
393 

 

Sigma J Eng & Nat Sci 34 (3), 2016, 393-405 
 

                                                                                                                                 
 
 
 
 

Research Article / Araştırma Makalesi 
ACCELERATING HANDWRITTEN SIGNATURE RECOGNITION USING 
INTELLIGENT ALGORITHM BASED EMBEDDED SYSTEM 
 
 
Ali Rıza YILMAZ1, Burcu ERKMEN*1, Oğuzhan YAVUZ2 

 
1Yildiz Technical University, Department of Electronics and Communication Engineering, Istanbul-TURKEY 
2İstanbul Technical University, Istanbul-TURKEY 
 
Received/Geliş: 22.02.2016   Revised/Düzeltme: 03.06.2016   Accepted/Kabul: 25.06.2016 
 
 
ABSTRACT 
 
In this work, intelligent algorithms designed on embedded hardware for signature recognition is presented. 
Feed forward Conic Section Function Neural Network (CSFNN) and Differential Evaluation Algorithm 
(DEA) are implemented on the Field Programmable Gate Arrays (FPGAs). Unified robust classifier CSFNN 
is applied on the preprocessed signatures for recognition purpose.  DEA is used for training CSFNN in order 
to overcome local minimum problems. The implemented CSFNN on FPGA has the characteristics of flexible 
adaptable size providing various datasets. The CSFNN implementation on FPGA is realized using the 16-bit 
floating point arithmetic IEEE 754-2008 standard. The proposed on-chip CSFNN based signature recognition 
system described in VHDL has been implemented and evaluated on a high–end Virtex 7 -VC707 platform. 
The intelligent system embedded on FPGA is approximately 105 times faster than its equivalent software 
implementation.  
Keywords: Conic section function neural network, FPGAs, signature recognition, differential evaluation 
algorithm. 
 
 
AKILLI ALGORİTMA TABANLI GÖMÜLÜ SİSTEM KULLANARAK İMZA TANIMA 
İŞLEMİNİN HIZLANDIRILMASI 
 
ÖZ 
 
Bu çalışmada, imza tanıma işlemi için akıllı algoritmaların gömülü donanım üzerinde tasarımı sunulmuştur.  
İleri beslemeli Konik Kesit Fonksiyonlu Sinir Ağları (CSFNN) ve Diferansiyel Gelişim Algoritması (DEA), 
Sahada Programlanabilir Kapı Dizileri (FPGA) üzerinde gerçeklenmiştir. Birleştirilmiş ağ yapısına ve başarılı 
sınıflama performansına sahip CSFNN, tanıma amaçlı ön işlemlerden geçirilmiş imza verilerine 
uygulanmıştır. DEA, CSFNN’in eğitimi esnasında local minimum problemlerinin üstesinden gelebilmek 
amacıyla kullanılmıştır. FPGA üzerinde gerçeklenen CSFNN, çeşitli veri tabanlarının uygulanmasını 
sağlamak üzere esnek uyarlanabilir boyutlu bir karakteristiğe sahiptir. 16 bit kayan noktalı aritmetik 
kullanılarak  IEEE 754-2008 standartında FPGA üzerinde CSFNN gerçeklenmiştir. Önerilen CSFNN tabanlı 
imza tanıma sistemi, çip üzerinde VHDL Donanım Tanımlama dili kullanılarak tanımlanmış, yüksek seviye 
Virtex 7 -VC707 platformu üzerinde çalıştırılmıştır. FPGA üzerinde oluşturulan Akıllı Sistem, karşılık düşen 
yazılım uygulamasına göre  yaklaşık olarak 105 kat daha hızlı yanıt vermektedir. 
Anahtar Sözcükler: Konik kesit fonsiyonlu sinir ağları, FPGA, imza tanıma, farksal gelişim algoritması. 
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1. INTRODUCTION 
 

Signatures every day are used to authorize, some bureaucratic transactions, contracts, and to 
validate financial process and credit card receipt. The visual appearance of our signatures for 
verification and security purposes is especially taken into account by financial and commercial 
organizations. A biometric signatures recognition system is realized for recognizing the owners 
of signatures. In literature, many successful studies are presented for solving the handwritten 
signature recognition and verification problems. The aim of those works is to detect the forgeries 
using the signature verification methods. Two methods of the signature recognition and 
verification are available, on-line and off-line. The on-line method with a special device such as 
electronic tablet, pressure sensitive pens, and glove-based systems measures the sequential data, 
such as handwriting speed and pen pressure [1-2]. The off-line method uses an optical scanner to 
obtain handwriting data from a signature written on paper. For the off-line method, two main 
approaches are used. One of them is pseudo-dynamic approach, the other one is static approach 
that uses global [3] or geometric and topological features and grid information [4]. 

In recognition process, the features of the test signatures are compared with stored signature 
database previously. NNs have been robust classifiers to widely used for automatic signature 
verification for a long time [5]. There are many NNs that are used for the classification of 
signatures or hand-written recently. One of them is multi-layer perceptron (MLP) which is used 
for on-line and off-line hand-written recognition problems [6]. Moreover, radial basis function 
(RBF), back-propagation NNs (BPNs) [7], and Conic Section Function Neural Network 
(CSFNN) [4, 8] were used as robust classifiers for signature recognition. CSFNN training using 
back-propagation algorithm could be suffer from stucking into local minimums which can be 
solved by using repeated trainings. Although the gradient algorithms are based on local search 
methods, DEA relies on global search method to avoid local minimum problem [9]. 

The majority of numerous implementations of Artificial Neural Networks (ANNs) were 
realized as software platform on sequential processors. However, NN models require a lot of 
computing time to be simulated on a sequential machine that results in a great difficulty to 
investigate the behavior of large NNs and to verify their ability to solve problems [4]. On the 
other hand, ANN hardware implementation with ASIC provides compact and high speed custom 
designed circuits due to the use of hardware architectures matching the parallel structure of 
ANNs. However, while developing ANN sub-circuits, ASIC device realization is time 
consuming, expensive and inflexible [4]. Powerful alternative to VLSI realizations in terms of 
low cost and re-configurability, ANNs were realized on the reconfigurable platforms such as 
digital signal processing (DSP), and Field Programmable Gate Array (FPGA) based 
implementations. FPGAs with their massively parallel platform are preferable for the hardware 
implementations of ANNs. The main benefits of the usage of a system-on-programmable-chip 
implementation are re-configurability and low cost design provided by the high level of parallel 
integration. The vast majority FPGA implementation of ANN architectures, the learning 
algorithms are static implementations for off-chip applications without learning capability [10]. 
One of the off-chip pattern classification applications using CSFNN implemented on low cost 
FPGA platform was presented in [11]. Some of FPGA implementations, run time reconfiguration 
was achieved for online applications [12-14]. FPGA realizations of MLP with Levenberg-
Marquardt Algorithm [12], the back-propagation algorithm [13-14] and DEA [15] have been 
developed as on-chip methodology. Due to the advantages of FPGA, the systems which operate 
the complex the hand-written and the signatures data have been realized recently [16, 17].  

The main objective of this paper is to accelerate intelligent system performance on FPGA 
platform using on chip learning technique. Highly nonlinear signature recognition problem was 
performed with CSFNN using DEA training method on embedded hardware.  
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2. SIGNATURE RECOGNITION SYSTEM 
 

Data acquisition, signature preprocessing, classification, performance evaluation are the main 
stages of typical Signature Recognition System. CSFNN Based Signature Recognition System 
includes two main phase, namely, the training and the recognition phases. The performance of 
pre-processed signature databases was evaluated in Signature within the scope of this work. Each 
signature database divided into two parts each containing the training and the test samples before 
applied to intelligent system. The training samples were applied to CSFNN in the training phase 
where the network parameters were updated to minimize the error signals using an evolutionary 
algorithm. After the training phase was completed, the test samples were presented to CSFNN 
feed-forward module in recognition phase as shown in Figure 1. 

 

 
 

Figure 1. Data flow within signature recognition system 
 

2.1. Data Acquisition and Preprocessing 
 

The performance of Signature Recognition System has been evaluated using Signature 
Dataset from [4] in this work. In the databases, the signature samples, collected from various 
people, were processed using several techniques before applying them into CSFNN. The 
following techniques examined in [18]. These methods are summarized briefly as follows: the 
noise reduction algorithm, the masking, and the signature skeletonization were realized on the 
signature images acquired by scanner. After applying preprocessing techniques, the feature 
vectors were constituted by using the feature extraction methods. The feature numbers of high 
dimensional datasets including grid information and global features, which was not suitable for 
presenting to CSFNN as it stands, were decreased, namely compressed, by Principle Component 
Analysis (PCA), linear scaling and selecting centers were the last steps to form the database. 
 
2.2. Signature Database 
 

Signature Dataset from [18] contains 256 signature images from 8 people with 32 signatures 
for each person. The database comprises of 10 features after PCA. This database contains 8 

Accelerating Handwritten Signature Recognition Using …  /   Sigma J Eng & Nat Sci 34 (3), 393-405, 2016



396 

 

classes where each class refers to a signature owner. The training and test samples were chosen 
from signature databases randomly. 200 signature samples including 25 samples for each class 
form the training set and the rest have been used for testing.  
 
2.3. The Feed-Forward Network  
 

The CSFNN is a layered fully connected feed-forward network which combines the 
propagation rules of RBFs and MLPs on a single NN with a unique propagation rule that make 
possible simultaneous use of advantages of both networks [19]. Ellipses, hyperbolas or parabolas 
in between hyper-plane and hyper-sphere, special cases of CSFNN, are all valid for decision 
regions of CSFNN. Automatic decision boundaries are provided through the distribution of a 
given dataset [4, 20]. It makes satisfactory classification performance even if high dimensional 
databases are applied to CSFNN [4, 8, 21]. The CSFNN with 10 inputs, 10 hidden neurons and 3 
output neurons has been designed for this signature recognition problem. The neural computation 
is different in the hidden neurons and the output neurons in CSFNN as shown in Figure 2. The 
algorithm including the feed forward propagation, the updating and the testing processes were 
expressed as pseudo code in the Figure 3 and Figure 4-5. The widely used notations for CSFNN 
description were given in Table 1. 
 

Table 1. The notations or CSFNN description 
 

wij weights for connection between i.  input node and j. hidden neuron 
wjk weights for  connection between  j. hidden neuron k. output neuron 
ωj opening angle for j. hidden neuron 
cij center coordinates for  i.  İnput node and j. hidden neuron 
X input in the vectorized form  
aj neuron output for j. hidden neuron  
ak neuron output for k. output neuron  

d_train target values for training set 
 

The pseudo code of the feed-forward algorithm for CSFNN training is shown in Figure 3. In 
the beginning of the algorithm, weights, centers, opening angles are set to their initial values 
(Lines 2-7). After initialization, the algorithm begins to process each sample in dataset. The 
propagation rule of hidden neurons can be derived using the analytical equation “consec” (Line 
11). The output neurons are inner product type. The outputs of CSFNN are produced at Line 19. 
The bipolar sigmoid functions represented as “act_func” in the algorithm are used as derivative 
transfer functions  that compress an infinite input range to a finite output range [-1,1].  The 
mathematical models of these functions are given in Table 2.  
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Figure 2. CSFNN structure 
 

 
 

Figure 3. Pseudo code of feed-forward algorithm of  CSFNN 
 
 
 
 

Algorithm 1 Feed-Forward Algorithm of CSFNN for Training 
1:  /* Set initial values of  weight, the center and the opening angle 
2:  wij  rand{-0.5 , 0.5} 
3:  wjk  rand{-0.5 , 0.5} 
4:  cij  rand {xi} for all  x Train_Set 
5:  if  initial = MLP then  j /2 
6:  else if  initial = RBF  then  j /4 
7:  end if 
8: 
9:  for  ep_num=1 to Epoch_Number do 
10:      for  tr=1 to Train_Set_Size do 
11:          uj   consec(xi, cij, wij, j) 
12:          aj   act_func (uj)   for all  Hidden_Neurons 

13:          uk  wjk* aj 
14:           ak   act_func (uk) for all  Output_Neurons 

15:           /* ak   utilized in Algorithm 2 
16:     end for 
17: end for 
18: for all Train_Set  do 
19:         Y_train  ak 
20: end for
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Table 2.  Function sets in CSFNN algorithm 
 

Function Name Function Legend Mathematical Model 

Consec 
Conic Section Function for 
Hidden Neuron Model 

 

act_func  
Bipolar Sigmoid Activation 
Function 

 

Rand Random Entries generator Matlab Default Func. 
 

2.4. The Training Algorithm 
 

The training is performed using differential evaluation algorithm [22] after every forward 
pass of the network.  Algorithm 1 in Figure 3 and Algorithm 2 in Figure 4 are run sequentially 
until all input vectors perform in the training set and the iterations reach its maximum epoch 
value which is represented as Epoch number.  

DEA is the one of the heuristic algorithms for global parameter optimization. The derivative 
free optimization is obtained by DEA. The parameters of DEA are given in Table 3. Population 
size (NP), crossover rate (CR) and the scale factor (F) should be determined by user for 
minimizing the cost function. The main steps of this algorithm are the mutation, the crossover 
and the selection in basic pseudo code for in Figure4. Before the training of CSFNN with DEA, 
the solution set has been produced randomly between upper and lower limits (Line 1-2). Each 
solution set is called as a chromosome and the chromosomes generate the population. In addition, 

each variable of chromosomes is called as gene. CSFNN has m×(k+n)  m k n weights, 

m×ncenter and m angle values to be optimized for n  inputs, m hidden neurons and k output 
neurons.  

According to DEA, firstly, the initial population has been applied to CSFNN architecture to 
obtain the best solution set which minimizes the cost function (Line 3-5). Then all population has 
been updated by applying mutation, crossover and selection processes (Line 6-18). In the 
selection process, the best chromosome is updated (Line 14-17). In this work, the epoch number 
has been determined as the stopping criterion. The cost function is defined by average squared 
error [23] given in Equation (1). 
 

 
 


N
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N 1 1
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2

1                                                                                          (1) 
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Table 3. Notations for DEA description 

 

Symbol Quantity 

NP 
Population Size (number of the chromosomes) 

NP ≥4  (1, 2, 3, …, i) 
D Number of the Variable (Gene) (1, 2, 3, , j) 

CR Crossover Control Parameter  [0,1] 
G Maximum Generation  (1, 2, 3, …, Gmax) 
F Mutation Scale Factor [0,2] 

x j,I,G The j. parameter of i. chromosome in G. generation. (Gene) 
vi Mutant Vector 
ui Trial Vector 

ri 
The chromosomes which are chosen randomly to produce new generation i={1, 

2, …, NP} ; r1 ≠ r2 ≠ r3…≠ rNP 

x(u)  x(l) Upper and lower limit values of variables 
 

 
 

Figure 4. Pseudo code of DEA for CSFNN training 
 

2.5. The Testing  
 

The testing is performed for all input vectors in testing set. Outputs of the network (Line 11) 
are produced according to last updated network parameters generated in Algorithm 2 which are 
set to the fix value during feed forward computation. Pseudo code of this feed-forward algorithm 
of CSFNN for testing is shown Figure 5. 
 

Algorithm 2 DEA for training CSFNN 
1:  /* Initial population 
    I ≤ Np � j ≤ D: xJ,I,G=0 = xj

(l)+randj [0,1].(xj
(u)-xj

(l)) 
2:  /* Find the best X: 
3:  if fmin = f(xj)  then  xbest=xj 
4:  end if 
5:  for i=0 to iteration number 
6:   begin 
7:  /* Mutation : 
8:    j ≤ D: UJ,I,G=0 = xbest+F(xj,r1,G- xj,r2,G)  
9:  /* Crossover :   
10:      if rand[0,1] ≤ CR � j= jrand   then vj,i  = u j,I,G 
11:      else vj,i  = x j,I,G  
12:      end if  
13: /* Selection 
14:      if f(u j,I,G) ≤ f(x j,I,G)  then  x1,G+1=uI,G 
15:     else x1,G+1= x1,G+1 
16:     end if 
17:  end for 
18: end   
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Figure 5. Pseudo-code of feed-forward algorithm of CSFNN for testing 
 
3. HARDWARE IMPLEMENTATION 
 

The recognizer part of CSFNN based Signature Recognition System was implemented on 
hardware to achieve high level inherent parallelism of neural networks. The hardware based NNs 
were allowed to converge at a higher speed [4, 24] and to obtain a higher processing throughput 
[25] than software-based counterparts. In [4], the hardware architecture of CSFNN feed-forward 
computation was realized on mixed mode VLSI circuitry using chip in the loop technique. 
Alternatively to CMOS circuitry in [4], FPGA based CSFNN architecture perform on-chip 
training using DEA. 

CSFNN architecture of Signature Recognition System has been implemented on FPGA 
(Virtex 7 VC707). Highly dense and inherent parallelism of FPGA implementation make 
possible to realize large-scale neural networks with a great numbers of arithmetic units in 
hardware. The implementation is programmed via VHSIC Hardware Description Language 
(VHDL) with fully synthesizable code. Mega-functions, IP cores and other libraries weren’t 
utilized while implementing CSFNN architectures on FPGA. In order to program VHDL code 
onto the FPGA platform, Xilinx ISE Design Suite tool was used.  

On-chip learning technique [4, 11] is used for improving performance of intelligent 
recognition system. The training takes place entirely on the chip. Only the inputs of the training 
dataset are supplied to the chip. The synaptic weight, center and angle values are updated 
according to DEA.  

The training datasets are used for training the network and the test datasets are applied to 
CSFNN based FPGA platform to evaluate hardware’s ability to generalize. Considering 
functional expressions of CSFNN given in the second section, the feed-forward algorithm 
consists of some arithmetic units and nonlinear functions. On FPGA implementation, addition, 
subtraction, multiplier and squarer units were realized using 16-bit floating point (FP) IEEE 754-
2008 standard. FP cores for designing arithmetic modules have been developed during the work. 

The propagation rule for CSFNN hidden layer is referred as “consec” function presented in 
Table 2. Accordingly this function, data flow and the arithmetic units within a CSFNN hidden 
neuron is demonstrated as a block diagram in Figure 6. This representation is converted to the 
propagation rule for output layer by setting the center coordinates and cosine of opening angles to 
zero. Therefore, the hidden neuron could be substitute for the output neuron throughout design. 
The hidden neuron realization, we call a primary neuron, constitute the fully connected CSFNN. 
A primary neuron could be assigned as a hidden neuron or an output neuron depending on neural 
network size determined by distribution of a given dataset. During the neuron type assignment 

Algorithm 3 Feed-Forward Algorithm of CSFNN for Testing 
1:  / * Final values (cij,wij,wjk,,ωj) generated from Algorithm1,2 
2:     for  i=1 to Test_Set_Size do 
3:          uj   consec(xi,cij,wij, ωj) 
4:          for all  Hidden_Neurons do 
5:                 aj   act_func (uj) 
6:      end for 

7:            uk   wjk  * aj 
8:            ak   act_func (uk) for all  Output_Neurons 
9:            end for 
10:   for all Test_Set  do 
11:                  Y_test  ak 
12:   end for 




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procedure, the hardware architecture of a neuron model is controlled by input and output control 
units.  

 

 
 

Figure 6. The primary neuron structure 
 

Designing the hardware of a primary neuron, the FP arithmetic was realized for these 
computational units whereas the Look-Up Table (LUT) was used for the non-linear function 
realization such as bipolar sigmoid and the square-root functions. The sigmoid function was 
implemented using LUT which consists of 5019 samples which need 76 Kbits memory. Since the 
sigmoid function has the symmetric characteristic, the FP data in the LUT were stored for the 
right-hand side of the sigmoid function. The negative values of the function were obtained from 
the values by adding the sign bit. Therefore, the LUT needs less memory. As shown in Figure 6, 
CSFNN neuron in the hidden layer involves a square-root function which also demonstrates non-
linearity characteristic implemented using LUT with 11882 samples. The function limited [0, 5] 
were segmented into variable resolution while LUT implementation to reach a maximally precise 
approximation [13]. In order to realize output neuron using primary neuron, the center 
coordinates and cosine of opening angles was set to zero.  

The input control unit assigns simultaneously the signature dataset for every neuron of the 
layer in flexible adaptable sized CSFNN hardware. In this implementation, the clock signal (200 
MHz) is drawn from the board. In order to realize testing process, the signature dataset was send 
to the CSFNN implementation via the serial port interface and the output control unit interprets 
the outputs and provides control signals to classify the outputs. The different sized CSFNN 
architectures can be built on the embedded device to estimate hardware demands in terms of the 
speed and the resource usage. 

DEA is implemented on FPGA board in order to update CSFNN parameters during training. 
Table 4 presents the utilization of the FPGA resource for sub modules of DEA and feed forward 
CSFNN architectures. Crossover, mutation, selection, comparison and ROM units within DEA 
are demonstrated as a block diagram in Figure 7.  
 

Table 4. The resource usage for the sub-modules of DEA and CSFNN 
 

System Resource 
Combinational 

ALUTs 
Dedicated Logic 

Regiters 
DSP 18-bit 
Elements 

Initialization Module – DEA -- 845 -- 1% -- 
Comparison Module – DEA 14759  --  4.5% 2177 – 1%  1 

Mutation Module – DEA 46012 -- 15% -- 130 
Crossover Module – DEA 2083 -- 1% 2084 – 1% -- 
Selection Module- DEA 2204 -- 1% 2217 – 1% 2 

CSFNN 14264 -- 4.5% 1956 – 1% 1 
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Figure 7. DEA structure for training CSFNN 
 

4. SIGNATURE RECOGNITION PERFORMANCE 
 

The signature recognizing performance of FPGA based system has been evaluated on 
Signature Dataset in terms of system resource utilization, speed, recognition accuracy. The 
proposed on-chip FPGA based hardware system was compared with a pure software based 
approach considering evaluation criteria. 
 

4.1. Performance Evaluation 
 

The overall signature recognition system comprises of MATLAB, FPGA platform and 
industry – standard peripheral interfacing unit.  The signature recognition process is split into the 
training and the recognition phases. The training and test set consist of 200  signature samples 
including 25 samples for each class and 56 test samples including 7 samples, respectively. The 
CSFNN with 10 inputs, 10 hidden and 3 output neurons has 130 weights, 100 center values and 
10 angle values to be optimized by DEA. In other words, each chromosome in DEA has 240 
genes. During CSFNN parameters optimization process, the control parameters of DEA are set as 
in Table 5.  
 

Table 5. The control parameters of DEA for training CSFNN 
 

NP F CR Epoch Number 

20 0.6 0.6 
3000 (Software) 150  (Hardware) 

 

Feed-forward computation and training were implemented on the target FPGA board after 
synthesis and place and route process. At the recognition phase, the test signature samples were 
applied to the CSFNN based signature recognition system via the serial port interface while the 
updated weight, opening angle and center values were stored on distributed-memory of FPGA 
platform. 
 

4.2. Performance Comparison 
 

The signature recognition accuracy performance of CSFNN based FPGA implementation was 
compared with pure software accuracy performance [4]. The aim of the performance comparison 
is to reveal the weaknesses and advantages of the hardware implementations over software 
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platform. Table 6 compare the accuracy performances of CSFNN – DEA based FPGA 
implementation with the performances of pure software based system running on CSFNN 
algorithm for highly nonlinear Signature Dataset. On chip learning based FPGA implementation 
recognized 180 training signature samples correctly among 200 training samples and 46 
signatures correctly among 56 test samples. Classification boundaries were defined such that if 
the output is less than 0.5, it is assigned to 0.1 and if it is equal and more than 0.5, it is assigned 
to 0.9 during evaluation process. The feed forward neural network and training algorithm 
implemented on the FPGA doesn’t show the same performance to that simulated on the PC using 
MATLAB. Due to process workload during iterative training, even small quantization errors 
increase cumulatively for some input samples. 
 

Table 6. Signature recognition accuracies 
 

FPGA Matlab 

Train (%) Test (%) Train (%) Test (%)

90 83 97 95 
 
The hardware and software results of CSFNN outputs are demonstrated in Table 7 for the 

random selected signature examples within Signature Dataset. The misclassified results were 
tabulated as bold characters. FPGA implementation and the pure software system gave similar 
classification performance for most random signatures. However some signatures are recognized 
in MATLAB correctly, some of them are misclassified in FPGA platform and vice versa.  
 

Table 7. The results for random selected signature samples for signature dataset 
 

Signature 
Samples 

MATLAB Results FPGA Results Target Values 

Out1 Out2 Out3 Out1 Out2 Out3 Out1 Out2 Out3 

1   0.359 0.765 0.207 0.390 0.758 0.123 0.1 0.9 0.1 

2   0.649 0.095 0.266 0.699 0.108  0.303 0.9 0.1 0.1 

3   0.787  0.659 0.309 0.868 0.548 0.500 0.9 0.9 0.1 

4 0.665  0.510  0.527  0.775 0.465 0.567 0.9 0.1 0.9 
 

The CSFNN forward propagation delay was measured from RTL level circuit simulation. 
The response time computation starts when signatures are applied to CSFNN thus, the signature 
data transfer time was excluded. The computation rate performance for each platform is shown in 
Table 8. In order to compare performances, Giga Connections per Second (GCPS) was used as 
measurement metrics. CPS is defined as the number of operations that occur in the forward pass 
of a network per second [13]. It was seen from the Table 8, the pure software based system 
requires a higher computation delay for performing same task. Hardware systems are highly 
parallel, so they are able to execute several tasks at the same time. The intelligent system 
embedded on FPGA is approximately 105 times faster than its equivalent software 
implementation in terms of forward computation rates.   
 

Table 8. CSFNN forward computational rates 
 

Platforms FPGA Matlab 

Forward  Propagation Time (GCPS) 1.11 10.4x10-6 
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5. DISCUSSION 
 

In this study, intelligent algorithm based signature recognition system was implemented on 
FPGA. On-chip learning method is utilized in order to train CSFNN. DEA derivative free global 
optimization method is used to optimize CSFNN parameters during training and to avoid the 
problem of local minima in neural networks.  CSFNN architectures were constituted on FPGA-
based embedded high end Xilinx board using VHDL for signature databases. The weight, center 
and angle parameters of CSFNN were generated using training algorithm on FPGA environment 
and the updated parameters were transferred to CSFNN neurons. The utilization of the FPGA 
resource for the designed CSFNN – DEA architectures is less than the half capacity of the target 
platform. The high precision results are achieved by FPGA implementation using 16-bit FP IEEE 
754-2008 standard. However, small quantization errors increase cumulatively during iterative 
training because of process workload. The main superiority of FPGA implementation is that 
embedded hardware accelerates the processing of CSFNN over software environment by inherent 
parallelism of FPGA. Other advantages of the proposed approach include rapid prototyping, 
flexibility in design modifications. When the commercial and the military demand a fast and a 
high accuracy signature recognition system, FPGA implementation of signature recognition 
system provides robust and satisfied performances. 
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