set 

denoted by Φ, if 𝐹(𝑒)  = Φ for all 𝑒 ∈ 𝐸1. 
 

(2) (Absolute Soft Set) A soft set (𝐹, 𝐸1) over 𝑋 is said to be an absolute soft set denoted by 

�̃�, if 𝐹(𝑒) = 𝑋 for all 𝑒 ∈ 𝐸1. 
 

Definition 2.5. [4] (1) The union of two soft sets  (𝐹, 𝐸1), (𝐺, 𝐸2) ∈  𝑆(�̃�) is the soft set (𝐻, 𝐸3), 
where 𝐸3  =  𝐸1 ∪ 𝐸2 and 𝐻(𝑒) = 𝐹(𝑒) ∪  𝐺(𝑒) for all 𝑒 ∈  𝐸3. We express it as 

(𝐹, 𝐸1)  ∪̃  (𝐺, 𝐸2)  = (𝐻, 𝐸3). 
 

(2) The intersection of two soft sets (𝐹, 𝐸1), (𝐺, 𝐸2) ∈  𝑆(�̃�)  is the soft set (𝐻, 𝐸3), where 

𝐸3 = 𝐸1 ∩ 𝐸2 and 𝐻(𝑒) =  𝐹(𝑒) ∩  𝐺(𝑒) for all 𝑒 ∈ 𝐸3. We express it as (𝐹, 𝐸1) ∩̃  (𝐺, 𝐸2) =
(𝐻, 𝐸3). 

(3) The difference (𝐻, 𝐸)  of two soft sets (𝐹, 𝐸), (𝐺, 𝐸) ∈  𝑆(�̃�), denoted by (𝐹, 𝐸) ∖ (𝐺, 𝐸), 
is defined by 𝐻(𝑒) =  𝐹(𝑒) ∖  𝐺(𝑒) for all 𝑒 ∈  𝐸. 
 

Definition 2.6. [5] Let ℝ be the set of real numbers and Ɓ(ℝ) be the collection of all non-empty 

bounded subsets of ℝ and 𝐸 taken as a set of parameters. Then a mapping 𝐹 ∶  𝐸 → Ɓ(ℝ)  is 

called a soft real set. It is denoted by (𝐹, 𝐸), or simply by 𝐹. If  𝐹 is a single valued mapping on 𝐸 

taking values in ℝ then the pair (𝐹, 𝐸) or simply 𝐹, is called a soft element of ℝ or a soft real 

number. If  𝐹 is a single valued mapping on 𝐸 taking values in ℝ+  then 𝐹 is called a nonnegative 

soft real number. We shall denote the set of all nonnegative soft real numbers by ℝ(𝐸)∗. 
 

We use notations �̃�, �̃�, �̃� to denote soft real numbers whereas �̅�, �̅�, 𝑡̅ will denote a particular 

type of soft real numbers such that  �̅�(𝜆) = 𝑟 for all 𝜆 ∈  𝐸, which is called a constant soft real 

number. For example 0̅ is the soft real number where 0̅(𝜆) = 0 for all 𝜆 ∈  𝐸. 
 

Definition 2.7. [6] The orderings between soft real numbers  �̃�, �̃� are defined as follows : 
 

i.  �̃�  ≤̃  �̃�  if �̃�(𝜆)  ≤  �̃�(𝜆) for all 𝜆 ∈ 𝐸. 

ii. �̃�  ≥̃  �̃�  if �̃�(𝜆)  ≥  �̃�(𝜆) for all 𝜆 ∈ 𝐸. 

iii. �̃�  <̃  �̃�  if �̃�(𝜆)  <  �̃�(𝜆) for all 𝜆 ∈ 𝐸. 

iv.  �̃�  >̃  �̃�  if �̃�(𝜆)  >  �̃�(𝜆) for all 𝜆 ∈ 𝐸. 
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Definition  2.8. [6] (1)  A soft set (𝑃, 𝐸) ∈  𝑆(�̃�)  is said to be a soft point if there is exactly one 

𝜆 ∈  𝐴 such that 𝑃(𝜆) = {𝑥} for some 𝑥 ∈  𝑋 and 𝑃(𝜇) = ∅, for all 𝜇 ∈  𝐸 ∖ {𝜆}. It will be 

denoted by 𝑃𝜆
𝑥. The  collection of all soft points of �̃� is denoted by  𝑆𝑃(�̃�). 

 

(2) A soft point 𝑃𝜆
𝑥 is said to belongs to a soft set (𝐹, 𝐸) if 𝜆 ∈  𝐸 and 𝑃(𝜆) =  {𝑥} ⊂  𝐹(𝜆). 

We write it by 𝑃𝜆
𝑥 ∈̃  (𝐹, 𝐸). 

(3) Two soft points 𝑃𝜆
𝑥  , 𝑃𝜇

𝑦
  are said to be equal if  𝜆 = 𝜇  𝑎𝑛𝑑 𝑃(𝜆)  =  𝑃(𝜇). i.e., 𝑥 = 𝑦. 

Thus 𝑃𝜆
𝑥 ≠ 𝑃𝜇

𝑦
  if  𝑓𝑥 ≠  𝑦  𝑜𝑟 𝜆 ≠ 𝜇. 

 

Proposition 2.1. [6] The union of any collection of soft points can be considered as a soft set and 

every soft set can be expressed as union of all soft points belonging to it. i.e.,  (𝐹, 𝐸) =
⋃ 𝑃𝜆

𝑥
𝑃𝜆
𝑥  ∈̃  (𝐹,𝐸) . 

 

Proposition 2.2. [6] For two soft sets (𝐹, 𝐸),(𝐺, 𝐸) ∈ 𝑆(�̃�), (𝐹, 𝐸) ⊂̃  (𝐺, 𝐸)  ⇔ 𝑃𝜆
𝑥 ∈ ̃(𝐹, 𝐸) ⇒

 𝑃𝜆
𝑥 ∈̃  (𝐺, 𝐸) and hence (𝐹, 𝐸) = (𝐺, 𝐸)  if and only if 𝑃𝜆

𝑥  ∈ ̃ (𝐹, 𝐸)  ⇔ 𝑃𝜆
𝑥 ∈̃  (𝐺, 𝐸). 

 

Proposition 2.3. [6] For two soft sets (𝐹, 𝐸), (𝐺, 𝐸) ∈ 𝑆(�̃�) and a soft point 𝑃𝜆
𝑥 ∈ 𝑆𝑃(�̃�), 

 

(i)   𝑃𝜆
𝑥 ∈̃  (𝐹, 𝐸) ⇔ 𝑃𝜆

𝑥 ∉̃  (𝐹, 𝐸)𝑐 . 
(ii) 𝑃𝜆

𝑥 ∈̃  (𝐹, 𝐸) ∪̃  (𝐺, 𝐸) ⇔ 𝑃𝜆
𝑥 ∈̃  (𝐹, 𝐸)  𝑜𝑟  𝑃𝜆

𝑥 ∈̃  (𝐺, 𝐸). 
(iii) 𝑃𝜆

𝑥  ∈̃  (𝐹, 𝐸) ∩̃  (𝐺, 𝐸) ⇔ 𝑃𝜆
𝑥  ∈̃  (𝐹, 𝐸)  𝑎𝑛𝑑  𝑃𝜆

𝑥 ∈̃  (𝐺, 𝐸). 
 

Definition 2.9. [1] Let (𝐹, 𝐸), (𝐺, 𝐸) ∈ 𝑆(�̃�). A soft cartesian product of (𝐹, 𝐸) and (𝐺, 𝐸), is 

denoted by (𝐹, 𝐸)  ×̃  (𝐺, 𝐸), is defined as  
 

(𝐹, 𝐸)  ×̃  (𝐺, 𝐸) = {((𝑒1, 𝑒2), 𝐹(𝑒1) × 𝐺(𝑒2)) ∶ 𝑒1, 𝑒2 ∈ 𝐸}. 
 

Example 2.10. [1] Suppose that 𝑋 = {ℎ1, ℎ2, ℎ3} and 𝐸 = {𝑒1, 𝑒2, 𝑒3}. Define soft sets          

(𝐹, 𝐸) and (𝐺, 𝐸) as follows; (𝐹, 𝐸) = {(𝑒1, {ℎ1, ℎ2}), (𝑒2, {ℎ2, ℎ3}), (𝑒3, {ℎ1})},                               
(𝐺, 𝐸) = {(𝑒1, {ℎ1}), (𝑒2, {ℎ1, ℎ3}), (𝑒3, {ℎ1, ℎ2})} 

Then 
 

(𝐹, 𝐸)  ×̃  (𝐺, 𝐸) =

{
  
 

  
 

((𝑒1, 𝑒1), {ℎ1, ℎ2} × {ℎ1}), ((𝑒1, 𝑒2), {ℎ1, ℎ2} × {ℎ1, ℎ3}),

((𝑒1, 𝑒3), {ℎ1, ℎ2} × {ℎ1, ℎ2}), ((𝑒2, 𝑒1), {ℎ2, ℎ3} × {ℎ1}),

((𝑒2, 𝑒2), {ℎ2, ℎ3} × {ℎ1, ℎ3}), ((𝑒2, 𝑒3), {ℎ2, ℎ3} × {ℎ1, ℎ2}),

((𝑒3, 𝑒1), {ℎ1} × {ℎ1}), ((𝑒3, 𝑒2), {ℎ1} × {ℎ1, ℎ3}),

((𝑒3, 𝑒3), {ℎ1} × {ℎ1, ℎ2}) }
  
 

  
 

 

 

Definition 2.11. [1] Let (𝐹, 𝐸), (𝐺, 𝐸) ∈ 𝑆(�̃�). A soft relation 𝑅 is a soft set such that     (𝑅, 𝐸 ×
𝐸)  ⊆̃  (𝐹, 𝐸)  ×̃ (𝐺, 𝐸). i.e., 
 

(𝑅, 𝐸 × 𝐸) = {((𝑒1, 𝑒2), 𝑈𝑒1 × 𝑈𝑒2) : 𝑒1, 𝑒2 ∈ 𝐸,𝑈𝑒1 ⊆ 𝐹(𝑒1), 𝑈𝑒2 ⊆ 𝐺(𝑒2)} 
 

We will denote  ((𝑒1, 𝑒2), 𝑈𝑒1 × 𝑈𝑒2) ∈ (𝑅, 𝐸 × 𝐸) as (𝑒1, 𝑈𝑒1)𝑅(𝑒2, 𝑈𝑒2).  
 

Definition 2.12. [1] Let (𝐹, 𝐸), (𝐺, 𝐸) ∈ 𝑆(�̃�). A soft relation (𝑇, 𝐸 × 𝐸)  ⊆̃ (𝐹, 𝐸)  ×̃  (𝐺, 𝐸) is 

called a soft mapping from (𝐹, 𝐸) to (𝐺, 𝐸) if for each soft point 𝑃𝜆
𝑥  ∈̃  (𝐹, 𝐸) there exists only 

one soft point 𝑃𝜇
𝑦
 ∈̃ (𝐺, 𝐸) such that 𝑃𝜆

𝑥𝑇𝑃𝜇
𝑦

. We will denote 𝑃𝜆
𝑥𝑇𝑃𝜇

𝑦
 by 𝑇(𝑃𝜆

𝑥) = 𝑃𝜇
𝑦
. If  (𝑇, 𝐸 ×

𝐸)  ⊆̃ (𝐹, 𝐸)  ×̃  (𝐺, 𝐸) is soft mapping from (𝐹, 𝐸) to (𝐺, 𝐸), then we write it as 

𝑇: (𝐹, 𝐸)  →̃ (𝐺, 𝐸). 
 

Definition 2.13. [1] Let (𝐹, 𝐸), (𝐺, 𝐸) ∈ 𝑆(�̃�) and  𝑇: (𝐹, 𝐸)  →̃ (𝐺, 𝐸) be a soft mapping. 

a) The image of (𝐻, 𝐸)  ⊆̃  (𝐹, 𝐸) under the soft mapping 𝑇 is a soft set, denoted by 

𝑇((𝐻, 𝐸)), defined as follows : 
 

𝑇((𝐻, 𝐸)) =∪̃ {𝑇(𝑃𝜆
𝑥): 𝑃𝜆

𝑥  ∈̃ (𝐻, 𝐸)} 
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b) The inverse of (𝐾, 𝐸)  ⊆̃  (𝐺, 𝐸) under the soft mapping 𝑇 is a soft set, denoted by 

𝑇−1((𝐾, 𝐸)), defined as follows : 
 

𝑇−1((𝐾, 𝐸)) =∪̃ {𝑃𝜆
𝑥: 𝑃𝜆

𝑥  ∈̃ (𝐹, 𝐸), 𝑇(𝑃𝜆
𝑥)  ∈̃ (𝐾, 𝐸)} 

 

Definition 2.14. [6] A mapping 𝑑 ∶  𝑆𝑃(�̃�) ×  𝑆𝑃(�̃�) →  ℝ(𝐸)∗ is said to be a 𝑠𝑜𝑓𝑡 𝑚𝑒𝑡𝑟𝑖𝑐 on 

the soft set �̃� if d satisfies the following conditions : 
 

(M1) 𝑑(𝑃𝜆
𝑥, 𝑃𝜇

𝑦
) ≥̃   0̅ for all  𝑃𝜆

𝑥  , 𝑃𝜇
𝑦
∈  𝑆𝑃(�̃�). 

(M2) 𝑑(𝑃𝜆
𝑥, 𝑃𝜇

𝑦
)  =  0̅  if and only if  𝑃𝜆

𝑥  =  𝑃𝜇
𝑦
. 

(M3) 𝑑(𝑃𝜆
𝑥, 𝑃𝜇

𝑦
)  =  𝑑(𝑃𝜇

𝑦
, 𝑃𝜆

𝑥)  for all 𝑃𝜆
𝑥 , 𝑃𝜇

𝑦
 ∈  𝑆𝑃(�̃�). 

(M4) 𝑑(𝑃𝜆
𝑥, 𝑃𝜇

𝑦
)  ≤̃  𝑑(𝑃𝜆

𝑥, 𝑃𝛾
𝑧)  +  𝑑(𝑃𝛾

𝑧, 𝑃𝜇
𝑦
) for all 𝑃𝜆

𝑥, 𝑃𝜇
𝑦
, 𝑃𝛾

𝑧 ∈ 𝑆𝑃(�̃�). 
 

The soft set �̃� with a soft metric 𝑑 on �̃� is called a 𝑠𝑜𝑓𝑡 𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑝𝑎𝑐𝑒 and denoted by the 

triplet (�̃�, 𝑑, 𝐸) or (�̃�, 𝑑), for short. 
 

Example 2.15. [6] Let 𝑋 ⊂ ℝ be a non-empty set and 𝐸 ⊂ ℝ be the non-empty set of parameters. 

Let �̃�  be the absolute soft set and �̅� be denotes the soft real number such that �̅�(𝜆) = 𝑥 for all 

𝜆 ∈ 𝐸. The mapping 𝑑 ∶ 𝑆𝑃(�̃�) × 𝑆𝑃(�̃�) → ℝ(𝐸)∗ defined by  𝑑(𝑃𝜆
𝑥 , 𝑃𝜇

𝑦
) = |�̅� − �̅�| + |�̅� −  �̅�| 

for all 𝑃𝜆
𝑥, 𝑃𝜇

𝑦
∈ 𝑆𝑃(�̃�), is a soft metric on �̃�.  

 

Definition 2.16. [6] Let {𝑃𝜆𝑛
𝑥𝑛} be a sequence of soft points in a soft metric (�̃�, 𝑑). 

 

(a) The sequence {𝑃𝜆𝑛 
𝑥𝑛} is said to be convergent in (�̃�, 𝑑) if there exists a soft point 𝑃𝜇

𝑦
∈

𝑆𝑃(�̃�) such that 𝑑 (𝑃𝜆𝑛
𝑥𝑛 , 𝑃𝜇

𝑦
) →  0̅ as 𝑛 → ∞. 

(b) The sequence {𝑃𝜆𝑛 
𝑥𝑛} is said to be a Cauchy sequence in (�̃�, 𝑑)  if for each 휀 ̃ >̃ 0̅ there 

exists 𝑛0 ∈ ℕ  such that 𝑑 (𝑃𝜆𝑛
𝑥𝑛 , 𝑃𝜆𝑚

𝑥𝑚) <̃ 휀̃ for all 𝑚,𝑛 ≥ 𝑛0. 
 

Definition 2.17. [6] (Complete Soft Metric Space) A soft metric space (�̃�, 𝑑) is called complete if 

every Cauchy sequence in �̃� converges to some point of �̃�.  
 

Definition 2.18.  [1] Let (�̃�, 𝑑, 𝐸) and (�̃�, 𝜌, 𝐸∗) be two soft metric spaces. A soft mapping     

𝑇 ∶ (�̃�, 𝑑, 𝐸) →̃ (�̃�, 𝜌, 𝐸∗) is said to be soft continuous at a soft point 𝑃𝜆
𝑥 ∈ 𝑆𝑃(�̃�),  if for every 

휀̃ >̃ 0̅, there exists a 𝛿  >̃  0̅  such that 𝜌 (𝑇(𝑃𝜆
𝑥), 𝑇(𝑃𝜇

𝑦
)) <̃ 휀̃ whenever 𝑑(𝑃𝜆

𝑥, 𝑃𝜇
𝑦
) <̃ 𝛿 for all 

𝑃𝜇
𝑦
∈ 𝑆𝑃(�̃�). If  𝑇 is soft continuous at every soft point of �̃�, we say that 𝑇 is soft continuous on 

�̃�. 
 

Proposition 2.4. Let (�̃�, 𝑑, 𝐸) and (�̃�, 𝜌, 𝐸∗) be two soft metric spaces and                                               

𝑇 ∶ (�̃�, 𝑑, 𝐸) →̃ (�̃�, 𝜌, 𝐸∗)  be a soft mapping. For each soft point 𝑃𝜆
𝑥 ∈ 𝑆𝑃(�̃�), 𝑇(𝑃𝜆

𝑥)  is a soft 

point of 𝑆𝑃(�̃�). 
 

3. SOFT FIXED POINT THEOREMS IN TERMS OF SOFT ALTERING DISTANCE 

FUNCTION 
 

Definition 3.1. A soft function 𝜓 ∶ ℝ(𝐸)∗ →̃  ℝ(𝐸)∗  is called a soft altering distance function if 

𝜓 satisfies the following conditions: 
 

a) 𝜓(0̅) = 0̅. 

b) 𝜓 is sequentially continuous. i.e., 𝑖𝑓 𝑃𝜆𝑛
𝑥𝑛 → 𝑃𝜆

𝑥, 𝑡ℎ𝑒𝑛 𝜓 (𝑃𝜆𝑛
𝑥𝑛) → 𝜓(𝑃𝜆

𝑥). 

c) 𝜓 is monotone non-decreasing. 
 

Theorem 3.1. Let (�̃�, 𝑑) be a complete soft metric space, 𝜓 ∶ ℝ(𝐸)∗ →̃  ℝ(𝐸)∗ be a soft altering 

distance function and  𝑇 ∶ �̃�  →̃ �̃� be a soft self mapping satisfying the following inequality 
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𝜓 (𝑑 (𝑇(𝑃𝜆
𝑥), 𝑇(𝑃𝜇

𝑦
)))  ≤̃ 𝑐̅. 𝜓 (𝑑(𝑃𝜆

𝑥 , 𝑃𝜇
𝑦
))                                                                                 (1) 

 

for all 𝑃𝜆
𝑥 , 𝑃𝜇

𝑦
∈ 𝑆𝑃(�̃�) and for some 0̅  <̃ 𝑐̅  <̃  1̅. Then 𝑇 has a unique fixed point in �̃�. 

 

Proof. Let 𝑃𝜆0
𝑥0  ∈̃  �̃� and define 𝑃𝜆𝑛+1

𝑥𝑛+1 = 𝑇(𝑃𝜆𝑛
𝑥𝑛), 𝑎�̃� = 𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑛+1
𝑥𝑛+1)  for all 𝑛 ∈ ℕ ∪ {0}. 

 

We first prove that 𝑇 has a fixed point in �̃�. We may assume that 𝑎�̃� >̃ 0̅ for each 𝑛 ∈ ℕ ∪
{0}. From the contraction condition (1), we obtain  

 

𝜓(𝑑 (𝑇 (𝑃𝜆𝑛
𝑥𝑛) , 𝑇 (𝑃𝜆𝑛+1

𝑥𝑛+1)))  ≤̃ 𝑐̅. 𝜓 (𝑑 (𝑃𝜆𝑛
𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1)) 

⟹𝜓(𝑑 (𝑃𝜆𝑛+1
𝑥𝑛+1 , 𝑃𝜆𝑛+2

𝑥𝑛+2))  ≤̃ 𝑐̅. 𝜓 (𝑑 (𝑃𝜆𝑛
𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1)) 

⟹𝜓(𝑎𝑛+1̃)  ≤̃  𝑐̅ 𝜓(𝑎�̃�)  <̃  𝜓(𝑎�̃�). 
 

Since 𝜓 is non-decreasing, {𝑎�̃�} is a decreasing sequence of soft real numbers. Hence  {𝑎�̃�}  
has a limit point. We put lim𝑛→∞ 𝑎�̃� = �̃� and suppose that �̃� >̃ 0̅. Hence 𝑎�̃�  ≥̃  �̃� implies that  

𝜓(�̃�)  ≤̃  𝑐̅ 𝜓(�̃�)  <̃  𝜓(�̃�)  which is a contradiction. So �̃� = 0̅. Therefore {𝑎�̃�} converges to 0̅. 

Now, we prove that { 𝑃𝜆𝑛
𝑥𝑛  } is a Cauchy sequence in (�̃�, 𝑑). Suppose it is not a Cauchy 

sequence. Then, there exists  휀̃  >̃  0̅ and two subsequence {𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘} , {𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘} of  { 𝑃𝜆𝑛
𝑥𝑛  } such that 

for every 𝑛 ∈ ℕ ∪ {0}, we find that 𝑛𝑘 > 𝑚𝑘 ≥ 𝑛,  𝑑 (𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)  ≥̃  휀̃  and 

𝑑 (𝑃
𝜆𝑛𝑘−1

𝑥𝑛𝑘−1 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)  <̃  휀̃. For each 𝑛 ≥ 0, we put 𝑠�̃� = 𝑑 (𝑃𝜆𝑛𝑘

𝑥𝑛𝑘 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘). Then, we have  
 

휀̃ ≤̃ 𝑑 (𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)  ≤̃  𝑑 (𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘 , 𝑃
𝜆𝑛𝑘−1

𝑥𝑛𝑘−1) + 𝑑 (𝑃
𝜆𝑛𝑘−1

𝑥𝑛𝑘−1 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)  <̃ 𝑎𝑛𝑘−1̃ + 휀̃ 
 

Since {𝑎�̃�} converges to 0̅, {𝑠�̃�} converges to 휀̃. Also {𝑑 (𝑃
𝜆𝑛𝑘+1

𝑥𝑛𝑘+1 , 𝑃
𝜆𝑚𝑘+1

𝑥𝑚𝑘+1)}  converges to 휀̃. 

From the hypothesis, we deduce 
 

𝜓(𝑑 (𝑇 (𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘) , 𝑇 (𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)))  ≤̃  𝑐̅ 𝜓 (𝑑 (𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)) 

⟹𝜓(𝑑 (𝑃
𝜆𝑛𝑘+1

𝑥𝑛𝑘+1 , 𝑃
𝜆𝑚𝑘+1

𝑥𝑚𝑘+1)) ≤̃  𝑐̅ 𝜓 (𝑑 (𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)) 

 

Letting 𝑘 → ∞, we obtain that 𝜓(휀̃) ≤̃ 𝑐̅ 𝜓(휀̃) <̃ 𝜓(휀̃) which is a contradiction. Hence, 

{ 𝑃𝜆𝑛
𝑥𝑛  } is a Cauchy sequence. By completeness of  (�̃�, 𝑑),  { 𝑃𝜆𝑛

𝑥𝑛  } converges to some soft point 

𝑃𝛾
𝑧.  

Now, we show that 𝑃𝛾
𝑧 is a fixed point of 𝑇. If we substitute 𝑃𝜆

𝑥 = 𝑃𝜆𝑛−1
𝑥𝑛−1 and  𝑃𝜇

𝑦
= 𝑃𝛾

𝑧  in 

(1), we obtain  
 

𝜓(𝑑 (𝑇 (𝑃𝜆𝑛−1
𝑥𝑛−1) , 𝑇(𝑃𝛾

𝑧)))  ≤̃  𝑐̅ 𝜓 (𝑑 (𝑃𝜆𝑛−1
𝑥𝑛−1 , 𝑃𝛾

𝑧)) 

⟹𝜓(𝑑 (𝑃𝜆𝑛
𝑥𝑛 , 𝑇(𝑃𝛾

𝑧))) ≤̃  𝑐̅ 𝜓 (𝑑 (𝑃𝜆𝑛−1
𝑥𝑛−1 , 𝑃𝛾

𝑧)). 

 

Letting 𝑛 → ∞ and using the contunity of 𝜓 and contunity of 𝑑, 
 

𝜓 (𝑑 (𝑃𝛾
𝑧, 𝑇(𝑃𝛾

𝑧)))  ≤̃  𝑐̅ 𝜓 (𝑑(𝑃𝛾
𝑧, 𝑃𝛾

𝑧)) = 𝑐̅ 𝜓(0̅) = 0̅ 
 

which implies  𝜓 (𝑑 (𝑃𝛾
𝑧, 𝑇(𝑃𝛾

𝑧))) = 0̅ that is  𝑇(𝑃𝛾
𝑧) =  𝑃𝛾

𝑧. 
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To prove the uniqueness, we assume that 𝑃𝛾1
𝑧1 , 𝑃𝛾2

𝑧2  be two different fixed points of 𝑇. Then, 

from (1), we obtain that 
 

𝜓 (𝑑 (𝑇(𝑃𝛾1
𝑧1), 𝑇(𝑃𝛾2

𝑧2)))  ≤̃  𝑐̅ 𝜓 (𝑑(𝑃𝛾1
𝑧1 , 𝑃𝛾2

𝑧2)) 

⟹𝜓(𝑑(𝑃𝛾1
𝑧1 , 𝑃𝛾2

𝑧2)) ≤̃  𝑐̅ 𝜓 (𝑑(𝑃𝛾1
𝑧1 , 𝑃𝛾2

𝑧2))  <̃   𝜓 (𝑑(𝑃𝛾1
𝑧1 , 𝑃𝛾2

𝑧2)) 
 

which is a contradiction. Hence 𝑇 has a unique fixed point in �̃�. 
 

Note. If we consider 𝜓(�̃�) = �̃�, then the above theorems reduces the contraction condition 
 

𝑑 (𝑇(𝑃𝜆
𝑥), 𝑇(𝑃𝜇

𝑦
))  ≤̃ 𝑐̅. 𝑑(𝑃𝜆

𝑥, 𝑃𝜇
𝑦
) 

 

where 0̅  ≤̃  𝑐̅  <̃  1̅, which is given by Abbas [1]. 
 

Theorem 3.2.  Let (�̃�, 𝑑) be a complete soft metric space, 𝜑 ∶ ℝ(𝐸)∗ →̃  ℝ(𝐸)∗ be a soft altering 

distance function with 𝜑(�̃�) ≠ 0̅ for all �̃� ≠ 0̅ and  𝑇 ∶ �̃�  →̃ �̃� be a soft self mapping satisfying 

the following inequality 
 

𝑑 (𝑇(𝑃𝜆
𝑥), 𝑇(𝑃𝜇

𝑦
))  ≤̃ 𝑑(𝑃𝜆

𝑥, 𝑃𝜇
𝑦
) − 𝜑 (𝑑(𝑃𝜆

𝑥, 𝑃𝜇
𝑦
))                                                                       (2) 

 

for all 𝑃𝜆
𝑥 , 𝑃𝜇

𝑦
∈ 𝑆𝑃(�̃�). Then 𝑇 has a unique fixed point in �̃�. 

 

Proof. Let 𝑃𝜆0
𝑥0  ∈̃  �̃� and define 𝑃𝜆𝑛+1

𝑥𝑛+1 = 𝑇(𝑃𝜆𝑛
𝑥𝑛), 𝑎�̃� = 𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑛+1
𝑥𝑛+1)  for all 𝑛 ∈ ℕ ∪ {0}. 

 

We first prove that 𝑇 has a fixed point. We may assume that 𝑎�̃�  >̃  0̅ for each 𝑛. From the 

contraction condition (2), we obtain  
 

𝑑 (𝑇 (𝑃𝜆𝑛
𝑥𝑛) , 𝑇 (𝑃𝜆𝑛+1

𝑥𝑛+1))  ≤̃ 𝑑 (𝑃𝜆𝑛
𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1) − 𝜑 (𝑑 (𝑃𝜆𝑛
𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1))        

⟹ 𝑑(𝑃𝜆𝑛+1
𝑥𝑛+1 , 𝑃𝜆𝑛+2

𝑥𝑛+2)  ≤̃ 𝑑 (𝑃𝜆𝑛
𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1) −  𝜑 (𝑑 (𝑃𝜆𝑛
𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1)) 

⟹ 𝑎𝑛+1̃  ≤̃  𝑎�̃� − 𝜑(𝑎�̃�)  <̃  𝑎�̃�                                                                                                              (2.1) 
 

Therefore, {𝑎�̃�} is a decreasing sequence of soft real numbers. Hence  {𝑎�̃�}  has a limit point. 

We put lim𝑛→∞ 𝑎�̃� = �̃� and suppose that �̃� >̃ 0̅. Since 𝜑 is non-decreasing, 𝑎�̃�  ≥̃  �̃� implies that 

𝜑(𝑎�̃�) ≥̃  𝜑(�̃�)  >̃  0̅. By (2.1), we have  𝑎𝑛+1̃  ≤̃  𝑎�̃� − 𝜑(�̃�). 
Thus   𝑎𝑛+�̃�  ≤̃  𝑎�̃� − �̅�𝜑(�̃�) is a contradiction for 𝑀 large enough. So �̃� = 0̅. Therefore 

{𝑎�̃�} converges to 0̅. As in the above theoremi it is easy to show that  { 𝑃𝜆𝑛
𝑥𝑛  } is a Cauchy 

sequence in (�̃�, 𝑑). By completeness of  (�̃�, 𝑑),  { 𝑃𝜆𝑛
𝑥𝑛  } converges to some soft point 𝑃𝛾

𝑧.  

Now, we show that 𝑃𝛾
𝑧 is a fixed point of 𝑇. If we substitute 𝑃𝜆

𝑥 = 𝑃𝜆𝑛−1
𝑥𝑛−1 and  𝑃𝜇

𝑦
= 𝑃𝛾

𝑧  in 

(2), we obtain  
 

𝑑 (𝑇 (𝑃𝜆𝑛−1
𝑥𝑛−1) , 𝑇(𝑃𝛾

𝑧))  ≤̃ 𝑑 (𝑃𝜆𝑛−1
𝑥𝑛−1 , 𝑃𝛾

𝑧) − 𝜑 (𝑑 (𝑃𝜆𝑛−1
𝑥𝑛−1 , 𝑃𝛾

𝑧)) 

⟹ 𝑑(𝑃𝜆𝑛
𝑥𝑛 , 𝑇(𝑃𝛾

𝑧)) ≤̃ 𝑑 (𝑃𝜆𝑛−1
𝑥𝑛−1 , 𝑃𝛾

𝑧) −  𝜑 (𝑑 (𝑃𝜆𝑛−1
𝑥𝑛−1 , 𝑃𝛾

𝑧)) 
 

Letting 𝑛 → ∞ and using contunity of 𝜓 and contunity of 𝑑, 
 

𝑑 (𝑃𝛾
𝑧, 𝑇(𝑃𝛾

𝑧))  ≤̃  𝑑(𝑃𝛾
𝑧, 𝑃𝛾

𝑧) −  𝜑 (𝑑(𝑃𝛾
𝑧, 𝑃𝛾

𝑧)) = 0̅ 
 

which implies  𝑑 (𝑃𝛾
𝑧, 𝑇(𝑃𝛾

𝑧)) = 0̅ that is  𝑇(𝑃𝛾
𝑧) =  𝑃𝛾

𝑧. 

To prove the uniqueness, we assume that 𝑃𝛾1
𝑧1 , 𝑃𝛾2

𝑧2  be two different fixed points of 𝑇. Then, 

from (2) we obtain that 
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𝑑 (𝑇(𝑃𝛾1
𝑧1), 𝑇(𝑃𝛾2

𝑧2))  ≤̃  𝑑(𝑃𝛾1
𝑧1 , 𝑃𝛾2

𝑧2) − 𝜑 (𝑑(𝑃𝛾1
𝑧1 , 𝑃𝛾2

𝑧2)) 

⟹ 𝑑(𝑃𝛾1
𝑧1 , 𝑃𝛾2

𝑧2)  ≤̃  𝑑(𝑃𝛾1
𝑧1 , 𝑃𝛾2

𝑧2) − 𝜑 (𝑑(𝑃𝛾1
𝑧1 , 𝑃𝛾2

𝑧2))               

⟹ 𝜑(𝑑(𝑃𝛾1
𝑧1 , 𝑃𝛾2

𝑧2))  ≤̃  0̅                                                              
 

which implies  𝜑 (𝑑(𝑃𝛾1
𝑧1 , 𝑃𝛾2

𝑧2))  = 0̅, that is  𝑃𝛾1
𝑧1 = 𝑃𝛾2

𝑧2. Hence 𝑇 has a unique fixed point �̃�. 
 

Note. If we consider 𝜑(�̃�) = �̅�. �̃�, 0̅  <̃ �̅�  ≤̃ 1̅, then the above theorem reduces the contraction 

condition 
 

𝑑 (𝑇(𝑃𝜆
𝑥), 𝑇(𝑃𝜇

𝑦
))  ≤̃ 𝑐̅. 𝑑(𝑃𝜆

𝑥, 𝑃𝜇
𝑦
) 

 

where 0̅  ≤̃  𝑐̅  <̃  1̅, which is given by Abbas [1]. 
 

Theorem 3.3.  Let (�̃�, 𝑑) be a complete soft metric space, 𝜓,𝜑 ∶ ℝ(𝐸)∗ →̃  ℝ(𝐸)∗ be two soft 

altering distance functions with 𝜓(�̃�) ≠ 0̅ and 𝜑(�̃�) ≠ 0̅ for all �̃� ≠ 0̅ and  𝑇 ∶ �̃�  →̃ �̃� be a soft 

self mapping satisfying the following inequality 
 

𝜓 (𝑑 (𝑇(𝑃𝜆
𝑥), 𝑇(𝑃𝜇

𝑦
)))  ≤̃ 𝜓(𝑑(𝑃𝜆

𝑥, 𝑃𝜇
𝑦
)) − 𝜑 (𝑑(𝑃𝜆

𝑥, 𝑃𝜇
𝑦
))                                                         (3) 

 

for all 𝑃𝜆
𝑥 , 𝑃𝜇

𝑦
∈ 𝑆𝑃(�̃�). Then 𝑇 has a unique fixed point in �̃�. 

 

Proof. Let 𝑃𝜆0
𝑥0  ∈̃  �̃� and define 𝑃𝜆𝑛+1

𝑥𝑛+1 = 𝑇(𝑃𝜆𝑛
𝑥𝑛), 𝑎�̃� = 𝑑 (𝑃𝜆𝑛

𝑥𝑛 , 𝑃𝜆𝑛+1
𝑥𝑛+1)  for all 𝑛 ∈ ℕ ∪ {0}. 

 

We first prove that 𝑇 has a fixed point in �̃�. We may assume that 𝑎�̃� >̃ 0̅ for each 𝑛 ∈ ℕ ∪
{0}.. From the contraction condition (3), we obtain  

 

𝜓(𝑑 (𝑇 (𝑃𝜆𝑛
𝑥𝑛) , 𝑇 (𝑃𝜆𝑛+1

𝑥𝑛+1)))  ≤̃ 𝜓 (𝑑 (𝑃𝜆𝑛
𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1)) − 𝜑 (𝑑 (𝑃𝜆𝑛
𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1))        

⟹𝜓(𝑑 (𝑃𝜆𝑛+1
𝑥𝑛+1 , 𝑃𝜆𝑛+2

𝑥𝑛+2))  ≤̃ 𝜓 (𝑑 (𝑃𝜆𝑛
𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1)) −  𝜑 (𝑑 (𝑃𝜆𝑛
𝑥𝑛 , 𝑃𝜆𝑛+1

𝑥𝑛+1)) 

⟹𝜓(𝑎𝑛+1̃)  ≤̃  𝜓(𝑎�̃�) − 𝜑(𝑎�̃�)  <̃  𝜓(𝑎�̃�)                                                                               (3.1) 
 

Since 𝜓 is non-decreasing, {𝑎�̃�} is a decreasing sequence of soft real numbers. Hence  {𝑎�̃�}  
has a limit point. We put lim𝑛→∞ 𝑎�̃� = �̃� and suppose that �̃�  >̃  0̅. Letting 𝑛 → ∞ in (3.1) and 

using continuity of 𝜓, we obtain 𝜓(�̃�)  ≤̃ 𝜓(�̃�) − 𝜑(𝑎) <̃  𝜓(�̃�)  which is a contradiction. So 

�̃� = 0̅. Therefore {𝑎�̃�} converges to 0̅. 

Now, we prove that { 𝑃𝜆𝑛
𝑥𝑛  } is a Cauchy sequence in (�̃�, 𝑑). Suppose it is not a Cauchy 

sequence. Then there exists  휀̃ >̃ 0̅ and two subsequence {𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘} , {𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘} of  { 𝑃𝜆𝑛
𝑥𝑛  } such that for 

every 𝑛 ∈ ℕ ∪ {0}, we find that 𝑛𝑘 > 𝑚𝑘 ≥ 𝑛,  𝑑 (𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)  ≥̃  휀̃  and 𝑑 (𝑃
𝜆𝑛𝑘−1

𝑥𝑛𝑘−1 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)  <̃  휀̃. 

For each 𝑛 ≥ 0, we put 𝑠�̃� = 𝑑 (𝑃𝜆𝑛𝑘

𝑥𝑛𝑘 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘). Then, we have  
 

휀̃ ≤̃ 𝑑 (𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)  ≤̃  𝑑 (𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘 , 𝑃
𝜆𝑛𝑘−1

𝑥𝑛𝑘−1) + 𝑑 (𝑃
𝜆𝑛𝑘−1

𝑥𝑛𝑘−1 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)  <̃ 𝑎𝑛𝑘−1̃ + 휀̃. 
 

Since {𝑎�̃�} converges to 0̅, {𝑠�̃�} converges to  휀̃. Also {𝑑 (𝑃
𝜆𝑛𝑘+1

𝑥𝑛𝑘+1 , 𝑃
𝜆𝑚𝑘+1

𝑥𝑚𝑘+1)}  converges to  휀̃. 

From the hypothesis, we deduce 
 

𝜓(𝑑 (𝑇 (𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘) , 𝑇 (𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)))  ≤̃   𝜓 (𝑑 (𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)) − 𝜑 (𝑑 (𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)) 

⟹𝜓(𝑑 (𝑃
𝜆𝑛𝑘+1

𝑥𝑛𝑘+1 , 𝑃
𝜆𝑚𝑘+1

𝑥𝑚𝑘+1)) ≤̃  𝜓 (𝑑 (𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)) − 𝜑(𝑑 (𝑃
𝜆𝑛𝑘

𝑥𝑛𝑘 , 𝑃
𝜆𝑚𝑘

𝑥𝑚𝑘)) 
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Letting 𝑘 → ∞, we obtain that 𝜓(휀̃)  ≤̃  𝜓(휀̃) − 𝜑(휀̃) <̃  𝜓(휀̃) which is a contradiction. 

Therefore  {𝑃𝜆𝑛
𝑥𝑛} is a Cauchy sequence. By completeness of (�̃�, 𝑑), {𝑃𝜆𝑛

𝑥𝑛} converges to some soft 

point 𝑃𝛾
𝑧.  

Now, we show that 𝑃𝛾
𝑧 is a fixed point of 𝑇. If we substitute 𝑃𝜆

𝑥 = 𝑃𝜆𝑛−1
𝑥𝑛−1 and  𝑃𝜇

𝑦
= 𝑃𝛾

𝑧  in 

(3), we obtain  
 

𝜓(𝑑 (𝑇 (𝑃𝜆𝑛−1
𝑥𝑛−1) , 𝑇(𝑃𝛾

𝑧)))  ≤̃  𝜓 (𝑑 (𝑃𝜆𝑛−1
𝑥𝑛−1 , 𝑃𝛾

𝑧))  − 𝜑 (𝑑 (𝑃𝜆𝑛−1
𝑥𝑛−1 , 𝑃𝛾

𝑧)) 

⟹𝜓(𝑑 (𝑃𝜆𝑛
𝑥𝑛 , 𝑇(𝑃𝛾

𝑧))) ≤̃  𝜓 (𝑑 (𝑃𝜆𝑛−1
𝑥𝑛−1 , 𝑃𝛾

𝑧)) − 𝜑 (𝑑 (𝑃𝜆𝑛−1
𝑥𝑛−1 , 𝑃𝛾

𝑧)). 

 

Letting 𝑛 → ∞ and using the contunity of 𝜓 and contunity of 𝑑, 
 

𝜓 (𝑑 (𝑃𝛾
𝑧, 𝑇(𝑃𝛾

𝑧)))  ≤̃ 𝜓 (𝑑(𝑃𝛾
𝑧, 𝑃𝛾

𝑧)) − 𝜑 (𝑑(𝑃𝛾
𝑧, 𝑃𝛾

𝑧)) 

⟹𝜓(𝑑 (𝑃𝛾
𝑧, 𝑇(𝑃𝛾

𝑧)))  ≤̃  𝜓(0̅) − 𝜑(0̅) = 0̅ 
 

which implies  𝜓 (𝑑 (𝑃𝛾
𝑧, 𝑇(𝑃𝛾

𝑧))) = 0̅, that is  𝑇(𝑃𝛾
𝑧) =  𝑃𝛾

𝑧. 
 

Note. In Theorem 3.3, if we particularly take 𝜑(�̃�) = (1̅ − �̅�). 𝜓(�̃�) for all �̃�  >̃  0̅ where 

0̅  <̃  �̅�  <̃  1̅, then we obtain the result noted in Theorem 3.1. Again, in Theorem 3.3, if we 

particularly take 𝜓(�̃�) =  �̃� for all �̃�  >̃  0̅ where 0̅ <̃ �̅� <̃ 1̅, then we obtain the result noted in 

Theorem 3.2. 
 

Example 3.2. Let 𝑋 = [0,1] and 𝐸 = {0,1}. According to Example 2.15, the mapping                 

𝑑: 𝑆𝑃(�̃�) × 𝑆𝑃(�̃�) → ℝ(𝐸)∗ given by 𝑑(𝑃𝜆
𝑥, 𝑃𝜇

𝑦
) = |�̅� − �̅� | + |�̅� − �̅� | for all 𝑃𝜆

𝑥, 𝑃𝜇
𝑦
∈ 𝑆𝑃(�̅�) is 

a soft metric on �̃�. Furthermore, the soft metric space (�̃�, 𝑑) is complete [1]. 
 

Let 𝜓 ∶ ℝ(𝐸)∗ →̃ ℝ(𝐸)∗ be defined as 𝜓(�̃�) = {  
�̃�   , 𝑖𝑓 0̅  ≤̃  �̃�  ≤̃  1̅ 

�̃�2 , 𝑖𝑓 �̃�  >̃ 1̅              
, where �̃�2(𝑒) = (�̃�(𝑒))

2
 

for all 𝑒 ∈ 𝐸 and 𝜑 ∶ ℝ(𝐸)∗ →̃ ℝ(𝐸)∗ be defined as 𝜑(�̃�) = {
  
1

2

̅
�̃�2     ,   𝑖𝑓 0̅  ≤̃  �̃�  ≤̃  1̅ 

1

2

̅
         ,     𝑖𝑓 �̃�  >̃ 1̅          

.  

Let 𝑇 ∶ �̃� →̃ �̃� be defined as  𝑇(𝑃0
𝑥) = 𝑃0

0 and  𝑇(𝑃1
𝑥) = 𝑃0

𝑥/2
 for all 𝑥 ∈ 𝑋. We show that  𝑇 

satisfies all conditions of Theorem 3.3. If  𝑃𝜆
𝑥 = 𝑃𝜇

𝑦
, then the contraction condition is satisfied. 

We assume that 𝑃𝜆
𝑥 ≠ 𝑃𝜇

𝑦
. 

 

𝜓(𝑑 (𝑇(𝑃1
𝑥), 𝑇(𝑃1

𝑦
))) = 𝜓 (𝑑(𝑃0

𝑥/2
, 𝑃0

𝑦/2
)) = 𝜓 (|

𝑥

2

̅
−
𝑦

2

̅
|) = 𝜓(

1

2

̅
|�̅� − �̅�|) =

1

2

̅
|�̅� − �̅�| 

≤̃  (1̅ −
1

2

̅
|�̅� − �̅�|) . |�̅� − �̅�| =  |�̅� − �̅�| − 

1

2

̅
|�̅� − �̅�|2  =  𝜓 (𝑑(𝑃1

𝑥, 𝑃1
𝑦
)) − 𝜑 (𝑑(𝑃1

𝑥 , 𝑃1
𝑦
)) 

𝜓 (𝑑 (𝑇(𝑃0
𝑥), 𝑇(𝑃1

𝑦
))) = 𝜓 (𝑑(𝑃0

0, 𝑃0
𝑦/2
)) = 𝜓 (|

𝑦

2

̅
|) =

�̅�

2
 ≤̃

1

2

̅
 ≤̃

1

2

̅
+ |�̅� − �̅�|2 + 2̅|�̅� − �̅�| 

= (|�̅� − �̅�| + 1̅)2 −
1

2

̅
= 𝜓 (𝑑(𝑃0

𝑥, 𝑃1
𝑦
)) − 𝜑 (𝑑(𝑃0

𝑥 , 𝑃1
𝑦
)) 

𝜓 (𝑑(𝑇(𝑃0
𝑥), 𝑇(𝑃1

𝑥)))  = 𝜓 (𝑑(𝑃0
0, 𝑃0

𝑥/2
)) = 𝜓 (|

𝑥

2

̅
|) =  

�̅�

2
 ≤̃

1

2

̅
= 1̅ −

1

2

̅
 

= 𝜓(1̅) − 𝜑(1̅) = 𝜓(𝑑(𝑃0
𝑥 , 𝑃1

𝑥)) − 𝜑(𝑑(𝑃0
𝑥, 𝑃1

𝑥)) 
 

Hence, all conditions of Theorem 3.3 are satisfied. In fact 𝑃0
0 is the unique fixed point of 𝑇. 
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4. CONCLUSION 

 

In this paper, we have studied some fixed point results which are the generalizations of 

Banach fixed point theorem in soft metric spaces given by Abbas. With another different 

contraction conditions, soft metric fixed point theory can be developed further. 

 

REFERENCES 
 

[1] M. Abbas, Soft Set Theory: Generalizations, Fixed Point Theorems and Applications 

(PhD Thesis) (2014). 

[2] M. Abbas, G. Murtaza, S. Romaguera, On the fixed point theory of soft metric spaces, 

Fixed Point Theory and Applications (2016) 1-11. 

[3] M. I. Ali, F. Feng, X. Liu, W. K. Min, M.S habir, On Some New Operations In Soft Set 

Theory, Comput. and Math. Appl. 57 (2009), 1547- 1553. 

[4] N. Çağman, S. Enginoğlu, Soft set theory and uni–int decision making, European Journal 

of Operational Research 207 (2010) 848–855. 

[5] S. Das, S. K. Samanta, Soft real set, soft real number and their properties, J. Fuzzy Math. 

20 (2012) 551- 576. 

[6] S. Das, S. K. Samanta, Soft metric, Ann. Fuzzy Math. Inform. 6 (2013) 77-94. 

[7] P. N. Dutta, B. S. Choudhury, A Generalisation of Contraction Principle in Metric Spaces, 

Fixed Point Theory Appl. (2008). 

[8] M. Khan, M. Swaleh, S. Sessa, Fixed Point Theorems by Altering Distances Between the 

Points, Bulletin of Australian Mathematical Society 30 (1984), 1–9.  

[9] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Computers Mathematics with Appl. 45 

(2003) 555-562. 

[10] D. Molodtsov, Soft set theory-first results, Computers Mathematics with Appl. 37 (1999) 

19-31. 

[11] D. Pei, D. Miao, From soft sets to information systems, Granular Computing, 2005 IEEE 

International Conference on (2) 617—621. 

[12] D. Wardowski, On a soft mapping and its fixed points, Fixed Point Theory and Appl. 

(2013) 182-193.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Soft Fixed Point Theorems in Terms of Soft   …    /   Sigma J Eng & Nat Sci 9 (3), 285-293, 2018 


